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Abstract: Molecular dynamics (MD) and experiments indicate that the high-speed dislocations
dominate the plasticity properties of crystal materials under high strain rate. New physical features
arise accompanied with the increase in dislocation speed, such as the “Lorentz contraction” effect
of moving screw dislocation, anomalous nucleation, and annihilation in dislocation interaction.
The static description of the dislocation is no longer applicable. The elastodynamics fields of non-
uniformly moving dislocation are significantly temporal and spatially coupled. The corresponding
mathematical formulas of the stress fields of three-dimensional (3D) and two-dimensional (2D)
dislocations look quite different. To clarify these differences, we disclose the physical origin of their
connections, which is inherently associated with different temporal and spatial decoupling strategies
through the 2D and 3D elastodynamics Green tensor. In this work, the fundamental relationship
between 2D and 3D dislocation elastodynamics is established, which has enlightening significance
for establishing general high-speed dislocation theory, developing a numerical calculation method
based on dislocation elastodynamics, and revealing more influences of dislocation on the macroscopic
properties of materials.

Keywords: dislocation dynamics; elastodynamics; shock loading; high strain rate

1. Introduction

High strain rate deformation has long been a central concern in the fields such as
machine manufacturing, automotive, aviation, aerospace, and military [1–3]. Under such
loading conditions accompanied by extremely high temperature and pressure, there are
many micromechanisms of plastic deformation for materials, such as dislocation and
deformation twins. Complex phenomena can also arise; for example, a void can lead to high-
pressure phase transformation [4], and the barrierless melt nucleation will arise for some
energetic nitramine [5]. However, numerous molecular dynamics (MD) simulations have
demonstrated that the dislocation density will go up with the increase of impact pressure,
while the nucleation and motion of dislocations still dominate the plastic deformation of
the material under the high strain rate condition [6–9]. For example, when the strain rate is
below 2.77× 108/s−1 and temperature is over 50 K, the plasticity is dislocation-mediated
in the body-centered-cubic (BCC) metal tantalum [10]. Their simulations predict that only
on reaching certain limiting conditions of stress (the uniaxial stress reaches about 8 GPa)
will deformation twinning become the dominant mode of the dynamic response. Therefore,
the strength and plasticity properties of a metal are dominated by dislocations in the vast
majority of high strain rate deformation conditions.

According to Orowan’s equation, plastic strain rate ε̇ = ρbv (ρ is the mobile dislocation
density, b is the magnitude of Burger’s vector, and v is the average dislocation velocity).
If ρ = 1013/m2, b = 0.25 nm, and ε̇ = 5 × 106/s, v is expected to be above 2 km/s,
which is closed to the shear wave speed of some metals. For high-speed dislocation,
its elastodynamics stress fields are significantly different from the static stress field of
dislocations, which has been recognized since 1949 [11–13].
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On one hand, due to the insufficient spatial and temporal resolution of experimental
apparatus, it is very difficult to directly observe high-speed dislocation under such high
strain rate conditions. The observation of the high-speed dislocation has extremely high
requirements for laboratory equipment and samples, so far just having one report about the
high-speed dislocation in a two-dimensional plasma crystal [14]. Measuring the high-speed
dislocation in more materials still is very challenging and has not been successful. In order
to study high-speed dislocation, most work about the 3D and 2D elastodynamics field
is based on theoretical analysis, numerical calculation [15–20], and molecular dynamics
simulations [21–25].

On the other hand, the underlying physics of the high-speed dislocation is substan-
tially different from that of the quasi-static dislocations, and the high-speed dislocation
is manifested in the distinctive elastodynamics field. For instance, the displacement field
solution of the uniformly moving screw dislocation differs from the static solution by
a “Lorentz contraction” [26]. With the increase of dislocation velocity, the stress field is
contracted to the axis, perpendicular to the slip plane, on which the dislocation is located.
Moreover, molecular dynamics (MD) simulations show that high-speed dislocation can
enter the transonic and supersonic regimes [23,27]. Correspondingly, the special stress field
of Mach cones appears [28–31]. In addition, the elastodynamics field is sensitive to the mo-
tion history of the dislocation. The elastodynamics stress fields of a uniformly expanding
and shrinking dislocation loop are remarkably different, even though the final radius is
both of 100b, where b is the magnitude of Burgers vector, and its velocity magnitude is the
same as 0.3cT (cT is the shear wave speed of the material) [15].

