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Abstract: One of the challenges for azobenzene-based materials in fabricating rewritable surface relief
gratings is the long response time in the procedure of holographic recording, making it inefficient in
real-time applications. In this study, a small molecule azobenzene compound with a facile fabrication
route is presented. By a total recording intensity of 200 mW/cm2, a surface relief grating with the
modulation depth of 758 nm can be formed in 5 min. The ±1st order diffraction was observed
immediately after the holographic recording, and the ±2nd order diffraction was produced in
two seconds. Such a short response time makes it possible for use in real-time applications.

Keywords: holographic material; azobenzene; surface relief grating

1. Introduction

Azobenzene-based materials have long been designed and developed for applications
in holographic storage [1–3] and 3D image display [4]. Due to the essence of repeatable
photoisomerization in the cis-trans molecular interconversion, they are advantageous in
fabricating rewritable surface relief gratings (SRGs) [5]. However, such forms of data
recording or erasing processes generally take a long illumination time with a high optical
power [6], making azobenzene-based materials inefficient in real-time applications.

The azobenzene-based compound consists of the azobenzene and the matrix material.
The side-chain polymers [7] are widely used as the matrix materials. However, the cross-
linked matrix might make a restrained environment for photoisomerization [8,9]. The chain
entanglement might further produce a hindrance in the procedure of making the SRGs [10].
It generally takes a long illumination time and a high illumination power to form a grating
with a low modulation depth [6]. Meanwhile, the bonding between the azobenzene
and the matrix can be categorized into three types: covalent bonding, ionic bonding,
and hydrogen bonding [9]. The force of hydrogen bonding is relatively weak. The weak
connection between the azobenzene and the matrix might lead to a long illumination time
for making the SRGs [11]. It seems that a matrix with a small molecule weight and a
strong bonding force between the azobenzene and the matrix can reduce the illumination
time or illumination power. H. Nakano et al. presented a couple of azobenzene materials,
such as BFlAB and BBMAB [12]. The molecule weights of their matrixes were relatively low.
The bonding type between the azobenzene and the matrix was covalent bonding. For the
BFlAB amorphous film, an SRG with a modulation depth of 470 nm could be formed in
10 min. For the BBMAB amorphous film, the SRG with a modulation depth of 90–100 nm
could be formed in 2 min.

In this study, the bis(3-aminopropyl)amine (BAA) with a molecule weight of only
131.22 g/mol was selected as the matrix material. The small molecule weight of the matrix
makes it possible to reduce the illumination time for making the SRG. The bounding type
between the azobenzene and the matrix is ionic bounding. There are two functional groups
in BAA. Compared to those using one functional group to sustain the connection with the
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azobenzene, it supplies more opportunities in the reaction of photoisomerization, making
it more desirable to form a surface relief grating with a large modulation depth. An SRG
with a modulation depth of 758 nm could be formed in 5 min. The manufacturing process
is simple and can be performed by a one-shot procedure [13–15].

2. Materials and Methods
2.1. Materials and synthesis

Figure 1a presents the chemical structure of MR and BAA and Figure 1b presents
the ionic bonding process between MR and BAA, depicting the molecule structures
used to form the azobenzene-based compound. The molecular weight of azobenzene
(2-{[4-(dimethylamino)phenyl]diazenyl} benzoic acid (methyl red, MR)), which is
269.30 g/mol, was utilized to perform the reaction of photoisomerization. All the ma-
terials in this work were purchased from Sigma-Aldrich (St. Louis, Missouri, United States)
and used as received. The bis(3-aminopropyl)amine (BAA) with a molecule weight of
131.22 g/mol was chosen as the matrix material.
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Figure 1. (a) The chemical structure of MR and BAA. (b) Ionic bonding process between MR and BAA.

The carboxylic group -COOH can be deprotonated in the protic solvent and turned
into a carboxylate anion -COO−. On the other hand, the amino functional group -NH2 can
be protonated in the protic solvent and turned into a positive ion -NH3

+. When a proton
exchange reaction occurred in the protic solvent, an ionic bond between the carboxylate
anion and the protonated amino group was formed [16–21]. Hence, two MR molecules can
be bonded to one BAA molecule, as illustrated in Figure 1a, which presents the chemical
structure of MR and BAA, and Figure 1b, which represents the ionic bonding process
between MR and BAA. Such chemical characteristics were analyzed by the Fourier trans-
form infrared spectroscopy (FTIR) and the 1H nuclear magnetic resonance spectroscopy
(1H NMR), as illustrated in Section 3.1.

