β-Ga2O3-Based Power Devices: A Concise Review
Abstract
:1. Introduction
2. Schottky Barrier Diode
2.1. Optimization for Schottky Barrier Height
2.2. Reduction of the Interface Electric Field
2.3. Suppression of the Edge Electric Field
2.4. Thermal Consideration
3. Field-Effect Transistors
3.1. Ron Reduction
3.1.1. Ohmic Contact
3.1.2. Channel Doping
3.1.3. β-(AlxGa1−x)2O3/β-Ga2O3 Heterostructures
3.1.4. Thermal Management
3.2. Improvement for the Breakdown Voltage
3.3. E-mode Operation
3.4. Vertical FETs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Chow, T.P.; Tyagi, R. Wide bandgap compound semiconductors for superior high-voltage power devices. In Proceedings of the 1993 5th International Symposium on Power Semiconductor Devices and ICs, Monterey, CA, USA, 18–20 May 1993; pp. 84–88. [Google Scholar]
- Baliga, B.J. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 1989, 10, 455–457. [Google Scholar] [CrossRef]
- Chow, T.P.; Omura, I.; Higashiwaki, M.; Kawarada, H.; Pala, V. Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors. IEEE Trans. Electron Devices 2017, 64, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y. Gallium oxide: Promise to provide more efficient life. J. Semicond. 2019, 40, 010301. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Jessen, G.H. Guest Editorial: The dawn of gallium oxide microelectronics. Appl. Phys. Lett. 2018, 112, 060401. [Google Scholar] [CrossRef] [Green Version]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Pearton, S.J. Perspective—Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Murakami, H.; Kumagai, Y.; Kuramata, A. Current status of Ga2O3 power devices. Jpn. J. Appl. Phys. 2016, 55, 1202A1. [Google Scholar] [CrossRef]
- Reese, S.B.; Remo, T.; Green, J.; Zakutayev, A. How Much Will Gallium Oxide Power Electronics Cost? Joule 2019, 3, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Tomm, Y.; Ko, J.M.; Yoshikawa, A.; Fukuda, T. Floating zone growth of β-Ga2O3: A new window material for optoelectronic device applications. Sol. Energy Mater. Sol. Cells 2001, 66, 369–374. [Google Scholar] [CrossRef]
- Wang, B.; Look, D.; Leedy, K. Deep level defects in β-Ga2O3 pulsed laser deposited thin films and Czochralski-grown bulk single crystals by thermally stimulated techniques. J. Appl. Phys. 2019, 125, 105103. [Google Scholar] [CrossRef]
- Chu, X.-L.; Liu, Z.; Zhi, Y.-S.; Liu, Y.-Y.; Zhang, S.-H.; Wu, C.; Gao, A.; Li, P.-G.; Guo, D.-Y.; Wu, Z.-P.; et al. Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate. Chin. Phys. B 2021, 30, 017302. [Google Scholar] [CrossRef]
- Guo, D.; Wu, Z.; Li, P.; An, Y.; Liu, H.; Guo, X.; Yan, H.; Wang, G.; Sun, C.; Li, L.; et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Express OME 2014, 4, 1067–1076. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, L.; Wang, X.; Guo, D.; Li, W.; Li, L.; Huang, F.; Tang, W. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem. C 2017, 5, 8688–8693. [Google Scholar] [CrossRef]
- Guo, X.C.; Hao, N.H.; Guo, D.Y.; Wu, Z.P.; An, Y.H.; Chu, X.L.; Li, L.H.; Li, P.G.; Lei, M.; Tang, W.H. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J. Alloys Compd. 2016, 660, 136–140. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Liu, Y.; Guo, D.; Li, S.; Yan, Z.; Tan, C.-K.; Li, W.; Li, P.; Tang, W. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode. J. Mater. Chem. C 2019, 7, 13920–13929. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhi, Y.; Li, S.; Wu, Z.; Li, P.; Tang, W. Preliminary study for the effects of temperatures on optoelectrical properties of β-Ga2O3 thin films. Vacuum 2019, 166, 79–83. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Yan, Z.; Liu, Y.; Zhi, Y.; Wang, X.; Wu, Z.; Li, P.; Tang, W. Construction of a β-Ga2O3-based metal–oxide–semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications. J. Mater. Chem. C 2020, 8, 5071–5081. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Zhang, C.; Wang, J.; Li, H.; Wu, Z.; Li, P.; Tang, W. Fabrication of ϵ-Ga2O3 solar-blind photodetector with symmetric interdigital Schottky contacts responding to low intensity light signal. J. Phys. D Appl. Phys. 2020, 53, 295109. [Google Scholar] [CrossRef]
- Liu, Z.; Zhi, Y.; Li, S.; Liu, Y.; Tang, X.; Yan, Z.; Li, P.; Li, X.; Guo, D.; Wu, Z.; et al. Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga2O3 thin film. J. Phys. D Appl. Phys. 2019, 53, 085105. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Li, Z.; Luan, C.; Wang, W.; Wang, M.; Feng, X.; Xiao, H.; Ma, J. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. J. Mater. Sci. 2015, 50, 3252–3257. [Google Scholar] [CrossRef]
- Shinohara, D.; Fujita, S. Heteroepitaxy of Corundum-Structured α-Ga2O3Thin Films on α-Al2O3Substrates by Ultrasonic Mist Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2008, 47, 7311–7313. [Google Scholar] [CrossRef]
- Ma, H.-P.; Lu, H.-L.; Wang, T.; Yang, J.-G.; Li, X.; Chen, J.-X.; Tao, J.-J.; Zhu, J.-T.; Guo, Q.; Zhang, D.W. Precise control of the microstructural, optical, and electrical properties of ultrathin Ga2O3 film through nanomixing with few atom-thick SiO2 interlayer via plasma enhanced atomic layer deposition. J. Mater. Chem. C 2018, 6, 12518–12528. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.-L.; Ma, H.-P.; Yang, J.-G.; Chen, J.-X.; Huang, W.; Guo, Q.; Feng, J.-J.; Zhang, D.W. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Curr. Appl. Phys. 2019, 19, 72–81. [Google Scholar] [CrossRef]
- Baldini, M.; Albrecht, M.; Fiedler, A.; Irmscher, K.; Klimm, D.; Schewski, R.; Wagner, G. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J. Mater. Sci. 2016, 51, 3650–3656. [Google Scholar] [CrossRef]
- Lyons, J.L. A survey of acceptor dopants for β-Ga2O3. Semicond. Sci. Technol. 2018, 33, 05LT02. [Google Scholar] [CrossRef]
- Zhang, F.; Arita, M.; Wang, X.; Chen, Z.; Saito, K.; Tanaka, T.; Nishio, M.; Motooka, T.; Guo, Q. Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition. Appl. Phys. Lett. 2016, 109, 102105. [Google Scholar] [CrossRef]
- Kang, Y.; Krishnaswamy, K.; Peelaers, H.; Walle, C.G.V. de Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 2017, 29, 234001. [Google Scholar] [CrossRef]
- Akaiwa, K.; Ota, K.; Sekiyama, T.; Abe, T.; Shinohe, T.; Ichino, K. Electrical Properties of Sn-Doped α-Ga 2 O 3 Films on m-Plane Sapphire Substrates Grown by Mist Chemical Vapor Deposition. Phys. Status Solidi 2019, 217, 1900632. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Su, Y.; Shi, H.; Li, P.; Zhao, N.; Ye, J.; Wang, S.; Liu, A.; Chen, Z.; Li, C.; et al. Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction. ACS Nano 2018, 12, 12827–12835. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Li, H.; Zhang, C.; Jiang, W.; Guo, D.; Wu, Z.; Li, P.; Tang, W. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector. Vacuum 2020, 177, 109425. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Wang, J.; Zhi, Y.; Guo, D.; Wang, X.; Wang, X.; Chen, Z.; Li, P.; Tang, W. The Effect of Mn Dopant on Structural and Optoelectronic Properties of $\upgamma$-Ga2O3 thin Film Photodetectors. ECS J. Solid State Sci. Technol. 2020, 9, 055010. [Google Scholar] [CrossRef]
- Chu, X.; Liu, Z.; Zhang, S.; Li, P.; Tang, W. Photoresponsive characteristics of EFG-grown iron-doped (100) Ga2O3 substrate with low dark current. Phys. Scr. 2021, 96, 065801. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, H.; Zhi, Y.; Huang, Y.; Guo, D.; Wu, Z.; Li, P.; Chen, Z.; Tang, W. High-insulating β-Ga2O3 thin films by doping with a valence controllable Fe element. Appl. Phys. A 2018, 124, 611. [Google Scholar] [CrossRef]
- Roy, R.; Hill, V.G.; Osborn, E.F. Polymorphism of Ga2O3 and the System Ga2O3—H2O. Available online: https://pubs.acs.org/doi/pdf/10.1021/ja01123a039 (accessed on 16 December 2021).
