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Abstract: Three-dimensional dielectric optical crystals with a high index show a complete photonic
bandgap (PBG), blocking light propagation in all directions. We show that this bandgap can be used
to trap light in low-index defect cavities, leading to strongly enhanced local fields. We compute the
band structure and optimize the bandgap of an inverse 3D rod-connected diamond (RCD) structure,
using the plane-wave expansion (PWE) method. Selecting a structure with wide bandgap parameters,
we then add air defects at the center of one of the high-index rods of the crystal and study the
resulting cavity modes by exciting them with a broadband dipole source, using the finite-difference
time-domain (FDTD) method. Various defect shapes were studied and showed extremely small
normalized mode volumes (Veff) with long cavity storage times (quality factor Q). For an air-filled
spherical cavity of radius 0.1 unit-cell, a record small-cavity mode volume of Veff~2.2 × 10−3 cubic
wavelengths was obtained with Q~3.5 × 106.

Keywords: photonic bandgap materials; photonic crystals; microcavities

1. Introduction

Three-dimensional (3D) photonic crystal microcavities, which are known to have
high-quality factors (high-Q) and ultra-small mode volumes (Veff), provide a novel way
of trapping light (photons) [1–3]. Such 3D structures would also allow the observation of
spontaneous emission modification (via the Purcell effect) [4], as well as the investigation
of the strong coupling [5] of a small number of quantum emitters (such as quantum dots
or diamond NV-color centers) in the cavity mode. The enhancement and suppression
of spontaneous emission by cavities are useful for single-photon sources, for quantum
information processing, while strong coupling allows the creation of all-optical switches,
quantum logic gates, and quantum memories using spin-photon entanglement [6]. Further-
more, a spin-photon entangler is a fundamental quantum gate, allowing the preparation of
multiple qubits (photons and spins) in complex entangled states (cluster states) that allows
scalable quantum computing [7].

Most previous research on photonic crystal cavities is based on two-dimensional (2D)
photonic crystals for sensors [8,9], while significant work on cavity field enhancement has
been performed with a view to coupling with single emitters [10]. In this and previous
works, we have focused our research on 3D photonic crystals, where we have shown
partial photonic bandgaps (PBGs) in polymer photonic crystals that were fabricated using
direct laser writing, exploiting two-photon polymerization (2PP)-based 3D lithography [11].
More recently, by backfilling polymer crystals with higher-index chalcogenide materials,
a complete PBG has been demonstrated in technologically relevant wavelength regions
(1.4–1.6 µm) [12]. This direct-writing templating technique is ideal for fabricating arbitrary
3D structures and could allow the selective writing of defects containing fluorescent mate-
rial at the antinodes of cavities, i.e., the infiltration of the structure with liquid-containing
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quantum emitters, such as PbS colloidal quantum dots [13], single-walled carbon nanotubes
(CNTs) [14], or coating with 2D materials [15,16]. Our simulation work has, thus, focused
on simulating ultra-small high-index cavities by creating point defects in these crystal
structures [17–21]. However, to get quantum emitters into such nanoscale cavities or to use
such systems as nanoscale sensors will require the cavity to be a low-index air/vacuum
or liquid.

Thus, in this paper, we investigate low-index cavities for high-efficiency coupling to
quantum emitters [13–15], suspended in low-index liquids or vacuum. Specifically, we
look at air-mode nanocavities [17,22–24] in RCD 3D photonic crystals [25,26], which exhibit
the largest full PBG known to date [27–29]. We first optimize direct RCD and inverse
RCD [19] structures for maximum PBG, using plane-wave expansion (PWE) [30] for an
index contrast of 3.6:1, as reported before for an index contrast of 3.3:1 by the authors
of [19], then introduce air cavities to locally enhance the electric field. The simulations
were conducted using the finite-difference time-domain (FDTD) method [31], with varied
low-index defect sizes and shapes. Previous work with high-index cavities identified the
optimal cavity positions [19] within the unit cell. The cavity resonant wavelength λres,
quality factor Q, and mode volume Veff in the defect cavities are then calculated.