The elastodynamics effect leads to distinct dislocation interactions compared with
the classical quasi-static dislocations. When the dislocations move at the low velocity,
two coplanar opposite-sign colliding edge or screw dislocations annihilate. As the dislo-
cation velocity increases close to the shear wave speed, those two dislocations, moving
against each other, fully overshoot each other, even generating new dislocations on near
planes [22,24,32]. In addition, the annihilation of a dislocation from the free surface is
generally observed when it moves with a low velocity. Unexpectedly, the rebounding of
a edge or a screw dislocation from the free surface has been found when it moves at a
high-velocity [33]. These abnormal mechanisms can lead to a rapid increase in dislocation
density that is strongly correlated both spatially and temporally, affecting high-strain-rate
plastic deformation from the microscopic level. However, to this day, the elastodynam-
ics effect on high-speed dislocation is far from being well understood, because the full
history-dependent nature and spatial–temporal coupling feature significantly complicate
the analysis of the problem.

Among the elastodynamics effect on high-speed dislocation, a fundamental problem
is that the elastodynamics solution of high-speed dislocation looks very different for two-
dimensional (2D) and three-dimensional (3D) cases. Most previous focus has been put on
the 2D infinitely long straight pure screw or edge high-speed dislocations [20,31,34]. For
2D screw dislocation, it is derived based on the assumption of anti-plane strain framework,
and for 2D edge dislocation, it is derived based on the plane strain framework. For the 3D
case, a general theory of non-singular dislocations loop is also developed for homogeneous
and isotropic infinite material [15,35]. After the concept of dislocation appeared, the theory
of quasi-static dislocations has been well developed [26]. The stress fields of the high-
speed dislocation are substantially different from those of the quasi-static dislocations,
which have been reported since 1949 [11,12]. From then on, dislocation elastodynamics
theories were further developed [13]. In the last ten years, the fundamental time-dependent
solutions for the injection and non-uniform motion of straight edge and screw dislocations
are widely studied. The two-dimensional elastodynamics Green tensor is used to obtain
the elastodynamics field of the subsonic, transonic, or supersonic dislocation motion [20].
Refs. [13,31] have made several important contributions for elastodynamics solutions for
the non-uniform motion of 3D dislocations. To complete the 3D elastodynamics framework,
Cui et al. have built explicit compact formula of high-speed 3D dislocations with non-
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uniform motion, which can be directly used for the numerical implementation [15]. The
corresponding mathematical formula of the stress fields of three-dimensional (3D) and
two-dimensional (2D) dislocations looks quite different (see Equations (9), (10), and (16),
which will be discussed in detail later).

However, few scholars have paid attention to the connection and physical differences
between the 3D and 2D of non-uniformly moving dislocation’s elastodynamics field, even
though it is important to connect the 2D and 3D underlying mechanisms. To our knowledge,
only for quasi-static dislocation, Lazar built up the 2D elastic fields from 3D elastostatics
solution for anisotropic elasticity in Fourier space [36]. However, for high-speed dislocation,
how to directly obtain the 2D solution from the 3D elastodynamics solution is seldomly
discussed. In the present work, 3D and 2D elastodynamics Green tensors act as mediums
for correlations between both elastodynamics fields, the 2D dislocation elastodynamics is
successfully derived from the higher dimensional elastodynamics fields, and their intrinsic
physical connections and distinctions are investigated.

2. Eastodynamics Solution of Non-Uniformly Moving Dislocation

The elastodynamics stress field of a 3D non-uniformly moving dislocation loop is
as follows:

σij(x, t) = Cijkl β
E
kl(x, t)

=
∫ t

t0

dt′
∮
L(t′)

εrqlCijklCmnpqGkm,n(x− x′, t− t′)bpξr(x′, t′)dL′

−
∫ t

t0

dt′
∮
L(t′)

CijklρĠkp(x− x′, t− t′)bpεlsrVs(x′, t′)ξr(x′, t′)dL′

(1)

where Cijkl is the elastic modulus tensor, βE
kl is the elastic distortion solution, ρ is the

material density, Gkp is the elastodynamics Green tensor at the 3D, the subscript using
Greek alphabet ranges from 1 to 3 for 3D case. (),n denotes differentiation with respect to
xn. A superposed dot means a time derivative. t0 and t represent the initial and current
time, x is a position vector of the observer point. x′ is the integration point position at
time t′ along the dislocation line L. b is the Burgers vector, V is the dislocation velocity
vector, and ξ is the unit tangent direction vector of the dislocation line. The deriviation of
Equation (1) is referred to [13,15,37–39].

Equation (1) clearly show that the elastodynamics solution is spatial–temporal coupled
and depends on the full history of the dislocation motion. In order to obtain the 3D and
2D solution in the same framework, the first key problem is to obtain the corresponding
elastodynamics Green tensor and its degradation for 2D problems.

3. Degradation of Elastodynamics Green Tensor

This section will demonstrate how to degrade the 3D elastodynamics Green tensor
to the 2D counterpart, corresponding to the problems of infinitely long straight disloca-
tion lines.