- Liu, Z.; Li, P.-G.; Zhi, Y.-S.; Wang, X.-L.; Chu, X.-L.; Tang, W.-H. Review of gallium oxide based field-effect transistors and Schottky barrier diodes. Chin. Phys. B 2019, 28, 017105. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, W.; Huang, F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J. Mater. Chem. C 2019, 7, 8753–8770. [Google Scholar] [CrossRef]
- Chen, X.; Ren, F.-F.; Ye, J.; Gu, S. Gallium oxide-based solar-blind ultraviolet photodetectors. Semicond. Sci. Technol. 2020, 35, 023001. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. MBE grown Ga2O3 and its power device applications. J. Cryst. Growth 2013, 378, 591–595. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Development of gallium oxide power devices. Phys. Status Solidi 2014, 211, 21–26. [Google Scholar] [CrossRef]
- Tippins, H.H. Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3. Phys. Rev. 1965, 140, A316–A319. [Google Scholar] [CrossRef]
- Kim, J.; Pearton, S.; Fares, C.; Yang, J.; Ren, F.; Kim, S.; Polyakov, A.Y. Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C 2019, 7, 10–24. [Google Scholar] [CrossRef]
- Trew, R.J. SiC and GaN transistors—Is there one winner for microwave power applications? Proc. IEEE 2002, 90, 1032–1047. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, L.; Tang, X.; Hu, J.; Sun, J.; Zhang, Y.; Zhang, Y.; Jia, R. Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs. IEEE Trans. Power Electron. 2019, 35, 5157–5179. [Google Scholar] [CrossRef]
- Baldini, M.; Galazka, Z.; Wagner, G. Recent Progress in the Growth of β-Ga2O3 for Power Electronics Applications. Mater. Sci. Semicond. Processing 2018, 78, 132–146. [Google Scholar] [CrossRef]
- Ren, F.; Yang, J.C.; Fares, C.; Pearton, S.J. Device processing and junction formation needs for ultra-high power Ga2O3 electronics. MRS Commun. 2019, 9, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Higashiwaki, M.; Fujita, S. (Eds.) Gallium Oxide: Materials Properties, Crystal Growth, and Devices; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 293, ISBN 9783030371524. [Google Scholar]
- Yang, J.; Chen, Z.; Ren, F.; Pearton, S.J.; Yang, G.; Kim, J.; Lee, J.; Flitsiyan, E.; Chernyak, L.; Kuramata, A. 10 MeV proton damage in β-Ga2O3 Schottky rectifiers. J. Vac. Sci. Technol. B 2018, 36, 011206. [Google Scholar] [CrossRef]
- Yang, J.; Fares, C.; Guan, Y.; Ren, F.; Pearton, S.J.; Bae, J.; Kim, J.; Kuramata, A. Eighteen mega-electron-volt alpha-particle damage in homoepitaxial β-Ga2O3 Schottky rectifiers. J. Vac. Sci. Technol. B 2018, 36, 031205. [Google Scholar] [CrossRef]
- Modak, S.; Chernyak, L.; Khodorov, S.; Lubomirsky, I.; Ruzin, A.; Xian, M.; Ren, F.; Pearton, S.J. Effect of Electron Injection on Minority Carrier Transport in 10 MeV Proton Irradiated β-Ga2O3 Schottky Rectifiers. ECS J. Solid State Sci. Technol. 2020, 9, 045018. [Google Scholar] [CrossRef]
- Ai, W.-S.; Liu, J.; Feng, Q.; Zhai, P.-F.; Hu, P.-P.; Zeng, J.; Zhang, S.-X.; Li, Z.-Z.; Liu, L.; Yan, X.-Y.; et al. Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation. Chin. Phys. B 2021, 30, 056110. [Google Scholar] [CrossRef]
- Oishi, T.; Koga, Y.; Harada, K.; Kasu, M. High-mobility β-Ga2O3 (2¯01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 2015, 8, 031101. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Konishi, K.; Sasaki, K.; Goto, K.; Nomura, K.; Thieu, Q.T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Monemar, B.; et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n−-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016, 108, 133503. [Google Scholar] [CrossRef]
- Oishi, T.; Harada, K.; Koga, Y.; Kasu, M. Conduction mechanism in highly doped β-Ga2O3 (2¯01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. Jpn. J. Appl. Phys. 2016, 55, 030305. [Google Scholar] [CrossRef]
- He, Q.; Mu, W.; Dong, H.; Long, S.; Jia, Z.; Lv, H.; Liu, Q.; Tang, M.; Tao, X.; Liu, M. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl. Phys. Lett. 2017, 110, 093503. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Singisetti, U. Impact ionization in β-Ga2O3. J. Appl. Phys. 2018, 124, 085707. [Google Scholar] [CrossRef]
- Jian, G.; He, Q.; Mu, W.; Fu, B.; Dong, H.; Qin, Y.; Zhang, Y.; Xue, H.; Long, S.; Jia, Z.; et al. Characterization of the inhomogeneous barrier distribution in a Pt/(100) β-Ga2O3 Schottky diode via its temperature-dependent electrical properties. AIP Adv. 2018, 8, 015316. [Google Scholar] [CrossRef] [Green Version]
- Khan, D.; Gajula, D.; Okur, S.; Tompa, G.S.; Koley, G. β-Ga2O3 Thin Film Based Lateral and Vertical Schottky Barrier Diode. ECS J. Solid State Sci. Technol. 2019, 8, Q106–Q110. [Google Scholar] [CrossRef]
- Lingaparthi, R.; Sasaki, K.; Thieu, Q.T.; Takatsuka, A.; Otsuka, F.; Yamakoshi, S.; Kuramata, A. Surface related tunneling leakage in β-Ga2O3 (001) vertical Schottky barrier diodes. Appl. Phys. Express 2019, 12, 074008. [Google Scholar] [CrossRef]
- Sdoeung, S.; Sasaki, K.; Kawasaki, K.; Hirabayashi, J.; Kuramata, A.; Oishi, T.; Kasu, M. Origin of reverse leakage current path in edge-defined film-fed growth (001) β-Ga2O3 Schottky barrier diodes observed by high-sensitive emission microscopy. Appl. Phys. Lett. 2020, 117, 022106. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Feng, C.; Wang, Q.; Niu, D.; Jiang, L.; Li, W.; Xiao, H.; Wang, X. Simulation Study of Performance Degradation in β-Ga2O3 (001) Vertical Schottky Barrier Diodes Based on Anisotropic Mobility Modeling. ECS J. Solid State Sci. Technol. 2021, 10, 055005. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, H.; Dang, K.; Cai, Y.; Feng, Z.; Gao, Y.; Feng, Q.; Zhang, J.; Hao, Y. Lateral β-Ga2O3 Schottky Barrier Diode on Sapphire Substrate with Reverse Blocking Voltage of 1.7 kV. IEEE J. Electron Devices Soc. 2018, 6, 815–820. [Google Scholar] [CrossRef]
- Swinnich, E.; Hasan, M.N.; Zeng, K.; Dove, Y.; Singisetti, U.; Mazumder, B.; Seo, J. Flexible β-Ga2O3 Nanomembrane Schottky Barrier Diodes. Adv. Electron. Mater. 2019, 5, 1800714. [Google Scholar] [CrossRef]
- He, H.; Orlando, R.; Blanco, M.A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 2006, 74, 195123. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Feng, Z.; Wang, Y.; Liu, Y.; Dong, H.; Liu, Y.-Y.; Hao, Y.; Han, G. The role of surface pretreatment by low temperature O2 gas annealing for β-Ga2O3 Schottky barrier diodes. Appl. Phys. Lett. 2022, 120, 073501. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates. IEEE Electron Device Lett. 2013, 34, 493–495. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Goto, K.; Nomura, K.; Thieu, Q.T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Monemar, B.; Koukitu, A.; et al. Ga2O3 Schottky barrier diodes with n−-Ga2O3 drift layers grown by HVPE. In Proceedings of the 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2015; pp. 29–30. [Google Scholar]