A colorless solution was obtained by mixing BAA (0.061 g) with an appropriate
quantity of methanol (5.35 g) in an ultrasonic oscillator. With the additive of MR (0.243 g,
molar ratio of BAA/MR = 1/2), the mixture turned rapidly from colorless to orange.
Followed by evaporation at 40 ◦C for 2 days, undesired impurities and precipitates were
removed by a PTFE syringe filter. The viscous extraction was then uniformly spin-coated
onto a quartz glass substrate (2.5 cm × 2.5 cm × 0.1 cm). After the process of desiccation in
vacuum, the MR–BAA compound in the form of a thin film was obtained.

2.2. Optical Characterization

The surface relief grating was formed by the process of holographic recording onto
the MR–BAA compound. Figure 2 shows the setup for the holographic recording and
reading. In the recording procedure, a DPSS 532 nm laser (with a linear polarization normal
to the figure plane) was used as the light source. The laser beam with a power of 30 mW
in a profile of the Gaussian distribution was divided by the beam splitter into two parts.
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The power density of each part was approximately 100 mW/cm2. These two beams
interfered with each other in the MR–BAA compound, and a surface relief grating was
produced. The angle between the 2 beams was about 7◦, resulting in a grating with a period
of 4.35 µm. To evaluate the performance of diffraction, a He-Ne laser with an incident
power of 10mW was employed for the holographic reading. A power meter from Thorlabs
(Model PM100D) was used to identify the diffracted power. The diffraction efficiency of
the nth order was obtained by the ratio of Pd/Pt, where Pd is the power of the nth order
diffracted power and Pt is the power of the incident beam.
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Figure 2. Optical setup for the MR–BAA inscription.

An atomic force microscopy (AFM) from Veeco Digital Instrument (Model D3100) was
used to measure the surface profile of the SRG.

3. Results and Discussions
3.1. Ionic bonding formation

The 1H nuclear magnetic resonance spectroscopy (1H NMR) from Jeol (Model ECZ600R)
was employed to identify the compounds. The specimens were dissolved in deuterated
solvent CDCl3. In the section of Supplementary Materials S2, 1H NMR, spectra for MR,
BAA, and MR–BAA compound with chemical shifts in ppm on the horizontal axis are pre-
sented. Figure 3a shows a close-up view for characteristic shifts represented for the terminal
amine (CH2NH2) in BAA and for those in the MR–BAA compound. The terminal amine
(CH2NH2) in MR–BAA was protonated. The protons in the methylene group adjacent to
the terminal amine were situated in a de-shielded chemical environment. Consequently,
a downfield displacement with peak broadening was presented in the NMR spectrum of
MR–BAA [11,22]. Figure 3b shows a characteristic shift at 14.3 ppm represented for the
carboxylic acid (COOH) in MR. Such a shift could not be detected in the 1H NMR spectrum
of MR–BAA. It illustrates that the carboxylic acid (COOH) in MR was deprotonated.

The Fourier transform infrared spectroscopy (FTIR) from Bruker (Model T-27) was
utilized to determine the bonding type. The inspected specimens were preprocessed by KBr
pellet method. A detail illustration of FTIR spectra for MR, BAA, and MR–BAA compound
are shown in the section of Supplementary Materials S1. Figure 3c shows a close-up view of
the spectra of carbonyl (C=O) and carboxylate (C=O)O− groups. In the spectrum obtained
from MR, the signal peak at 1743 cm−1 represented for the carboxylic group was detected.
Such a peak vanished in the spectrum of the MR–BAA compound, and, instead, a peak
at 1560 cm−1 was detected. It indicates that the (C=O)OH group was deprotonated in
the MR–BAA compound, and, instead, the ionic bonding between (COO)−(NH3

+) was
formed [11,22–24].
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Figure 3. (a) 1H NMR spectra of the methylene group attached to the terminal amine groups;
(b) 1H NMR spectra of the carboxylate group; and (c) FTIR spectra in the range of the carbonyl and
carboxylate groups.

3.2. Bonding Stability

The bonding stabilities of MR, BAA, and MR–BAA compound were investigated via
the thermal gravimetric analyzer (TGA, from TA Instruments, Model Q50, New Castle, DE,
USA). Figure 4a illustrates their TGA curves. MR is a solid compound with a melting point
at 180 ◦C. As shown in Figure 4a, it starts to degrade at 205 ◦C. By contrast, BAA is a liquid
compound with a boiling point at 151 ◦C. Mass losses of 5 and 15 wt% could be observed at
120 ◦C and 180 ◦C, respectively. The mass loss of MR–BAA was situated between those of
MR and BAA. Evidently, the intermolecular force in the MR–BAA compound was stronger
than that in BAA and weaker than that in MR. It starts to decompose at 125 ◦C and the
decomposition procedure carries on until about 450 ◦C.