The 3D elastodynamics Green’s function in an isotropic crystal is derived in [40,41],

Gij(x, t) =
−1

4πρx

{
1
c2

T

(
δij −

xixj

x2

)
δ

(
t− x

cT

)
+

1
c2

L

xixj

x2 δ

(
t− x

cL

)
+

(
3xixj

x2 − δij

)
1
x2

∫ x/cT

x/cL

τδ(t− τ)dτ

} (2)

where x and xi represent the magnitude and the ith component of vector x, respectively.
δij is the Kronecker delta. cT and cL are the transverse and longitudinal wave speed,
respectively.

Without loss of generality, an infinite-long straight dislocation is assumed to be along
the x3 direction (see Figure 1a). Therefore, the degradation of elastodynamics Green tensor
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needs to integrate Equation (2) for x3 from −∞ to ∞. c is used to express a specific elastic
wave velocity c, which may be cT, cL, or the elastic wave speed between cT and cL. Then,
the basic term in Equation (2) can be expressed as f (x, t)δ

(
t− x

c
)
. Its integration can be

calculated as follows,∫ ∞

−∞
f (x, t)δ

(
t− x

c

)
dx3 =

f (x, t)
1
c

dx
dx3

|x=ct =
2 f (x, t)

1
c

x3
x
|x=ct =

2ct f (x, t)√
t2 − l2/c2

|x=ct (3)

where l2 = x2
1 + x2

2. According to Equation (3), many basic equations can be obtained to cal-
culate the 2D elastodynamics Green tensor and its time derivative, as listed in Appendix A.
Combining Appendix A and Equation (2), the 2D elastodynamics Green tensor becomes,

Gαβ(x, t) =
−1
2πρ

 δαβ

l2

 t2H(t2 − l2/c2
T)√

t2 − l2/c2
T

−
√

t2 − l2/c2
L H(t2 − l2/c2

L)


+

xαxβ

l4

 (−2t2 + l2/c2
T)H(t2 − l2/c2

T)√
t2 − l2/c2

T

+
(2t2 − l2/c2

L)H(t2 − l2/c2
L)√

t2 − l2/c2
L


(4)

G33(x, t) =
−1

2πµ
√

t2 − l2/c2
T

(5)

Gα3(x, t) = 0 (6)

where the Roman subscripts α and β range from 1 to 2.

Figure 1. (a) Schematic showing a high-speed infinite-long straight dislocation line; (b) Schematic
showing the integration strategy of a 2D dislocation line; (c) Schematic showing the integration
strategy based on retarded dislocation.

For isotropic material, Cijkl = λδijδkl + µ(δikδjl + δilδjk), where λ and µ are Lamé’s first
parameter and shear modulus, respectively. According to Equation (1),

βE
kl(x, t) =

∫ t

t0

dt′
∮
L(t′)

[λεrqlGkm,m(−s′, t− t′)bqξr(s′, t′)

+ µεrqlGkp,q(−s′, t− t′)bpξr(s′, t′) + µεrqlGkq,p(−s′, t− t′)bpξr(s′, t′)]dL′

−
∫ t

t0

dt′
∮
L(t′)

ρĠkp(−s′, t− t′)bpεlsrVs(s′, t′)ξr(s′, t′)dL′.

(7)

For screw dislocation, the dislocation line vector ξ = [001], so the Burger vector
b = [00b]. It is easy to see from Equation (7) that εrqlbqξr = 0, so only Gk3,p, Gkp,3, and Ġk3,t
contribute. Since Gαβ, 3 = 0, Gα3 = 0, only G33 plays a role.
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With respect to edge dislocation, the dislocation line vector ξ = [001], and the Burger
vector b = [b00]. According to Equation (7), only Gkm,m, Gk1,q, Gkq,1, and Ġk1 contribute,
where subscript q cannot be 3. Since G31 = 0, Gα3 = 0, and G33,3 = 0, only Gαβ plays a role.

The obtained 2D Green tensor is consistent with previous work, which is derived for
a plane-strain and anti-plane strain problem with respect to edge dislocation and screw
dislocation, respectively [31].

4. Different Spatial–Temporal Decoupling Strategies at 2D and 3D
4.1. Spatial–Temporal Decoupling Strategy at 2D

The degradation of elastodynamics Green tensor indicates that for an infinitely long
straight dislocation in infinitely extended material, the spatial–temporal coupling integra-
tion is firstly done on a spatial scale, because the geometry of the dislocation line remains
unchanged, as indicated by the dislocation configuration at different times (t0, t1, t2, t) in
Figure 1a. When the dislocations are assumed to be always straight, along x3 all the time,
the intersection point of the dislocation line and plane Ox1x2 can well describe the position
of dislocation at different times. The straight line integrals along the dislocation are clear
and definite at any time. Depending on the atomic displacement caused by the screw and
edge dislocation, it will be the anti-plane strain problem of screw dislocation and plane
strain problem of edge dislocation. Therefore, the 2D treatment is able to represent the 3D
information of the infinitely long straight dislocation, which is similar to previous work,
such as [17,31]. Afterward, this problem can be simplified as a 2D problem. As described in
Figure 1b, each infinite long straight dislocation line is represented through a point, which
is marked by the red nodes at different times. Then, only time integration is required to
obtain the elastodynamics solution.