- Yang, J.; Ahn, S.; Ren, F.; Pearton, S.J.; Jang, S.; Kuramata, A. High Breakdown Voltage (−201) β-Ga2O3 Schottky Rectifiers. IEEE Electron Device Lett. 2017, 38, 906–909. [Google Scholar] [CrossRef]
- Fu, H.; Chen, H.; Huang, X.; Baranowski, I.; Montes, J.; Yang, T.-H.; Zhao, Y. A Comparative Study on the Electrical Properties of Vertical (2¯01) and (010) β-Ga2O3 Schottky Barrier Diodes on EFG Single-Crystal Substrates. IEEE Trans. Electron Devices 2018, 65, 3507–3513. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Mu, W.; Fu, B.; Jia, Z.; Long, S.; Yu, Z.; Yao, Z.; Wang, W.; Dong, H.; Qin, Y.; et al. Schottky Barrier Rectifier Based on (100) β-Ga2O3 and its DC and AC Characteristics. IEEE Electron Device Lett. 2018, 39, 556–559. [Google Scholar] [CrossRef]
- Yang, J.; Ren, F.; Tadjer, M.; Pearton, S.J.; Kuramata, A. 2300 V Reverse Breakdown Voltage Ga2O3 Schottky Rectifiers. ECS J. Solid State Sci. Technol. 2018, 7, Q92–Q96. [Google Scholar] [CrossRef]
- Yang, J.; Ren, F.; Pearton, S.J.; Kuramata, A. Vertical Geometry, 2-A Forward Current Ga2O3 Schottky Rectifiers on Bulk Ga2O3 Substrates. IEEE Trans. Electron Devices 2018, 65, 2790–2796. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Thyen, L.; Splith, D.; Reinhardt, A.; von Wenckstern, H.; Grundmann, M. High-Quality Schottky Barrier Diodes on β-Gallium Oxide Thin Films on Glass Substrate. ECS J. Solid State Sci. Technol. 2019, 8, Q3126–Q3132. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, X.; Xu, G.; He, Q.; Jian, G.; Chen, C.; Yu, Y.; Hao, W.; Xiang, X.; Zhao, X.; et al. Double-Barrier β-Ga2O3 Schottky Barrier Diode With Low Turn-on Voltage and Leakage Current. IEEE Electron Device Lett. 2021, 42, 430–433. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Liu, Y.; Zhi, Y.; Li, P.; Wu, Z.; Tang, W. Electrical Characterizations of Planar Ga2O3 Schottky Barrier Diodes. Micromachines 2021, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Jiang, H.; Chen, Z.; Pei, Y.; Feng, Q.; Zhou, H.; Lu, X.; Lau, K.M.; Wang, G. Leakage Current Reduction in β-Ga2O3 Schottky Barrier Diodes by CF 4 Plasma Treatment. IEEE Electron Device Lett. 2020, 41, 1312–1315. [Google Scholar] [CrossRef]
- He, M.; Cheng, W.-C.; Zeng, F.; Qiao, Z.; Chien, Y.-C.; Jiang, Y.; Li, W.; Jiang, L.; Wang, Q.; Ang, K.-W.; et al. Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer. IEEE Trans. Electron Devices 2021, 68, 3314–3319. [Google Scholar] [CrossRef]
- Li, W.; Saraswat, D.; Long, Y.; Nomoto, K.; Jena, D.; Xing, H.G. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. Appl. Phys. Lett. 2020, 116, 192101. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.; Nomoto, K.; Jinno, R.; Zhang, Z.; Tu, T.Q.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 8.5.1–8.5.4. [Google Scholar]
- Li, W.; Hu, Z.; Nomoto, K.; Zhang, Z.; Hsu, J.-Y.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 μ A/cm2. Appl. Phys. Lett. 2018, 113, 202101. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl. Phys. Express 2019, 12, 061007. [Google Scholar] [CrossRef]
- Hu, Z.; Lv, Y.; Zhao, C.; Feng, Q.; Feng, Z.; Dang, K.; Tian, X.; Zhang, Y.; Ning, J.; Zhou, H.; et al. Beveled Fluoride Plasma Treatment for Vertical β-Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage and Low Turn-On Voltage. IEEE Electron Device Lett. 2020, 41, 441–444. [Google Scholar] [CrossRef]
- Jian, Z.; Mohanty, S.; Ahmadi, E. Temperature-dependent current-voltage characteristics of β-Ga2O3 trench Schottky barrier diodes. Appl. Phys. Lett. 2020, 116, 152104. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Guiding Principles for Trench Schottky Barrier Diodes Based on Ultrawide Bandgap Semiconductors: A Case Study in Ga2O3. IEEE Trans. Electron Devices 2020, 67, 3938–3947. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X.; He, T.; Ma, Y.; Wei, X.; Cai, Y.; He, G.; Ding, S.; Zhang, B. Self-Reactive Etching of β-Ga2O3for Fabricating Trench Schottky Barrier Diodes. In Proceedings of the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 8–11 April 2021; pp. 1–3. [Google Scholar]
- Sasaki, K.; Wakimoto, D.; Thieu, Q.T.; Koishikawa, Y.; Kuramata, A.; Higashiwaki, M.; Yamakoshi, S. First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes. IEEE Electron Device Lett. 2017, 38, 783–785. [Google Scholar] [CrossRef]
- Saxena, V.; Su, J.N.; Steckl, A.J. High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination. IEEE Trans. Electron Devices 1999, 46, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Kumta, A.S.; Rusli; Jinghua, X. Field-Plate-Terminated 4H-SiC Schottky Diodes Using Al-Based High-k Dielectrics. IEEE Trans. Electron Devices 2009, 56, 2925–2934. [Google Scholar] [CrossRef]
- Yuan, H.; Tang, X.-Y.; Zhang, Y.-M.; Zhang, Y.-M.; Song, Q.-W.; Yang, F.; Wu, H. 4H-SiC Schottky barrier diodes with semi-insulating polycrystalline silicon field plate termination. Chin. Phys. B 2014, 23, 057102. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, Q.; Ning, J.; Zhang, C.; Ma, P.; Hao, Y.; Yan, Q.; Zhang, J.; Lv, Y.; Liu, Z.; et al. High-Performance Vertical β-Ga2O3 Schottky Barrier Diode With Implanted Edge Termination. IEEE Electron Device Lett. 2019, 40, 1788–1791. [Google Scholar] [CrossRef]
- Labed, M.; Sengouga, N.; Meftah, A.; Labed, M.; Kyoung, S.; Kim, H.; Rim, Y.S. Leakage Current Modelling and Optimization of β-Ga2O3 Schottky Barrier Diode with Ni Contact under High Reverse Voltage. ECS J. Solid State Sci. Technol. 2020, 9, 125001. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Jiang, H.; Zou, X.; Lau, K.M.; Wang, G. Vertical β-Ga2O3 Schottky Barrier Diodes with Enhanced Breakdown Voltage and High Switching Performance. Phys. Status Solidi A 2020, 217, 1900497. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Liu, M.; Lv, Y.; Long, S.; Zhou, X.; Song, X.; Liang, S.; Han, T.; Tan, X.; et al. High-Voltage (2¯01) β-Ga2O3 Vertical Schottky Barrier Diode With Thermally-Oxidized Termination. IEEE Electron Device Lett. 2020, 41, 131–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Feng, Z.; Hu, Z.; Chen, J.; Dang, K.; Yan, Q.; Dong, P.; Zhou, H.; Hao, Y. Impact of Implanted Edge Termination on Vertical β-Ga2O3 Schottky Barrier Diodes Under OFF-State Stressing. IEEE Trans. Electron Devices 2020, 67, 3948–3953. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, X.; Wang, Y.; Lu, J.; Jiang, Z.; Wei, J.; Lv, Y.; Feng, Z. Experimental Study on Static and Dynamic Characteristics of Ga2O3 Schottky Barrier Diodes With Compound Termination. IEEE Trans. Power Electron. 2021, 36, 10976–10980. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017, 110, 103506. [Google Scholar] [CrossRef]