2. Numerical Modeling and Calculation Method

For this paper, we studied high-refractive-index contrast (3.6:1 (GaAs or Si-air)) 3D
photonic crystals (PhC) with an inverse RCD lattice structure (air-rods in high-index
background material). The corresponding cubic unit-cell (of size au) is shown in Figure 1,
along with the defect position. We optimized the relative air-rod radius (r/au) of the inverse
RCD structures to maximize their full PBG for an index contrast of nbg:nc = 3.6:1, by
evaluating the relative gap width between bands 2 and 3 as a function of the normalized
rod radius, r/au. The results are shown in Figure 2. An optimal radius of rIRCD = 0.27au
was found, with a corresponding maximum PBG of ∆ω/ω0~28.71%. This radius is similar
to, although slightly larger than, the one found previously (rIRCD/au = 0.26) for an index
contrast of 3.3:1 [19]. Figure 3 shows the band structure corresponding to the optimal radius.
The maximum PBG goes from au/λ~0.51 to 0.69 with a mid-gap frequency of au/λ~0.6.
The optimal radius of the air-rod, r, is about 2.7 times larger than that in the direct RCD
scenario, making manufacturing more feasible [19].
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Figure 1. The cubic unit-cell of the inverse RCD structure (yellow = high refractive index, nbg) with 
the dimension au. One of the large air rods, with a refractive index nc = 1, radius r = 0.27au and height 
L = √3 𝑎௨ 4⁄ , used to create the inverse RCD structure, is shown as a black wireframe cylinder. The 

Figure 1. The cubic unit-cell of the inverse RCD structure (yellow = high refractive index, nbg) with
the dimension au. One of the large air rods, with a refractive index nc = 1, radius r = 0.27au and height
L =
√

3au/4, used to create the inverse RCD structure, is shown as a black wireframe cylinder. The
grey sphere indicates the position of the studied defects. The lattice directions corresponding to our
simulation axes Xs, Ys, and Zs are shown as grey arrows.
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same inverse RCD crystal, with cylinders of radius r = 0.27au and with refractive indices 
of nc = 1.0 for the cylinders and nbg = 3.6 for the background (see Figure 1). The dimensions 
of the defects and the various shapes are detailed in Figure 4. Five different defect types 
were considered: (a) a sphere of radius, rd, (b) a cylinder (“cylinder A”) of fixed height L = √3 𝑎௨ 4⁄ , with a circular base of diameter D = 2rd, (c) a cylinder (“cylinder B”) of height 
LcylB = 2rd equal to its diameter D = 2rd, (d) a block of fixed height L = √3 𝑎௨ 4⁄ , with a square 

Figure 2. Gap-width to center-frequency ratio ∆ω/ω0 (between band 2 and band 3), as a function of the
normalized rod radius r/au for inverse RCD structures at a refractive index contrast of nbg:nc = 3.6:1.
It shows a maximal gap width of ∆ω/ω0 = 28.71% for r/au = 0.27.
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Figure 3. Bandgap diagram of the optimal inverse RCD (r = 0.27 au). The inset graphs show
the movement described by the wave vector along the surface of the first Brillouin zone, in the
corresponding left and right parts of the plot.

Here, the finite inverse RCD structures used for the FDTD simulations were created
by truncating an infinite crystal, using a cube with a size of 10au × 10au × 10au, centered
on the defect, as previously performed by [19] for high-index defects. The grey axes shown
in Figure 1 correspond to the basis used in the FDTD simulations, which was chosen so
that the simulation Z-axis (Zs) is along the [1,1,1] axis of the conventional cubic unit-cell,
aligned with the inverse rod going through the defects [19]. All the simulations used the
same inverse RCD crystal, with cylinders of radius r = 0.27au and with refractive indices of
nc = 1.0 for the cylinders and nbg = 3.6 for the background (see Figure 1). The dimensions
of the defects and the various shapes are detailed in Figure 4. Five different defect types
were considered: (a) a sphere of radius, rd, (b) a cylinder (“cylinder A”) of fixed height
L =
√