As discussed in Section 3, for screw dislocation, only G33 works. The time derivative
of G33 is,

Ġ33(x− x′, t− t′) =
∂G33(x− x′, t− t′)

∂t′
+

∂G33(x− x′, t− t′)
∂x′η

∂x′η
∂t′

= −G33,t′(x− x′, t− t′)− G33,η(x− x′, t− t′)Vη

=
t̃H(t̃2 − l2/c2

T)

2πµ
√
(t̃2 − l2/c2

T)
3
−

(xη − x′η)H(t̃2 − l2/c2
T)

2πc2
Tµ
√
(t̃2 − l2/c2

T)
3

Vη

(8)

where t̃ = t− t′, l2 = (x1− x′1)
2 +(x2− x′2)

2, η = 1, 2, G33|t′=t = 0, Vk|t′=0 = 0. Combining
Equations (7) and (8), we can obtain the strain field function of non-uniformly moving
screw dislocation,
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βE
31 =

∫ t

0
[µG33,2(x− x′, t− t′)b3ξ3 + ρĠ33(x− x′, t− t′)V2b3ξ3]dt′

=
∫ t

0

[
µG33,2(x− x′, t− t′)b3ξ3 − µG33,η(x− x′, t− t′)

Vη

c2
T

V2b3ξ3

]
dt′

−
∫ t

0
ρG33,t′(x− x′, t− t′)V2b3ξ3dt′

=
∫ t

0

[
µG33,2(x− x′, t− t′)b3ξ3 − µG33,η(x− x′, t− t′)

Vη

c2
T

V2b3ξ3

]
dt′

+
∫ t

0
ρG33(x− x′, t− t′)V̇2b3ξ3dt′

− ρG33(x− x′, t− t′)V2b3ξ3|t
′=t

t′=0

=
∫ t

0

[
µG33,2(x− x′, t− t′)b3ξ3 − µG33,η(x− x′, t− t′)

Vη

c2
T

V2b3ξ3

]
dt′

+
∫ t

0
ρG33(x− x′, t− t′)V̇2b3ξ3dt′

=
∫ t

0

[
µG33,2(x− x′, t− t′)b3ξ3 − µG33,1(x− x′, t− t′)

V1

c2
T

V2b3ξ3

−µG33,2(x− x′, t− t′)
V2

c2
T

V2b3ξ3

]
dt′ +

∫ t

0
ρG33(x− x′, t− t′)V̇2b3ξ3dt′

=
b3ξ3

2πc2
T

∫ t

0

 V̇2√
t̃2 − l2/c2

T

+

(
1−

V2
2

c2
T

)
(x2 − x′2)√
(t̃2 − l2/c2

T)
3

−V1V2

c2
T

(x1 − x′1)√
(t̃2 − l2/c2

T)
3

H(t̃2 − l2/c2
T)dt′

(9)

βE
32 =−

∫ t

0
[µG33,1(x− x′, t− t′)b3ξ3 + ρĠ33(x− x′, t− t′)V1b3ξ3]dt′

=− b3ξ3

2πc2
T

∫ t

0

 V̇1√
t̃2 − l2/c2

T

+

(
1−

V2
1

c2
T

)
(x1 − x′1)√
(t̃2 − l2/c2

T)
3

−V1V2

c2
T

(x2 − x′2)√
(t̃2 − l2/c2

T)
3

H(t̃2 − l2/c2
T)dt′

(10)

βE
11 = βE

12 = βE
13 = βE

21 = βE
22 = βE

23 = βE
33 = 0 (11)

For screw dislocation considered with constant speed V, at time t = 0.15 ns, the
numerical results of Equations (9) and (10) can be seen in Figure 2. The 2D elastodynamics
stress fields derived from the degradation of 3D are consistent with 3D-discrete dislocation
elastodynamics solutions in [15].

For edge dislocation, we can obtain,

Ġαβ(x− x′, t− t′) = −Gαβ,t′(x− x′, t− t′)− Gαβ,γ(x− x′, t− t′)Vγ (12)

where α, β, γ = 1, 2, Gαβ|t′=t = 0, Vγ|t′=0 = 0.
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Figure 2. Stress field of screw dislocation with V = 0 or 0.77cT , at t = 0.15 ns in the 0x1x2 plane
(µ is the shear model of the material). (a–d) Two-dimensional (2D) elastodynamics solution by
Equations (9) and (10), (e–h) 3D elastodynamics field in [15].