- Choi, J.-H.; Cho, C.-H.; Cha, H.-Y. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate. Results Phys. 2018, 9, 1170–1171. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, H.; Feng, Q.; Zhang, J.; Zhang, C.; Dang, K.; Cai, Y.; Feng, Z.; Gao, Y.; Kang, X.; et al. Field-Plated Lateral β-Ga2O3 Schottky Barrier Diode with High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2. IEEE Electron Device Lett. 2018, 39, 1564–1567. [Google Scholar] [CrossRef]
- Joishi, C.; Rafique, S.; Xia, Z.; Han, L.; Krishnamoorthy, S.; Zhang, Y.; Lodha, S.; Zhao, H.; Rajan, S. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. Appl. Phys. Express 2018, 11, 031101. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jiang, L.-L.; Lin, X.-P.; Lei, S.-Q.; Yu, H.-Y. A simulation study of field plate termination in Ga2O3 Schottky barrier diodes. Chin. Phys. B 2018, 27, 127302. [Google Scholar] [CrossRef]
- Allen, N.; Xiao, M.; Yan, X.; Sasaki, K.; Tadjer, M.J.; Ma, J.; Zhang, R.; Wang, H.; Zhang, Y. Vertical Ga2O3 Schottky Barrier Diodes With Small-Angle Beveled Field Plates: A Baliga’s Figure-of-Merit of 0.6 GW/cm 2. IEEE Electron Device Lett. 2019, 40, 1399–1402. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Field-Plated Ga2O3 Trench Schottky Barrier Diodes With a BV2/Ron,sp of up to 0.95 GW/cm 2. IEEE Electron Device Lett. 2020, 41, 107–110. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Ranga, P.; Splawn, H.; Leach, J.; Krishnamoorthy, S. High-k Oxide Field-Plated Vertical (001) β-Ga2O3 Schottky Barrier Diode With Baliga’s Figure of Merit Over 1 GW/cm 2. IEEE Electron Device Lett. 2021, 42, 1140–1143. [Google Scholar] [CrossRef]
- Lin, C.-H.; Yuda, Y.; Wong, M.H.; Sato, M.; Takekawa, N.; Konishi, K.; Watahiki, T.; Yamamuka, M.; Murakami, H.; Kumagai, Y.; et al. Vertical Ga2O3 Schottky Barrier Diodes With Guard Ring Formed by Nitrogen-Ion Implantation. IEEE Electron Device Lett. 2019, 40, 1487–1490. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Krishnamoorthy, S. Design of a β-Ga2O3 Schottky Barrier Diode With p-Type III-Nitride Guard Ring for Enhanced Breakdown. IEEE Trans. Electron Devices 2020, 67, 4842–4848. [Google Scholar] [CrossRef]
- Zeng, K.; Chowdhury, S. Designing Beveled Edge Termination in GaN Vertical p-i-n Diode-Bevel Angle, Doping, and Passivation. IEEE Trans. Electron Devices 2020, 67, 2457–2462. [Google Scholar] [CrossRef]
- Oh, S.; Yang, G.; Kim, J. Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures. ECS J. Solid State Sci. Technol. 2017, 6, Q3022–Q3025. [Google Scholar] [CrossRef]
- Chatterjee, B.; Jayawardena, A.; Heller, E.; Snyder, D.W.; Dhar, S.; Choi, S. Thermal characterization of gallium oxide Schottky barrier diodes. Rev. Sci. Instrum. 2018, 89, 114903. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xiao, M.; Yan, X.; Wong, H.Y.; Ma, J.; Sasaki, K.; Wang, H.; Zhang, Y. High-voltage vertical Ga2O3 power rectifiers operational at high temperatures up to 600 K. Appl. Phys. Lett. 2019, 115, 263503. [Google Scholar] [CrossRef]
- Reddy, P.R.S.; Janardhanam, V.; Shim, K.-H.; Reddy, V.R.; Lee, S.-N.; Park, S.-J.; Choi, C.-J. Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode. Vacuum 2020, 171, 109012. [Google Scholar] [CrossRef]
- Sheoran, H.; Tak, B.R.; Manikanthababu, N.; Singh, R. Temperature-Dependent Electrical Characteristics of Ni/Au Vertical Schottky Barrier Diodes on β-Ga2O3 Epilayers. ECS J. Solid State Sci. Technol. 2020, 9, 055004. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, B.; Liu, J.; Zhang, R.; Zhang, Z.; Ding, C.; Lu, S.; Sasaki, K.; Lu, G.-Q.; Buttay, C.; et al. Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability. IEEE Trans. Power Electron. 2021, 36, 8565–8569. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3 ) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Hoi Wong, M.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts. Appl. Phys. Express 2013, 6, 086502. [Google Scholar] [CrossRef]
- Dang, G.T.; Kawaharamura, T.; Furuta, M.; Allen, M.W. Mist-CVD Grown Sn-Doped α-Ga2O3 MESFETs. IEEE Trans. Electron Devices 2015, 62, 3640–3644. [Google Scholar] [CrossRef]
- Green, A.J.; Chabak, K.D.; Heller, E.R.; Fitch, R.C.; Baldini, M.; Fiedler, A.; Irmscher, K.; Wagner, G.; Galazka, Z.; Tetlak, S.E.; et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2016, 37, 902–905. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 2016, 55, 1202B9. [Google Scholar] [CrossRef]
- Moser, N.A.; McCandless, J.P.; Crespo, A.; Leedy, K.D.; Green, A.J.; Heller, E.R.; Chabak, K.D.; Peixoto, N.; Jessen, G.H. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl. Phys. Lett. 2017, 110, 143505. [Google Scholar] [CrossRef] [Green Version]
- Moser, N.; McCandless, J.; Crespo, A.; Leedy, K.; Green, A.; Neal, A.; Mou, S.; Ahmadi, E.; Speck, J.; Chabak, K.; et al. Ge-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2017, 38, 775–778. [Google Scholar] [CrossRef]
- Wong, M.H.; Nakata, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl. Phys. Express 2017, 10, 041101. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Wallace, J.S.; Heimburger, C.; Sasaki, K.; Kuramata, A.; Masui, T.; Gardella, J.A.; Singisetti, U. Ga2O3 MOSFETs Using Spin-On-Glass Source/Drain Doping Technology. IEEE Electron Device Lett. 2017, 38, 513–516. [Google Scholar] [CrossRef]
- Lv, Y.; Song, X.; He, Z.; Tan, X.; Zhou, X.; Wang, Y.; Gu, G.; Feng, Z. Ga2O3 MOSFET Device with Al 2 O 3 Gate Dielectric. J. Inorg. Mater. 2018, 33, 976. [Google Scholar]
- Kamimura, T.; Nakata, Y.; Wong, M.H.; Higashiwaki, M. Normally-Off Ga2O3 MOSFETs With Unintentionally Nitrogen-Doped Channel Layer Grown by Plasma-Assisted Molecular Beam Epitaxy. IEEE Electron Device Lett. 2019, 40, 1064–1067. [Google Scholar] [CrossRef]
- Liddy, K.J.; Green, A.J.; Hendricks, N.S.; Heller, E.R.; Moser, N.A.; Leedy, K.D.; Popp, A.; Lindquist, M.T.; Tetlak, S.E.; Wagner, G.; et al. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates. Appl. Phys. Express 2019, 12, 126501. [Google Scholar] [CrossRef] [Green Version]
- Mun, J.-K.; Cho, K.; Chang, W.; Lee, H.; Bae, S.; Kim, J.; Sung, H. High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors. J. Korean Inst. Electr. Electron. Mater. Eng. 2019, 32, 201–206. [Google Scholar]
- Cho, K.J.; Mun, J.-K.; Chang, W.; Jung, H.-W. Characteristics of Circular β-Ga2O3 MOSFETs with High Breakdown Voltage (>1000 V). J. Korean Inst. Electr. Electron. Mater. Eng. 2020, 33, 78–82. [Google Scholar]
- He, M.; Zeng, F.; Cheng, W.-C.; Wang, Q.; Yu, H.; Ang, K.W. Beta-Ga2O3 MOSFET Device Optimization via TCAD. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 6–21 April 2020; pp. 1–4. [Google Scholar]
- Lv, Y.; Liu, H.; Wang, Y.; Fu, X.; Ma, C.; Song, X.; Zhou, X.; Zhang, Y.; Dong, P.; Du, H.; et al. Oxygen annealing impact on β-Ga2O3 MOSFETs: Improved pinch-off characteristic and output power density. Appl. Phys. Lett. 2020, 117, 133503. [Google Scholar] [CrossRef]
- Madadi, D.; Orouji, A.A. New high-voltage and high-speed β-Ga2O3 MESFET with amended electric field distribution by an insulator layer. Eur. Phys. J. Plus 2020, 135, 578. [Google Scholar] [CrossRef]