Figure 4b shows the first derivative of the TGA curves. For the curve of MR, an upward
peak at 210 ◦C is presented. Such kinds of peaks can always be observed in aromatic
compounds [25,26]. On the other hand, for the MR–BAA compound, distinguishable peaks
at 190 and 220 ◦C can be observed, implying that the bonding in the MR–BAA compound
starts to break at 190 ◦C.
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Figure 4. (a) Thermogravimetric analysis (TGA) curves for MR, BAA, and MR–BAA compounds,
and (b) the first derivative of the TGA curves (i.e., DTA curves).

3.3. Surface Relief Grating Morphology and Diffraction Efficiency

A couple of MR–BAA compounds in the form of thin films were made using the
method described in Section 2.1. A film analyzer from N&K Technology (Model 1280) (San
Jose, CA, USA) was employed to identify their thicknesses. They ranged from 750 nm
to 900 nm. With the setup illustrated in Figure 2, one of the MR–BAA compounds was
illuminated in the interference of the DPSS laser, and a surface relief grating was fabricated.
In the procedure of the SRG fabrication, the He-Ne laser was employed to perform the
diffraction measurements. Figure 5a shows the diffraction efficiencies for all diffraction
orders at various illumination time. A close-up view of the various orders (except for the
zero order) is illustrated in Figure 5b. The diffraction efficiencies of all the orders rose with
increasing the recording time and were finally saturated with specific values. In general,
the formation of SRGs is accomplished when the diffraction efficiency of the highest order
no longer increases with increasing the recording time. In our setup, the highest diffraction
order was n = ±9, with a diffraction angle as high as ±75◦. It was saturated in 5 min,
implying that the surface relief grating was formed in 5 min. However, the molecule
weight of the matrix was low, making the SRG sensitive to thermal disturbances. The SRG
was heated by the illumination of the DPSS laser, resulting in a diffraction fluctuation
to each order. The more heat accumulated in the compound, the more disturbances to
the diffracted intensities. One solution to cope with this problem was simply shutting
down the illumination power, waiting for a while until the heat being released, and then
illuminating the same interference again in a short time interval. The grating could be
reshaped. Figure 5c shows an appearance of the diffraction from the reshaped grating,
in which the intensities of the +nth order and −nth order were approximately the same.

The file “Holographic Inscrption.mp4” in the Supplementary Materials illustrates the
diffractions produced from another SRG. A flat screen instead of the power meters was
utilized to evaluate the diffraction performance. Some high order diffractions were outside
the screen because their diffracted angles were too large. The absorption coefficient of the
MR–BAA compound at 532 nm was larger than that at 632.8 nm. Hence, the diffracted in-
tensity of the He-Ne laser was higher that of the DPSS laser. In the procedure of diffraction
measurements, the ±1st order diffraction was observed immediately after the holographic
recording. Subsequently, the ±2nd order diffraction was produced in two seconds. As de-
scribed in S2, in the Supplementary Materials, there is the implication that an SRG with a
modulation depth approximately 60 nm was formed in 2 s. The fast response time made it
a promising device in real-time applications.
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Figure 5. (a) Diffraction measurements for the surface relief grating at various recording time. (b) A
close-up view for (a). (c) An appearance of diffractions from the reshaped surface relief grating.

In the S2 Section, we further show that intensities of high order diffractions might
be higher than those of low order diffractions. Such behavior could be observed in the
video, with the recording time of more than 2 min. Meanwhile, the intensity of the +nth
order diffraction was always larger than that of the –nth one. It indicates that the grating’s
surface profile in each period was not symmetric. The reason was mainly the result of the
MR–BAA compound that was posited with a slight tilt and not perfectly normal to the
interfered illumination.