According to Equation (4), the derivative of
√

t2 − l2/c2 is given by,(√
t2 − l2/c2

)
,γ
= − l

c2
√

t2 − l2/c2

∂l
∂xγ

H(t2 − l2/c2) = −
xγ

c2
√

t2 − l2/c2
H(t2 − l2/c2) (13)

The derivative of
1

lm
√

t2 − l2/c2
is,

(
1

lm
√

t2 − l2/c2

)
,γ
= −

mxγH(t2 − l2/c2)

lm+2
√

t2 − l2/c2
+

xγH(t2 − l2/c2)

c2lm
√
(t2 − l2/c2)3

(14)

where m > 0, c = cT , cL. Using Equations (13) and (14) and ∂xα/∂xγ = δαγ, the derivative
of the 2D Green function is expressed as

Gαβ,γ(x, t) =
1

2πρ


(

δαγxβ + δβγxα

l4 −
4xαxβxγ

l6

) t2√
t2 − l2/c2

L

+
√

t2 − l2/c2
L

H(t2 − l2/c2
L)

−

 t2√
t2 − l2/c2

T

+
√

t2 − l2/c2
T

H(t2 − l2/c2
T)


+

xαxβxγ

l4

 t2/c2
L H(t2 − l2/c2

L)√
(t2 − l2/c2

L)
3
−

H(t2 − l2/c2
L)

c2
L

√
t2 − l2/c2

L

−
t2/c2

T H(t2 − l2/c2
T)√

(t2 − l2/c2
T)

3
+

H(t2 − l2/c2
T)

c2
T

√
t2 − l2/c2

T


+

2δαβxγ

l4

√t2 − l2/c2
L H(t2 − l2/c2

L)−
t2H(t2 − l2/c2

T)√
t2 − l2/c2

T


+

δαβxγ

l2

 H(t2 − l2/c2
L)

c2
L

√
t2 − l2/c2

L

+
t2H(t2 − l2/c2

T)

c2
T

√
(t2 − l2/c2

T)
3



(15)

Substituting Equations (12) and (15) into Equation (7), we can obtain the elastodynam-
ics field of non-uniformly moving edge dislocation,
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βE
αι =

∫ t

0

[
εnςιGαβ,γ(x− x′, t− t′)Cβγκς(t′)bκξn − ειςnρĠαβ(x− x′, t− t′)Vςbβξn

]
dt′

=
∫ t

0
εnςι

[
Gαβ,γ(x− x′, t− t′)Cβγκς(t′)bκξn + ρĠαβ(x− x′, t− t′)Vςbβξn

]
dt′

=
∫ t

0
εnςι

[
Gαβ,γ(x− x′, t− t′)(Cβγκς − ρVγVςδβκ)bκξn − ρGαβ,t′(x− x′, t− t′)Vςbβξn

]
dt′

=
∫ t

0
εnςι

[
Gαβ,γ(x− x′, t− t′)(Cβγκς − ρVγVςδβκ)bκξn + ρGαβ(x− x′, t− t′)V̇ςbβξn

]
dt′

− εnςιρGαβ(x− x′, t− t′)Vςbβξn|t
′=t

t′=0

=
∫ t

0
εnςι

[
Gαβ,γ(x− x′, t− t′)(Cβγκς − ρVγVςδβκ)bκξn + ρGαβ(x− x′, t− t′)V̇ςbβξn

]
dt′

=
1

2πρ

∫ t

0


(

δαγ x̃β + δβγ x̃α

l4 −
4x̃α x̃β x̃γ

l6

) t̃2√
t̃2 − l2/c2

T

+
√

t̃2 − l2/c2
T

H(t̃2 − l2/c2
T)

−

 t̃2√
t̃2 − l2/c2

L

+
√

t̃2 − l2/c2
L

H(t̃2 − l2/c2
L)


+

x̃α x̃β x̃γ

l4

 t̃2/c2
L H(t̃2 − l2/c2

L)√
(t̃2 − l2/c2

L)
3
−

H(t̃2 − l2/c2
L)

c2
L

√
t̃2 − l2/c2

L

−
t̃2/c2

T H(t̃2 − l2/c2
T)√

(t̃2 − l2/c2
T)

3
+

H(t̃2 − l2/c2
T)

c2
T

√
t̃2 − l2/c2

L


+

2δαβ x̃γ

l4

√t̃2 − l2/c2
L H(t̃2 − l2/c2

L)−
t̃2H(t̃2 − l2/c2

T)√
t̃2 − l2/c2

T


+

δαβ x̃γ

l2

 H(t̃2 − l2/c2
L)

c2
L

√
t̃2 − l2/c2

L

+
t̃2H(t̃2 − l2/c2

T)

c2
T

√
(t2 − l2/c2

T)
3

εnςι(Cβγκς − ρVγVςδβκ)bκξndt′

+ ρ

 δαβ

l2

 t̃2H(t̃2 − l2/c2
T)√

t̃2 − l2/c2
T

−
√

t̃2 − l2/c2
LH(t̃2 − l2/c2

L)