3au/4, with a circular base of diameter D = 2rd, (c) a cylinder (“cylinder B”) of height
LcylB = 2rd equal to its diameter D = 2rd, (d) a block of fixed height L =

√
3au/4, with a

square base of side-length W = 2rd, and (e) a cube of side-length Wcube = Lcube = 2rd. A
wide range of defect forms has been chosen to investigate the sensitivity of the resonance
modes to the cavity shape, which will be affected by fabrication limitations. For the defects
“sphere”, “cylinder B” and “cube”, the size along the axis Zs keeps increasing, while for
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“cylinder B” and “block”, it is restricted, leading to a maximum rd value past which there
are no more effects (until the defect starts cutting into other inverse RCD rods).
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Figure 4. Five types of defect shapes including (a) a sphere of diameter D = 2rd, (b) a cylinder
(“cylinder A”) of diameter D = 2rd and height L =

√
3au/4, (c) a cylinder (“cylinder B”) of diameter

D = 2rd and height of LcylB = 2rd, (d) a rectangular block with a square base of side length W = 2rd

and a height of L =
√

3au/4, (e) a cube of side length Wcube = Lcube = 2rd. The size of the defects varied
from rd = 0.1au to 0.15au in 0.0125au steps and 0.15au to 0.5au in 0.025au steps. Here, the studied
low-index-filled cavities (ndef = 1.0) are placed in the optimized location, S2.0 [19], within the crystal
along the Γ-L or Zs [1,1,1] axis.

All defects have a refractive index of air ndef = 1.0. For each defect type, the FDTD
simulations were run using a broadband dipole source, which was placed in the optimized
location, S2.0 [19], within the crystal along the Γ-L or [1,1,1] axis. While the refractive index
value used in [19] was nbg = 3.3, instead of the nbg = 3.6 used here, we assume that the field
distributions would be similar for equivalent geometries and, therefore, that S2.0 would
still be an optimal defect location for the background index used here. The dipole was
excited along the [1,1,1] axis (Zs direction).

3. Results

After calculating the amplitude of the electric field over time for an inverse RCD with
these defects, the Q-factors (Q = λres/∆λ) can then be estimated by analyzing the resulting
field decay in the frequency domain, via the fast Fourier transform (FFT) algorithm. Any
perturbation disrupting the translational symmetry can act as a defect. Hence, precise
tuning of the cavity resonances can be achieved by varying the amount of perturbation,
through the modification of defect shapes and sizes in the 3D PhCs. We varied the size of
rd from 0.1au to 0.15au in 0.0125au steps and 0.15au to 0.5au in 0.025au steps. Figure 5 shows
the normalized frequency of resonance peaks (au/λ) as a function of the normalized size
(rd/au), within a full PBG between au/λ~0.51 and 0.69 (mid-gap frequency au/λ~0.6). The
normalized resonance frequency (au/λ) of the defect cavities increases with the defect size,
except in the case of the cylinder and rectangular block defect cavities.
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The corresponding Q-factors obtained for the different defect types are shown in
Figure 6. They decrease with increasing defect size. Overall, the Q-factors of the various
defect types behave similarly.
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of the highlighted region in (a).

The appropriate selection of the shape and size of defects is critical for optimizing
the confinement of the electric field within the cavities. Having determined the resonant
frequency, a cavity mode on resonance can be visualized using a single frequency snapshot.
The resulting normalized square of the electric field distribution (|E|2/|E|2

max) for each
defect type is illustrated in Figure 7, in the case of rd = 0.1au.

The isosurfaces of the dielectric material and the normalized square of the electric
field distributions (using an isovalue of |E|2/|E|2

max = 0.03) around the defect regions are
shown in Figure 7a,c,e, while the corresponding 1D cross-section plots along the Xs, Ys, Zs
axes, going through the defect centers, are shown in Figure 7b,d,f. As the truncated shape
of the cavity varies, the |E|2/|E|2

max no longer resembles the original electric field mode
(i.e., Gaussian modulated sinusoidal mode) with a discontinuity, but instead becomes more
confined to either edge of the high-index material.