A MR–BAA compound with a thickness of approximately 762 nm was employed for
the holographic recording. With an illumination time of 6 min, a surface relief grating
was formed. Figure 6a shows the surface profile detected by the atomic force microscopy.
Its 1D profile distribution is shown in Figure 6b. The modulation depth was approximately
758 nm.
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3.4. Comments

A comparison of various azobenzene compounds with their film thicknesses (L) and
corresponding surface relief gratings with their modulation depths (∆L) is depicted in
Table 1. The bonding type between the azobenzene and the matrix, molecular weight (MW),
total illuminating power density (I), and fabrication time (T) are listed as well. In Table 1,
Th is used to denote the recording time when the intensity of the highest order diffraction
was turned from the increment into a status of insignificant changes. In our experiments,
Th was approximately 5 min, and the modulation depth ∆L was approximately 758 nm.

Table 1. A list of SRGs made of various azobenzene compounds with the featured parameters.

Azo-Based Material Bonding MW (g/mol) L (nm) ∆L (nm) I (mW/cm2) T (min) Th (min)

PAZO [27]

Covalent

- 450 170 950 50 50

DBAB [28] 501 10,000–
50,000 200–230 - 4 3–4

BBMAB [28] 572 10,000–
50,000 90–100 - 2 1–2

BFIAB [12] 581 5000–10,000 450–490 80 10 -
AAB-BTC [29] 747 240 380 300 20 20

ZGD-1 [30] 925 300 300 3100 3.1 -
AAB-Epoxy [6] 1052 1700 750 160 110 110

PADA-PVPh [31]

H-bonding

1226–5226 400 440 200 - -
DY7-P4VP [32] 5716 620 625 300 18 -

OH-DMA-P4VP [33] 1241 >2500 400 200 10 -
OH-DMA-P4VP [34] 3441 ~2000 590 280 - -

MR-PEI [14]

Ionic

- ~2000 1800 250 - 55
MR-AP [13] 490 500–2000 550 500 - -

MO-PDM [35] 20,0327 650 305 - - -
MO-P4VP [35] 20,0327 305 360 - - -

MR-BAA 670 762 758 200 5 5

The SRG that formed from the MR–BAA compound was sensitive to thermal dis-
turbances. The more the heat accumulated in the compound, the greater the uncertainty
surrounding the attainment of the desired SRG. Consequently, with the power density
100 mW/cm2 for each beam, it is suggested that the formation of SRGs is accomplished
in 5–6 min. On the other hand, the high sensitivity in the thermal disturbance further
provides a convenient way to reshape (or erase) the SRGs. An example of this is illustrated
in Figure 5c.

In the procedure of the holographic recording, a slight tilt of the MR–BAA com-
pound might make the grating’s surface profile in one period not symmetric. As shown
in “Holographic Inscrption.mp4”, the diffraction pattern presented a higher intensity on
the right side. Further studies on the asymmetric diffraction caused by the tilted holo-
graphic inscription are needed. It might provide a convenient way to fabricate a blazed
transmission grating.

One limitation is that the MR–BAA compound is a salt. The MR–BAA compound
is highly likely be surrounded by the dissociated hydroxide or hydrogen ions from the
moisture, thus becoming a hydrated complex molecule. This hydrated complex molecule is
still embedded in the MR–BAA compound and, to a certain degree, produces some negative
effects during the formation process of surface relief gratings. For example, the photoiso-
merization could be constrained since the hydrated complex MR–BAA molecule would no
longer be efficiently photo-responsive.

4. Conclusions

An MR–BAA compound with a facile fabrication method was presented to form the
surface relief grating by means of a holographic recording. Its chemical characteristics
were analyzed by the Fourier transform infrared spectroscopy (FTIR) and the 1H nuclear
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magnetic resonance spectroscopy (1H NMR). The bonding stability was examined via the
thermal gravimetric analyzer. The challenge of the crosslinked matrix, such as entangle-
ments in the side-chain polymers does not occur in the matrix BAA. There are two MR
molecules bonded to one BAA molecule. Compared to those using one functional group to
sustain the connection with the azobenzene, it provides more opportunities in the reaction
of photoisomerization. The SRG with a modulation depth of 758 nm could be formed in
5 min. The ±1st order diffraction was observed immediately after the holographic record-
ing, and the ±2nd order diffraction was produced in two seconds. The fast response time
makes it a promising device in real-time applications. However, it was sensitive to thermal
disturbance. The limitations of the MR–BAA compound are described in Section 3.4.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst12030397/s1, Figure S1: Full 1H-NMR spectrum from 0 ppm to 15 ppm, Figure S2.
Full FTIR spectrum from 400 cm−1 to 4000 cm−1, Table S1: A list of SRGs made of various azobenzene
compounds with the featured parameters. “References [1] is cited in the supplementary materials”.
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