+

x̃α x̃β

l4

 (−2t̃2 + l2/c2
T)H(t̃2 − l2/c2

T)√
t̃2 − l2/c2

T

+
(2t̃2 − l2/c2

L)H(t̃2 − l2/c2
L)√

t̃2 − l2/c2
L

εnςιV̇ςbβξndt′

(16)

where t̃ = t− t′, x̃α = xα − x′α(α = 1, 2), l2 = x̃1
2 + x̃2

2. The 2D elastodynamics results of
Equations (9), (10), and (16) are in agreement with the previous works [31].

4.2. Spatial–Temporal Decoupling Strategy at 3D

However, the spatial–temporal decoupling strategies at 2D dislocation discussed
above are not applied to arbitrarily moving 3D dislocation, because their 3D geometry and
curvature keep changing during plastic deformation. Therefore, the alternative strategy is
to carry out the temporal integration firstly. As a result of the existence of the Dirac delta
function δ(t− t′ − x−x′

c ) in Green’s function, the retarded solution used in Equation (1) is
obtained as follows by performing temporal integration.

L(t− R/c) =
{

x′ such that ‖x− x′(tret)‖ = c(t− tret)
}

(17)

where x′ is a source position on the retarded dislocation and L(t− R/c) represents the
collection of retarded points x′ on an arbitrarily moving 3D dislocation. x is the observer
point. tret is retarded time corresponding to a specific elastic wave velocity c. For retarded
dislocation, we make use of a simple example of subsonic 3D dislocation, sliding in plane
Ox1x3, with constant velocity V to elaborate the case. For retarded dislocation, we make use
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of a simple example of subsonic 3D dislocation, sliding in plane Ox1x3 with constant speed
V. As shown in Figure 1c, for the arbitrary observer point P (xP

1 , xP
2 , 0) in plane Ox1x2,

after the temporal integration, the points (Vtr, 0, xr
3) on the retarded dislocation line satisfy

(xP
1 −Vtr)2 + (xP

2 )
2 + (xB

3 )
2 = c2

T(t− tr)2, where tr is the retarded time corresponding to
the shear wave (cT). More examples of retarded dislocations can be seen in [15]. For 3D
moving dislocation with arbitrary curve configuration, complex curve integrals along the
retarded dislocation contain the 3D space information of elastodynamics fields.

This technique of using retarded potentials simplifies the calculation of coupled spatial
and temporal integration to a spatial integral over retarded dislocation positions. This
retarded potential method is standard in electrodynamics [42]. This method extends the
technique of retarded potentials, which was originally used to describe the electrodynamics
of charged particles moving near the speed of light. The retarded functions are the conse-
quence of the finite speed of the wave and with respect to the effect of retardation. This
idea is applicable to any dynamical theory with retardation, including elastodynamics [39].
The simplest example is the well-known Doppler effect in acoustics.

Accordingly, the elastodynamics stress field of arbitrarily moving 3D dislocation is as
follows [15],

œ(x, t) =
µ

4π

(
s(x, t) + sT(x, t)

)
, (18)

where the auxiliary tensor s(x, t) is given by,

s(x, t) =
∮
L(t−R/cT)

1
R2(R−R ·V/cT)

(
−2R⊗ (b×) + −ν

1− 2ν
b · (R×)I

−3
(

b− 4
R · b
R2 R

)
⊗ (R×)

)
dL′

− ∂t

∮
L(t−R/cT)

1
cT R(R−R ·V/cT)

(
ν

1− 2ν
b · (R×)I +

(
b− 2R · b

R2 R
)
⊗ (R×)

)
dL′

+
∮
L(t−R/cL)

1− 2ν

(1− ν)R2(R−R ·V/cL)

(
1− 3ν

1− 2ν
R⊗ (b×) + ν2

(1− 2ν)2 b · (R×)I

+

(
b− 6R · b

R2 R
)
⊗ (R×)

)
dL′

− ∂t

∮
L(t−R/cL)

1− 2ν

(1− ν)cLR(R−R ·V/cL)

(
ν

1− 2ν
R⊗ (b×)− ν2

(1− 2ν)2 b · (R×)I

+

(
R · b
R2 R

)
⊗ (R×)

)
dL′

+
∫ 1/cT

1/cL

∮
L(t−Rκ)

6c2
Tκ

R2(R−R ·Vκ)

(
R⊗ (b×) +

(
b− 5R · b

R2 R
)
⊗ (R×)

)
dL′dκ

+ ∂t

∮
L(t−R/cT)

1
c2

T(R−R ·V/cT)

(
ν

1− 2ν

(
b− R · b

R2 R
)
· (V×)I +

(
b− R · b

R2 R
)
⊗ (V×)

)
dL′

+ ∂t

∮
L(t−R/cL)

1
c2

L(R−R ·V/cL)