- Park, T.H.; Yang, J.Y.; Ma, J.; Yoo, G. Impact of ALD HfO2 Gate-Oxide Geometries on the Electrical Properties and Single-Event Effects of β-Ga2O3 MOSFETs: A Simulation Study. J. Korean Phys. Soc. 2020, 77, 317–322. [Google Scholar] [CrossRef]
- Seo, D.-H.; Kim, Y.-H.; Shin, Y.-J.; Lee, M.-H.; Jeong, S.-M.; Bae, S.-Y. Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD. J. Korean Inst. Electr. Electron. Mater. Eng. 2020, 33, 427–431. [Google Scholar]
- Jeong, Y.J.; Yang, J.Y.; Lee, C.H.; Park, R.; Lee, G.; Chung, R.B.K.; Yoo, G. Fluorine-based plasma treatment for hetero-epitaxial β-Ga2O3 MOSFETs. Appl. Surf. Sci. 2021, 558, 149936. [Google Scholar] [CrossRef]
- Wang, C.; Gong, H.; Lei, W.; Cai, Y.; Hu, Z.; Xu, S.; Liu, Z.; Feng, Q.; Zhou, H.; Ye, J.; et al. Demonstration of the p-NiO x /n-Ga2O3 Heterojunction Gate FETs and Diodes With BV 2 /R On,sp Figures of Merit of 0.39 GW/cm 2 and 1.38 GW/cm 2. IEEE Electron Device Lett. 2021, 42, 485–488. [Google Scholar] [CrossRef]
- Hwang, W.S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H.; Seabaugh, A.; Haensch, W.; de Walle, C.V.; Galazka, Z.; et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 2014, 104, 203111. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.; Chowdhury, P.R.; Segovia, M.; Alajlouni, S.; Si, M.; Charnas, A.R.; Huang, S.; Maize, K.; Shakouri, A.; Xu, X.; et al. Enhancement of Thermal Transfer From β-Ga2O3 Nano-Membrane Field-Effect Transistors to High Thermal Conductivity Substrate by Inserting an Interlayer. IEEE Trans. Electron Devices 2022, 69, 1186–1190. [Google Scholar] [CrossRef]
- Ahn, S.; Ren, F.; Kim, J.; Oh, S.; Kim, J.; Mastro, M.A.; Pearton, S.J. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl. Phys. Lett. 2016, 109, 062102. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Mastro, M.A.; Kim, J. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics. Phys. Chem. Chem. Phys. 2016, 18, 15760–15764. [Google Scholar] [CrossRef] [PubMed]
- Tadjer, M.J.; Mahadik, N.A.; Wheeler, V.D.; Glaser, E.R.; Ruppalt, L.; Koehler, A.D.; Hobart, K.D.; Eddy, C.R.; Kub, F.J. Editors’ Choice Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric. ECS J. Solid State Sci. Technol. 2016, 5, P468–P470. [Google Scholar] [CrossRef]
- Kim, J.; Mastro, M.A.; Tadjer, M.J.; Kim, J. Quasi-Two-Dimensional h-BN/β-Ga2O3 Heterostructure Metal–Insulator–Semiconductor Field-Effect Transistor. ACS Appl. Mater. Interfaces 2017, 9, 21322–21327. [Google Scholar] [CrossRef]
- Si, M.; Yang, L.; Zhou, H.; Ye, P.D. β-Ga2O3 Nanomembrane Negative Capacitance Field-Effect Transistors with Steep Subthreshold Slope for Wide Band Gap Logic Applications. ACS Omega 2017, 2, 7136–7140. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Jang, S.; Ren, F.; Pearton, S.J.; Kim, J. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors. ACS Appl. Mater. Interfaces 2017, 9, 40471–40476. [Google Scholar] [CrossRef]
- Zhou, H.; Maize, K.; Noh, J.; Shakouri, A.; Ye, P.D. Thermodynamic Studies of β-Ga2O3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate. ACS Omega 2017, 2, 7723–7729. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Maize, K.; Qiu, G.; Shakouri, A.; Ye, P.D. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl. Phys. Lett. 2017, 111, 092102. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Si, M.; Alghamdi, S.; Qiu, G.; Yang, L.; Ye, P.D. High-Performance Depletion/Enhancement-ode β-Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm. IEEE Electron Device Lett. 2017, 38, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Kim, H.W.; Kang, I.H.; Yang, G.; Kim, J. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl. Phys. Lett. 2018, 112, 122102. [Google Scholar] [CrossRef]
- Kim, J.; Mastro, M.A.; Tadjer, M.J.; Kim, J. Heterostructure WSe2−Ga2O3 Junction Field-Effect Transistor for Low-Dimensional High-Power Electronics. ACS Appl. Mater. Interfaces 2018, 10, 29724–29729. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lee, O.; Yoo, G. Abnormal Bias-Temperature Stress and Thermal Instability of β-Ga2O3 Nanomembrane Field-Effect Transistor. IEEE J. Electron Devices Soc. 2018, 6, 1124–1128. [Google Scholar] [CrossRef]
- Son, J.; Kwon, Y.; Kim, J.; Kim, J. Tuning the Threshold Voltage of Exfoliated β-Ga2O3 Flake-Based Field-Effect Transistors by Photo-Enhanced H 3 PO 4 Wet Etching. ECS J. Solid State Sci. Technol. 2018, 7, Q148–Q151. [Google Scholar] [CrossRef]
- Bae, J.; Kim, H.W.; Kang, I.H.; Kim, J. Field-plate engineering for high breakdown voltage β-Ga2O3 nanolayer field-effect transistors. RSC Adv. 2019, 9, 9678–9683. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-X.; Li, X.-X.; Ma, H.-P.; Huang, W.; Ji, Z.-G.; Xia, C.; Lu, H.-L.; Zhang, D.W. Investigation of the Mechanism for Ohmic Contact Formation in Ti/Al/Ni/Au Contacts to β-Ga2O3 Nanobelt Field-Effect Transistors. ACS Appl. Mater. Interfaces 2019, 11, 32127–32134. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, Y.; Yan, G.; Hu, Z.; Dang, K.; Zhang, Y.; Lu, Z.; Cheng, H.; Lian, X.; Xu, Y.; et al. A 800 V β-Ga2O3 Metal–Oxide–Semiconductor Field-Effect Transistor with High-Power Figure of Merit of Over 86.3 MW cm−2. Phys. Status Solidi A 2019, 216, 1900421. [Google Scholar] [CrossRef]
- Kim, J.; Tadjer, M.J.; Mastro, M.A.; Kim, J. Controlling the threshold voltage of β-Ga2O3 field-effect transistors via remote fluorine plasma treatment. J. Mater. Chem. C 2019, 7, 8855–8860. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J. Electrical Properties of Thermally Annealed β-Ga2O3 Metal-Semiconductor Field-Effect Transistors with Pt/Au Schottky Contacts. ECS J. Solid State Sci. Technol. 2019, 8, Q3122–Q3125. [Google Scholar] [CrossRef]
- Lei, D.; Han, K.; Wu, Y.; Liu, Z.; Gong, X. Investigation on temperature dependent DC characteristics of gallium oxide metal-oxide-semiconductor field-effect transistors from 25 °C to 300 °C. Appl. Phys. Express 2019, 12, 041001. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, A.; Liu, Q.; Shen, C.; Wu, F.; Xu, C.; Chen, M.; Fu, H.; Zhou, C. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Res. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Ma, J.; Cho, H.J.; Heo, J.; Kim, S.; Yoo, G. Asymmetric Double-Gate β-Ga2O3 Nanomembrane Field-Effect Transistor for Energy-Efficient Power Devices. Adv. Electron. Mater. 2019, 5, 1800938. [Google Scholar] [CrossRef]
- Bae, J.; Kim, H.W.; Kang, I.H.; Kim, J. Dual-field plated β-Ga2O3 nano-FETs with an off-state breakdown voltage exceeding 400 V. J. Mater. Chem. C 2020, 8, 2687–2692. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Monolithically Integrated Enhancement-Mode and Depletion-Mode β-Ga2O3 MESFETs with Graphene-Gate Architectures and Their Logic Applications. ACS Appl. Mater. Interfaces 2020, 12, 7310–7316. [Google Scholar] [CrossRef]