Observation of modified spontaneous emission and non-linear optical effects in mi-
crocavities depend on their high-quality factors (Q) and small mode volumes (Veff), that
is, a high ratio of Q/Veff. However, in most optical systems, there is a tradeoff between
achieving a higher Q and reducing the size of the cavity mode volume. Here, we compare
the mode volumes for different sizes and shapes of defect cavities within the finite inverse
RCD structures. An effective mode volume (Veff) of the cavity modes can be calculated
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from FDTD simulation results, via the definition of the effective mode volume, Veff, and the
dimensionless normalized mode volume, fopt [32–34]:

Ve f f =

t
ε(r)|E(r)|2d3r

ε(rmax)
[
|E(r)|2

]
max

(1)

fopt =
Ve f f

[λ/n(rmax)]
3 (2)

where rmax is the position of the maximum electric-field amplitude. Hence, the mode
volume can be minimized by increasing the mode maximum electric field and localizing
the mode maximum in the low index region.
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Figure 7. Isosurfaces of the material (red), and of the normalized square of the electric field distributions
for |E|2/|E|2

max = 0.03 (yellow) with embedded low-index (ndef = 1.0) truncated regions of various defect
shapes (in the case of rd = 0.1au): a sphere (a1–f1), cylinder A (a2–f2), cylinder B (a3–f3), a block (a4–f4) and
a cube (a5–f5). The cavities were excited by a dipole with an electric field oriented along the Zs directions,
using a short Gaussian pulse. The solid lines show the center of the defect and the dashed lines show the
position of the maximum electric-field value. (b1–b5,d1–d5,f1–f5): one-dimensional cross-section plots
of the normalized square of the electric field (|E|2/|E|2

max) created along the Xs, Ys, and Zs axes, and
going through the maxima of each field distribution (dashed lines on the 3D isosurface plots).
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The results obtained using Equations (1) and (2) are shown in Figure 8. The mode
volumes of sphere defects are smaller than in any other shape. In general, the mode
volumes decrease with decreasing defect sizes, as expected, except for some small reverses
at rd = 0.1375au and 0.275au. For an air sphere (rd = 0.1au), a mode volume down to
Veff~0.0022(λ/n)3 and a Q-factor up to ~3.5 × 106 can be achieved (normalized resonance
frequency au/λ~0.541). Moreover, because the bandgap is omnidirectional, it is possible to
further increase the Q-factor by simply increasing the number of periods in each direction,
while maintaining a small mode volume, Veff.
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4. Discussion and Conclusions

For this research, inverse RCD PhCs formed in high-index-contrast materials (3.6:1.0
(GaAs:air)) were considered. A maximum PBG of ~28.71% at (r/au)opt = 0.27 was found,
using the PWE method. Various defect cavities of varying sizes and shapes, placed in an
optimized location within the inverse RCD structures, were studied. The Q-factors and
mode volumes (Veff) were calculated, using the FDTD method. In this paper, we report
that an air sphere defect (rd = 0.1au) gives the best result, with a mode volume Veff~0.0022
(λres/nair)3 and Q~3.5 × 106, which corresponds to a Q/Veff ratio ~1.59 × 109 (λres/nair)−3

with a resonance at au/λ~0.541. To our knowledge, this is a record-low mode volume for
defect cavities in 3D photonic crystal structures. This is, at first sight, a surprising result,
given the physical volume of these defects. However, the small mode volume reflects the
highly peaked fields close to the high-index cavity edges. Better control of the peak field
could be obtained by engineering spikes of high-index material close to the cavity center,
similar to recent 2D “bow-tie” cavity designs [10].

Such high-Q cavities with ultra-small mode volume could demonstrate a universal
mechanism for broad bandwidth, lossless, wavelength-scale optical circuits in a fully 3D
photonic crystal microchip. Additionally, these microchips could allow the development
of ultrasensitive sensing chips (guiding and confining light in air or low refractive-index
materials) [35] and find applications in solar energy trapping and harvesting [36].
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