(
ν

1− 2ν

(
R · b
R2 R

)
· (V×)I +

(
R · b
R2 R

)
⊗ (V×)

)
dL′

−
∫ 1/cT

1/cL

∮
L(t−Rκ)

1
R(R−R ·Vκ)

(
ν

1− 2ν

(
b− 3R · b

R2 R
)
· (V×)I +

(
b− 3R · b

R2 R
)
⊗ (V×)

)
dL′dκ

+
∮
L(t−R/cT)

1
cT R(R−R ·V/cT)

(
ν

1− 2ν

(
b− 3R · b

R2 R
)
· (V×)I +

(
b− 3R · b

R2 R
)
⊗ (V×)

)
dL′

−
∮
L(t−R/cL)

1
cLR(R−R ·V/cL)

(
ν

1− 2ν

(
b− 3R · b

R2 R
)
· (V×)I +

(
b− 3R · b

R2 R
)
⊗ (V×)

)
dL′

(19)

and sT(x, t) is its transpose. Here, R is the magnitude of R, which is the vector connecting
the source point to the observer point, namely, R = x− x′.
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4.3. Consistency

Different spatial and temporal integration strategies lead to different formulas of
the elastodynamics solution (see Equations (16) and (19)). The case of an infinitely long
straight dislocation line described in Figure 1a–c schematically shows the difference of the
integration strategies. Figure 1b needs to perform temporal integration over each point
at different times, while Figure 1c needs to perform spatial integration over the retarded
dislocation lines. For 3D dislocation, carrying out the space integration along retarded
dislocation is capable of completing calculation of the 3D elastodynamics fields. For 2D
dislocation, it is assumed to be along x3 all the time; the intersection point of the dislocation
line and plane Ox1x2 can well record the position of dislocation. Performing the straight
line integration along the straight dislocation is specific. Thereby, performing the temporal
integration can calculate the 2D elastodynamics fields after space integration. It is not
apparent to see their physical connections from these figures.

To simplify the discussion and clarify their consistency, the spacial and temporal
integration of a basic term is derived as follows, using the integration strategies described
in Sections 4.1 and 4.2. If the spatial integration is firstly done,

∫ t

t0

∫ ∞

−∞
f (x, t′)δ

(
t− t′ − x

c

)
dx3dt′ =

∫ t

t0

2x f (x, t′)H(t2 − l2/c2)√
(t− t′)2 − l2/c2

|x=c(t−t′)dt′ (20)

where x3 ε [−
√

c2(t− t0)2 − l2,
√

c2(t− t0)2 − l2], l2 = (x1 − x′1)
2 + (x2 − x′2)

2.
If the temporal integration is firstly done,∫ ∞

−∞

∫ t

t0

f (x, t′)δ
(

t− t′ − x
c

)
dt′dx3 =

∫ ∞

−∞
f (x, t′)t′=t− x

c
dx3 (21)

where x ε [0, c(t− t0)], therefore t′ = t− x
c ε [t, t0], mathematically.

Furthermore, dt′ = d(t − x
c ) = − dx

cdx3
dx3 = − x3

cx dx3. Consequently, Equation (21)
becomes∫ ∞

−∞

∫ t

t0

f (x, t′)δ
(

t− t′ − x
c

)
dt′dx3 =

∫ t

t0

2x f (x, t′)H(t2 − x2/c2)√
(t− t′)2 − l2/c2

|x=c(t−t′))dt′ (22)

Equation (22), which firstly calculates the temporal integration, is exactly the same as
Equation (20), which firstly carries out the spatial integration. Therefore, for more complex
formulas associated with elastodynamics solutions, they are exactly the same.

5. Conclusions

The significant effects of elastodynamics on a dislocation stress field have been recog-
nized for more than 70 years. However, the marked difference in elastodynamics stress
expression for 3D and 2D dislocation is seldomly directly discussed. In the current work, the
physical origin of their difference and connections is clearly discussed from the perspective
of different spatial and temporal decoupling strategies.

For the 2D case, the dislocation configuration keeps straight along a specific direction,
which makes it suitable to firstly carry out the spatial integration along its line direction.
For the 3D case, the evolution of the dislocation configuration is very complicated, one
cannot obtain generalized results if the spatial integration is firstly carried out. Therefore,
the temporal integration is firstly performed. The consistency between these two cases is
clearly demonstrated through the 2D and 3D elastodynamics Green tensor and a simple
generalized formula. This work helps to understand the difference and connections be-
tween 2D and 3D dislocation elastodynamics, which leads to an enlightening opportunity
for establishing general high-speed dislocation theory, developing a numerical calculation
method based on dislocation elastodynamics, and understanding the collective behavior of
high-speed dislocations under complicated shock-loading conditions.
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Appendix A

Calculating the space integral over 3D Green function in the x3 direction and 2D

elastodynamicss field, we used the following auxiliary formula, where x =
√

x2
1 + x2

2 + x2
3,

l =
√

x2
1 + x2

2, xi(i = 1, 2, 3), and xα(α = 1, 2) are the Cartesian coordinate components,
and cT and cL are shear and longitudinal wave velocities of the material.