- Park, Y.; Ma, J.; Yoo, G.; Heo, J. Interface Trap-Induced Temperature Dependent Hysteresis and Mobility in β-Ga2O3 Field-Effect Transistors. Nanomaterials 2021, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers. Appl. Phys. Lett. 2015, 106, 032105. [Google Scholar] [CrossRef]
- Ghosh, K.; Singisetti, U. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. J. Mater. Res. 2017, 32, 4142–4152. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, E.; Koksaldi, O.S.; Zheng, X.; Mates, T.; Oshima, Y.; Mishra, U.K.; Speck, J.S. Demonstration of β-(AlxGa 1−x)2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. Appl. Phys. Express 2017, 10, 071101. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Xia, Z.; Joishi, C.; Zhang, Y.; McGlone, J.; Johnson, J.; Brenner, M.; Arehart, A.R.; Hwang, J.; Lodha, S.; et al. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 2017, 111, 023502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Joishi, C.; Xia, Z.; Brenner, M.; Lodha, S.; Rajan, S. Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors. Appl. Phys. Lett. 2018, 112, 233503. [Google Scholar] [CrossRef]
- Joishi, C.; Zhang, Y.; Xia, Z.; Sun, W.; Arehart, A.R.; Ringel, S.; Lodha, S.; Rajan, S. Breakdown Characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 Field-Plated Modulation-Doped Field-Effect Transistors. IEEE Electron Device Lett. 2019, 40, 1241–1244. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Z.; Mcglone, J.; Sun, W.; Joishi, C.; Arehart, A.R.; Ringel, S.A.; Rajan, S. Evaluation of Low-Temperature Saturation Velocity in β-(AlxGa1–x)2O3/Ga2O3 Modulation-Doped Field-Effect Transistors. IEEE Trans. Electron Devices 2019, 66, 1574–1578. [Google Scholar] [CrossRef]
- Song, K.; Zhang, H.; Fu, H.; Yang, C.; Singh, R.; Zhao, Y.; Sun, H.; Long, S. Normally-off AlN/β-Ga2O3 field-effect transistors using polarization-induced doping. J. Phys. D Appl. Phys. 2020, 53, 345107. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Zhu, C.-Z.; Cai, Q.; Yang, G.-F.; Xue, J.-J.; Chen, D.-J.; Tong, Y.; Liu, B.; Lu, H.; et al. ε-Ga2O3: A Promising Candidate for High-Electron-Mobility Transistors. IEEE Electron Device Lett. 2020, 41, 1052–1055. [Google Scholar] [CrossRef]
- Kalarickal, N.K.; Xia, Z.; Huang, H.-L.; Moore, W.; Liu, Y.; Brenner, M.; Hwang, J.; Rajan, S. β-(Al0.18Ga0.82)2O3/Ga2O3 Double Heterojunction Transistor With Average Field of 5.5 MV/cm. IEEE Electron Device Lett. 2021, 42, 899–902. [Google Scholar] [CrossRef]
- Ahmadi, E.; Koksaldi, O.S.; Kaun, S.W.; Oshima, Y.; Short, D.B.; Mishra, U.K.; Speck, J.S. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express 2017, 10, 041102. [Google Scholar] [CrossRef]
- Wong, M.H.; Morikawa, Y.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Characterization of channel temperature in Ga2O3 metal-oxide-semiconductor field-effect transistors by electrical measurements and thermal modeling. Appl. Phys. Lett. 2016, 109, 193503. [Google Scholar] [CrossRef]
- Russell, S.A.O.; Perez-Tomas, A.; McConville, C.F.; Fisher, C.A.; Hamilton, D.P.; Mawby, P.A.; Jennings, M.R. Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating. IEEE J. Electron Devices Soc. 2017, 5, 256–261. [Google Scholar] [CrossRef]
- Chatterjee, B.; Zeng, K.; Nordquist, C.D.; Singisetti, U.; Choi, S. Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors. IEEE Trans. Compon. Packag. Manufact. Technol. 2019, 9, 2352–2365. [Google Scholar] [CrossRef]
- Kumar, N.; Joishi, C.; Xia, Z.; Rajan, S.; Kumar, S. Electrothermal Characteristics of Delta-Doped β-Ga2O3 Metal–Semiconductor Field-Effect Transistors. IEEE Trans. Electron Devices 2019, 66, 5360–5366. [Google Scholar] [CrossRef]
- Lei, D.; Han, K.; Wu, Y.; Liu, Z.; Gong, X. High Performance Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistors on an AlN/Si Substrate. IEEE J. Electron Devices Soc. 2019, 7, 596–600. [Google Scholar] [CrossRef]
- Mahajan, B.K.; Chen, Y.-P.; Noh, J.; Ye, P.D.; Alam, M.A. Electrothermal performance limit of β-Ga2O3 field-effect transistors. Appl. Phys. Lett. 2019, 115, 173508. [Google Scholar] [CrossRef]
- Noh, J.; Ye, P.D.; Alajlouni, S.; Tadjer, M.J.; Culbertson, J.C.; Bae, H.; Si, M.; Zhou, H.; Bermel, P.A.; Shakouri, A. High Performance β-Ga2O3 Nano-Membrane Field Effect Transistors on a High Thermal Conductivity Diamond Substrate. IEEE J. Electron Devices Soc. 2019, 7, 914–918. [Google Scholar] [CrossRef]
- Oh, J.; Ma, J.; Yoo, G. Simulation study of reduced self-heating in β-Ga2O3 MOSFET on a nano-crystalline diamond substrate. Results Phys. 2019, 13, 102151. [Google Scholar] [CrossRef]
- Park, J.-H.; McClintock, R.; Jaud, A.; Dehzangi, A.; Razeghi, M. MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire. Appl. Phys. Express 2019, 12, 095503. [Google Scholar] [CrossRef]
- Park, J.-H.; McClintock, R.; Razeghi, M. Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semicond. Sci. Technol. 2019, 34, 08LT01. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Middleton, C.; Singh, M.; Dalcanale, S.; Uren, M.J.; Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M.; et al. Raman Thermography of Peak Channel Temperature in β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2019, 40, 189–192. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Hao, Y.; Wang, X.; Wang, Y.; You, T.; Ou, X.; Han, G.; Hu, H.; Zhang, S.; et al. First Demonstration of Waferscale Heterogeneous Integration of Ga2O3 MOSFETs on SiC and Si Substrates by Ion-Cutting Process. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 12.5.1–12.5.4. [Google Scholar]
- Blumenschein, N.A.; Moule, T.; Dalcanale, S.; Mercado, E.; Singh, M.; Pomeroy, J.W.; Kuball, M.; Wagner, G.; Paskova, T.; Muth, J.F.; et al. Self-Heating Characterization of β-Ga2O3 Thin-Channel MOSFETs by Pulsed I − V and Raman Nanothermography. IEEE Trans. Electron Devices 2020, 67, 204–211. [Google Scholar] [CrossRef]
- Chatterjee, B.; Song, Y.; Lundh, J.S.; Zhang, Y.; Xia, Z.; Islam, Z.; Leach, J.; McGray, C.; Ranga, P.; Krishnamoorthy, S.; et al. Electro-thermal co-design of β-(AlxGa1−x)2O3/Ga2O3 modulation doped field effect transistors. Appl. Phys. Lett. 2020, 117, 153501. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.W.; Kim, J.; Moon, J.H.; Lee, G.; Kim, J. Ultra-Wide Bandgap β-Ga2O3 Heterojunction Field-Effect Transistor Using p-Type 4H-SiC Gate for Efficient Thermal Management. ECS J. Solid State Sci. Technol. 2020, 9, 065006. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; You, T.; Mu, F.; Hu, H.; Liu, Y.; Huang, H.; Suga, T.; Han, G.; Ou, X.; et al. β-Ga2O3 MOSFETs on the Si substrate fabricated by the ion-cutting process. Sci. China Phys. Mech. Astron. 2020, 63, 277311. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Y.; Montgomery, R.; Kim, S.; Shi, J.; Mauze, A.; Itoh, T.; Speck, J.S.; Graham, S. Modeling and analysis for thermal management in gallium oxide field-effect transistors. J. Appl. Phys. 2020, 127, 154502. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Hu, H.; Han, G.; Liu, Y.; Hao, Y. Analytical Model for the Channel Maximum Temperature in Ga2O3 MOSFETs. Nanoscale Res. Lett. 2021, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.H.; Zhang, Y.; Yuan, C.; Kim, S.; Shi, J.; Itoh, T.; Mauze, A.; Kumar, S.; Speck, J.; Graham, S. Thermal management strategies for gallium oxide vertical trench-fin MOSFETs. J. Appl. Phys. 2021, 129, 085301. [Google Scholar] [CrossRef]