∫ ∞

−∞

δ
(
t− x

c
)

x
dx3 =

1
x 1

c
dx
dx3

|x=ct =
2

x 1
c

x3
x
|x=ct =

2√
t2 − l2/c2∫ ∞

−∞

δ
(
t− x

c
)

x3 dx3 =
2

c2t2
√

t2 − l2/c2∫ ∞

−∞

xαx3δ
(
t− x

c
)

x3 dx3 =
2xα

ct2∫ ∞

−∞

x2
3δ
(
t− x

c
)

x3 dx3 =
2
√

t2 − l2/c2

t2∫ ∞

−∞

x2
3δ
(
t− x

c
)

x5 dx3 =
2
√

t2 − l2/c2

c2t4∫ ∞

−∞

x3
3δ
(
t− x

c
)

x5 dx3 =
2(t2 − l2/c2)

ct4∫ ∞

−∞

x3δ
(
t− x

c
)

x2 dx3 =
2
t

(A1)

∫ ∞

−∞

1
x3

∫ x/cT

x/cL

τδ(t− τ)dτdx3 =
1
x

∫ 1/cT

1/cL

∫ ∞

−∞
κδ(t− xκ)dx3dκ

= − 2
l2

√
t2 − l2/c2

T +
2
l2

√
t2 − l2/c2

L∫ ∞

−∞

1
x5

∫ x/cT

x/cL

τδ(t− τ)dτdx3 = − 4
3l4t2

(
t2 − l2

c2
T

)3/2

+
4

3l4t2

(
t2 − l2

c2
L

)3/2

− 2
l2c2

Tt2

√
t2 − l2

c2
T
+

2
l2c2

Lt2

√
t2 − l2

c2
L∫ ∞

−∞

1
x7

∫ x/cT

x/cL

τδ(t− τ)dτdx3 = −
2
√

t2 − l2/c2
T

15l4

(
8 +

4l2

c2
Tt2

+
3l4

c4
Tt4

)

+
2
√

t2 − l2/c2
L

15l4

(
8 +

4l2

c2
Lt2

+
3l4

c4
Lt4

)

(A2)
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∫ ∞

−∞

xαx3

x5

∫ x/cT

x/cL

τδ(t− τ)dτdx3 =
2xα

3t2

(
1
c3

T
− 1

c3
L

)
∫ ∞

−∞

x2
3

x5

∫ x/cT

x/cL

τδ(t− τ)dτdx3 = − 2
3l2t2

√
(t2 − l2/c2

T)
3 +

2
3l2t2

√
(t2 − l2/c2

L)
3

∫ ∞

−∞

x2
3

x7

∫ x/cT

x/cL

τδ(t− τ)dτdx3 = −2
5

(
1

l2c2
Tt4

+
2

3l4t2

)(
t2 − l2

c2
T

)3/2

+
2
5

(
1

l2c2
Lt4

+
2

3l4t2

)(
t2 − l2

c2
L

)3/2

∫ ∞

−∞

x3
3

x7

∫ x/cT

x/cL

τδ(t− τ)dτdx3 = −

√
t2 − l2/c2

T

15

(
2
l4 +

1
c2

T l2t2
− 3

c4
Tt4

)

+

√
c2

Lt2 − l2

15c5
Ll4t4

(
2c4

Lt4 + c2
Ll2t2 − 3l4

)

(A3)

(∫ ∞

−∞

δ
(
t− x

c
)

x2 dx3

)
,t

=
−4c2t + 2l2

t2
√
(c2t2 − l2)3(∫ ∞

−∞

δ
(
t− x

c
)

x4 dx3

)
,t

=
−8c2t2 + 6l2

c2t4
√
(c2t2 − l2)3(∫ ∞

−∞

1
x3

∫ x/cT

x/cL

τδ(t− τ)dτdx3

)
,t
= − 2t

l2
√

t2 − l2/c2
T

+
2t

l2
√

t2 − l2/c2
L(∫ ∞

−∞

x2
3δ
(
t− x

c
)

x4 dx3

)
,t

=

(
2
√

t2 − l2/c2

ct3

)
,t

=
2

ct2
√

t2 − l2/c2
− 6
√

t2 − l2/c2

ct4(∫ ∞

−∞

x2
3

x5

∫ x/cT

x/cL

τδ(t− τ)dτdx3

)
,t

=
4

3l2t3

√
(t2 − l2/c2

T)
3 − 2

l2t

√
t2 − l2/c2

T

− 4
3l2t3

√
(t2 − l2/c2

L)
3 +

2
l2t

√
t2 − l2/c2

L

(A4)
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