- Shin, M.-C.; Lee, Y.-J.; Kim, D.-H.; Jung, S.-W.; Schweitz, M.A.; Shin, W.H.; Oh, J.-M.; Park, C.; Koo, S.-M. Improved Electrical Characteristics of Gallium Oxide/P-Epi Silicon Carbide Static Induction Transistors with UV/Ozone Treatment Fabricated by RF Sputter. Materials 2021, 14, 1296. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Han, G.; You, T.; Mu, F.; Hu, H.; Liu, Y.; Zhang, X.; Huang, H.; Suga, T.; et al. Channel Properties of Ga2O3-on-SiC MOSFETs. IEEE Trans. Electron Devices 2021, 68, 1185–1189. [Google Scholar] [CrossRef]
- Mobtakeri, S.; Akaltun, Y.; Özer, A.; Kılıç, M.; Tüzemen, E.Ş.; Gür, E. Gallium oxide films deposition by RF magnetron sputtering; a detailed analysis on the effects of deposition pressure and sputtering power and annealing. Ceram. Int. 2021, 47, 1721–1727. [Google Scholar] [CrossRef]
- Li, S.; Jiao, S.; Wang, D.; Gao, S.; Wang, J. The influence of sputtering power on the structural, morphological and optical properties of β-Ga2O3 thin films. J. Alloys Compd. 2018, 753, 186–191. [Google Scholar] [CrossRef]
- Leone, S.; Fornari, R.; Bosi, M.; Montedoro, V.; Kirste, L.; Doering, P.; Benkhelifa, F.; Prescher, M.; Manz, C.; Polyakov, V.; et al. Epitaxial growth of GaN/Ga2O3 and Ga2O3/GaN heterostructures for novel high electron mobility transistors. J. Cryst. Growth 2020, 534, 125511. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V. IEEE Electron Device Lett. 2016, 37, 4. [Google Scholar] [CrossRef]
- Zeng, K.; Vaidya, A.; Singisetti, U. 1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 1385–1388. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Liang, S.; Song, X.; Zhou, X.; Dong, H.; Wang, Y.; Feng, Z.; Cai, S. Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 mΩ cm2. Semicond. Sci. Technol. 2019, 34, 11LT02. [Google Scholar] [CrossRef]
- Joishi, C.; Xia, Z.; Jamison, J.S.; Sohel, S.H.; Myers, R.C.; Lodha, S.; Rajan, S. Deep-Recessed β-Ga2O3 Delta-Doped Field-Effect Transistors With In Situ Epitaxial Passivation. IEEE Trans. Electron Devices 2020, 67, 4813–4819. [Google Scholar] [CrossRef]
- Sharma, S.; Zeng, K.; Saha, S.; Singisetti, U. Field-Plated Lateral Ga2O3 MOSFETs With Polymer Passivation and 8.03 kV Breakdown Voltage. IEEE Electron Device Lett. 2020, 41, 836–839. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Song, X.; Wang, Y.; Liang, S.; He, Z.; Han, T.; Tan, X.; Feng, Z.; et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett. 2018, 40, 83–86. [Google Scholar] [CrossRef]
- Mun, J.K.; Cho, K.; Chang, W.; Jung, H.-W.; Do, J. Editors’ Choice—2.32 kV Breakdown Voltage Lateral β-Ga2O3 MOSFETs with Source-Connected Field Plate. ECS J. Solid State Sci. Technol. 2019, 8, Q3079–Q3082. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Zhou, X.; Wang, Y.; Song, X.; Cai, Y.; Yan, Q.; Wang, C.; Liang, S.; Zhang, J.; et al. Lateral β-Ga2O3 MOSFETs With High Power Figure of Merit of 277 MW/cm2. IEEE Electron Device Lett. 2020, 41, 537–540. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Wang, Y.; Song, X.; Zhou, X.; Xu, G.; Liang, S.; Feng, Z.; Cai, S.; et al. Enhancement-Mode β-Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing. Phys. Status Solidi RRL 2020, 14, 1900586. [Google Scholar] [CrossRef]
- Chen, W.-J.; Sun, R.-Z.; Peng, C.-F.; Zhang, B. High d V/d t immunity MOS controlled thyristor using a double variable lateral doping technique for capacitor discharge applications. Chin. Phys. B 2014, 23, 077307. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.-F.; Yang, K.-M.; Huang, C.-Y.; Hu, F.-R. Modeling of the Variation of Lateral Doping (VLD) Lateral Power Devices via 1-D Analysis Using Effective Concentration Profile Concept. IEEE J. Electron Devices Soc. 2019, 7, 990–996. [Google Scholar] [CrossRef]
- Qiao, M.; Zhuang, X.; Wu, L.-J.; Zhang, W.-T.; Wen, H.-J.; Zhang, B.; Li, Z.-J. Breakdown voltage model and structure realization of a thin silicon layer with linear variable doping on a silicon on insulator high voltage device with multiple step field plates. Chin. Phys. B 2012, 21, 108502. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Q.; Xu, G.; Zhou, K.; Xiang, X.; He, Q.; Hao, W.; Jian, G.; Zhao, X.; Long, S. Realizing High-Performance β-Ga2O3 MOSFET by Using Variation of Lateral Doping: A TCAD Study. IEEE Trans. Electron Devices 2021, 68, 1501–1506. [Google Scholar] [CrossRef]
- Neal, A.T.; Mou, S.; Lopez, R.; Li, J.V.; Thomson, D.B.; Chabak, K.D.; Jessen, G.H. Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices. Sci. Rep. 2017, 7, 13218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabak, K.D.; Moser, N.; Green, A.J.; Walker, D.E.; Tetlak, S.E.; Heller, E.; Crespo, A.; Fitch, R.; McCandless, J.P.; Leedy, K.; et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl. Phys. Lett. 2016, 109, 213501. [Google Scholar] [CrossRef] [Green Version]
- Chabak, K.D.; McCandless, J.P.; Moser, N.A.; Green, A.J.; Mahalingam, K.; Crespo, A.; Hendricks, N.; Howe, B.M.; Tetlak, S.E.; Leedy, K.; et al. Recessed-Gate Enhancement-Mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2018, 39, 67–70. [Google Scholar] [CrossRef]
- Wong, H.Y.; Braga, N.; Mickevicius, R.V.; Ding, F. Normally-OFF dual-gate Ga2O3 planar MOSFET and FinFET with high ION and BV. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 379–382. [Google Scholar]
- Wong, M.H.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Enhancement-Mode β-Ga2O3 Current Aperture Vertical MOSFETs With N-Ion-Implanted Blocker. IEEE Electron Device Lett. 2020, 41, 296–299. [Google Scholar] [CrossRef]
- Hu, Z.; Nomoto, K.; Li, W.; Tanen, N.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; Xing, H.G. Enhancement-Mode Ga2O3 Vertical Transistors with Breakdown Voltage >1 kV. IEEE Electron Device Lett. 2018, 39, 869–872. [Google Scholar] [CrossRef]
- Dong, H.; Long, S.; Sun, H.; Zhao, X.; He, Q.; Qin, Y.; Jian, G.; Zhou, X.; Yu, Y.; Guo, W.; et al. Fast Switching β-Ga2O3 Power MOSFET with a Trench-Gate Structure. IEEE Electron Device Lett. 2019, 40, 1385–1388. [Google Scholar] [CrossRef]
- Sasaki, K.; Thieu, Q.T.; Wakimoto, D.; Koishikawa, Y.; Kuramata, A.; Yamakoshi, S. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy. Appl. Phys. Express 2017, 10, 124201. [Google Scholar] [CrossRef]
- Hu, Z.; Nomoto, K.; Li, W.; Zhang, Z.; Tanen, N.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; et al. Breakdown mechanism in 1 kA/cm 2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl. Phys. Lett. 2018, 113, 122103. [Google Scholar] [CrossRef]
- Wong, M.H.; Goto, K.; Morikawa, Y.; Kuramata, A.; Yamakoshi, S.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer. Appl. Phys. Express 2018, 11, 064102. [Google Scholar] [CrossRef]
- Kotecha, R.; Metzger, W.; Mather, B.; Narumanchi, S.; Zakutayev, A. Modeling and Analysis of Gallium Oxide Vertical Transistors. ECS J. Solid State Sci. Technol. 2019, 8, Q3202–Q3205. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Nakamura, T.; Jena, D.; Xing, H.G. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 12.4.1–12.4.4. [Google Scholar]
- Park, J.; Hong, S.-M. Simulation Study of Enhancement Mode Multi-Gate Vertical Gallium Oxide MOSFETs. ECS J. Solid State Sci. Technol. 2019, 8, Q3116–Q3121. [Google Scholar] [CrossRef]
- Wong, M.H.; Goto, K.; Murakami, H.; Kumagai, Y.; Higashiwaki, M. Current Aperture Vertical β-Ga2O3 MOSFETs Fabricated by N- and Si-Ion Implantation Doping. IEEE Electron Device Lett. 2019, 40, 431–434. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Wong, M.H.; Goto, K.; Murakami, H.; Kumagai, Y. Vertical Gallium Oxide Transistors with Current Aperture Formed Using Nitrogen-Ion Implantation Process. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 6–21 April 2020; pp. 1–3. [Google Scholar]
- Wong, H.Y.; Tenkeu, A.C.F. Advanced TCAD Simulation and Calibration of Gallium Oxide Vertical Transistor. ECS J. Solid State Sci. Technol. 2020, 9, 035003. [Google Scholar] [CrossRef]
- Jian, Z.A.; Mohanty, S.; Ahmadi, E. Switching Performance Analysis of 3.5 kV Ga2O3 Power FinFETs. IEEE Trans. Electron Devices 2021, 68, 672–678. [Google Scholar] [CrossRef]
Parameters | Si | GaN | 4H-SiC | Diamond | β-Ga2O3 |
---|---|---|---|---|---|
Bandgap Eg (eV) | 1.1 | 3.4 | 3.25 | 5.5 | 4.5–4.9 |
Relative dielectric constant ε | 11.8 | 9.0 | 9.7 | 5.5 | 10 |
Breakdown electric field Eb (MV/cm) | 0.3 | 3.3 | 2.5 | 10 | 8 |
Electron mobility (cm2/V s) | 1500 | 1250 | 1000 | 2000 | 250–300 |
BFOM (εμ) | 1 | 846 | 317 | 24,660 | 3444 |
JFOM (Ebvsat) | 1 | 1089 | 278 | 1110 | 2844 |
Structures | Von (V) | Ron,sp (mΩ cm2) | Vb (V) | n | Ion/Ioff | SBH (eV) | FOM (MW/cm2) | Refs. |
---|---|---|---|---|---|---|---|---|
Pt/Ti/Au with UID substrate | 1.23 | 7.85 | 150 | 1.04–1.06 | 1010 | 1.52 | 3.1 | [67] |
Ni/Au SBD | / | 25 | 1600 | 1.07 | 107 | 1.22 | 102.4 | [69] |
Double-barrier SBD | 1.13 | 4.1 | 630 | / | 1010 | 1.26–1.62 | 96.8 | [75] |
) and (010) substrates | 1.0, 1.3 | 0.56 | / | 1.34 | 109 | 1.27 | / | [70] |
SBD with F-plasma treatment | 0.95 | 4.6 | 470 | / | 106 | 1.31 | 48 | [77] |
SBD with Al-reacted interfacial layer | 0.79 | / | / | 1.19 | 109 | 1.39 | / | [78] |
Trench SBD | / | 2.9 | 240 | 1.1 | 109 | 1.07 | 19.9 | [87] |
Trench SBD | 1.25 | 9.8 | 2960 | / | 1010 | 1.4 | 450 | [80] |
SBD with field plate | 1.32 | 5.1 | 1067 | 1.03 ± 0.02 | 1014 | 1.46 | 223.2 | [97] |
SBD with beveled field plate | / | 3.6 | 190 | 1.03 ± 0.02 | 1010 | 1.5 | 10 | [100] |
SBD with small-angle beveled field plate | / | 2 | 1100 | 1.2 | 109 | 1.2 | 605 | [102] |
Trench SBD with dual field plate | / | 8.8 | 2890 | 1.3 | 1010 | 1.38 | 950 | [103] |
SBD with Mg-implanted edge termination | / | 5.1 | 1550 | 1.05 | 109 | 1.01 | 470 | [91] |
SBD with He-implanted edge termination | 0.73 | 4.8 | 1000 | 1.19 | 1011 | 1.04 | 208.3 | [95] |
SBD with Mg-implanted edge termination | 0.82 | 5.4 | 1500 | 1.11 | 1011 | 1.17 | 416.6 | [95] |
SBD with Ar-implanted edge termination | 1 | 4 | 391 | 1.02 | 1013 | / | 38.2 | [93] |
SBD with compound termination | 0.7 | 4 | 400 | 1.09 | 106 | 1.04 | 40 | [96] |
SBD with nitrogen-implanted guard ring | 1.6 | 4.7 | 1430 | 1.04 | 1013 | / | 435.1 | [105] |
Structures | D-/E-Mode | Ion/Ioff | Vb (V) | Eb (MV/cm) | gm (mS/mm) | Ion (mA/mm or A/cm2) | FOM (MW/cm2) | Ron,sp (mΩcm2) | Refs. |
---|---|---|---|---|---|---|---|---|---|
Sn-doped MESFET | D | 104 | 257 | 0.3 | 2.8 | 13 | 0.2 | 300 | [114] |
Sn-doped MOSFET | D | 1010 | 370 | 0.46 | ~3 | 39 | 1.8 | 75 | [115] |
Spin-on-glass doping | D | 108 | 382 | 0.38 | 1.23 | 40 | / | / | [123] |
Si-doped MOSFET | D | 109 | / | / | 3.2 | 80 | / | / | [119] |
Ge-doped MOSFET | D | 108 | 479 | 0.87 | / | 75 | / | / | [121] |
Si-doped (Al0.2Ga0.8)2O3/Ga2O3 | D | 105 | / | / | 1.75 | 5.6 | / | / | [165] |
Ge-doped (Al0.2Ga0.8)2O3/Ga2O3 | D | 109 | / | / | 4 | 20 | / | / | [164] |
Dual-Si-doped (Al0.2Ga0.8)2O3/Ga2O3 | D | 108 | 3.2 | 2.76 | 39 | 257 | / | / | [166] |
Al2O3/BaTiO3 gate dielectric stack | D | 107 | 840 | 5.5 | / | 200 | 408 | 1.72 | [171] |
Ga2O3 on SiC | E | 107 | 800 | 0.22 | / | 55 | 13 | 49 | [184] |
Gate field plate | D | 109 | 755 | 0.5 | 3.4 | 78 | / | / | [197] |
Gate field plate with SU-8 polymer passivation | D | 107 | 8030 | 1.69 | / | 3 | 0.008 | / | [201] |
Source field plate | D | 106 | 480 | 0.44 | 10.5 | 267 | 50.4 | 4.57 | [202] |
Source field plate and T-shaped gate field plate | D | 109 | 1400 | 2.9 | 8.5 | 230 | 277 | 7.08 | [204] |
Dual source field plate | E | 108 | 2440 | 3.1 | / | / | 94.35 | 63.1 | [205] |
p-NiO heterojunction gate | D | 1010 | 1115 | 2.6 | / | 455 | 390 | 3.19 | [135] |
Ga2O3 FinFET | E | 105 | 567 | 0.35 | / | 0.18 | / | / | [211] |
Recess gate MOSFET | E | 109 | 505 | 1.44 | / | 40 | 14.8 | 17.2 | [212] |
Trench gate MOSFET | E | 107 | / | / | 2.7 | 11 | / | 27.3 | [216] |
UID channel MOSFET | E | 106 | / | / | 0.38 | 1.4 | / | / | [122] |
Nitrogen-doped channel | E | 105 | / | / | / | 0.0012 | / | / | [125] |
Trench gate vertical FET | D | 103 | / | / | / | 250 | / | 3.7 | [217] |
Trench gate vertical FET | E | 108 | 1057 | 1.1 | / | 350 | 62.1 | 18 | [215] |
Vertical FET with Mg-implanted CBL | D | 100 | / | / | 5 | 410 | / | / | [219] |
Vertical FET with N-implanted CBL | E | 108 | <30 | / | 14.5 | 420 | / | 31.5 | [214] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, Z.; Yang, L.; Yao, J.; Chen, J.; Zhang, J.; Wei, W.; Guo, Y.; Tang, W. β-Ga2O3-Based Power Devices: A Concise Review. Crystals 2022, 12, 406. https://doi.org/10.3390/cryst12030406
Zhang M, Liu Z, Yang L, Yao J, Chen J, Zhang J, Wei W, Guo Y, Tang W. β-Ga2O3-Based Power Devices: A Concise Review. Crystals. 2022; 12(3):406. https://doi.org/10.3390/cryst12030406
Chicago/Turabian StyleZhang, Maolin, Zeng Liu, Lili Yang, Jiafei Yao, Jing Chen, Jun Zhang, Wei Wei, Yufeng Guo, and Weihua Tang. 2022. "β-Ga2O3-Based Power Devices: A Concise Review" Crystals 12, no. 3: 406. https://doi.org/10.3390/cryst12030406
APA StyleZhang, M., Liu, Z., Yang, L., Yao, J., Chen, J., Zhang, J., Wei, W., Guo, Y., & Tang, W. (2022). β-Ga2O3-Based Power Devices: A Concise Review. Crystals, 12(3), 406. https://doi.org/10.3390/cryst12030406