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The Special Issue on “Metallurgical Slag” is a collection of 23 original articles dedi-
cated to theoretical and experimental research works providing new insights and practical
findings in the field of metallurgical slag-related topics.

The metallurgical industry is the material basis and a key industry for the development
of human society. The rapid development of human society comes with the leaping
development of the metallurgical industry in recent years. Metallurgical slag is a byproduct
generated during high-temperature metallurgical processes, and its large quantity and
complex chemistry have been a burden and barrier for industrial development. There
are very strict environmental rules placed by the government in many countries to deal
with these wastes. Therefore, slag treatment and recycling are critical for sustainable
development and have huge economic benefits, and they have attracted extensive attention
and efforts from many researchers to explore ways to recycle waste slag in the metallurgical
industry, as well as potential application in other fields. The complex chemistry and variant
physical properties make it difficult to find a unified method to treat all slags at once, but it
also provides opportunities to specify their application in different fields.

Thus, this Special Issue mainly focuses on the advances in the utilization of metallur-
gical slags. The purpose of the Special Issue is to explore the new treatment and recycling
methods of slags waste from ferrous metallurgy and also nonferrous metallurgy.

All the papers can be virtually divided into three groups, namely (i) “pyrometallurgy”;
(ii) “hydrometallurgy”; and (iii) “electrometallurgy”.

The first group of papers is mainly devoted to the development of pyrometallurgy
which is a metallurgical process carried out under high temperature conditions. Gabasiane
et al. [1] created a short review of environmental and socio-economic impacts of copper
slag, and recycling methods were considered. The characterization and composition of
copper slag were also reviewed with the aim of reusing and recycling the slag. Further-
more, the crystallization behavior of TiO2-CaO-SiO2-Al2O3-MgO pentabasic slag, the main
compositions of titanium-containing blast furnace slag, within the basicity range of 1.1–1.4
was investigated theoretically and experimentally by Lei et al. [2], and thermodynamic
calculation showed that perovskite was the main titanium-containing phase and titanium
could be enriched in perovskite. Xu et al. [3] investigated the phase change, morphology
evolution, and the mechanical properties of modified steel slag. Tian et al. [4] studied the
effects of decarburization annealing time on the primary recrystallization microstructure,
and the texture and the magnetic properties of the final product of 0.047% Nb low tem-
perature grain-oriented silicon steel were investigated by means of OM, EBSD, and XRD.
The feasibility of calcination of calcium sulphoaluminate cement clinker using pyrite-rich
cyanide tailings as Fe2O3 and SO3 sources was investigated by Dong et al. [5] and the
optimal conditions for the calcination of calcium sulphoaluminate cement using pyrite-rich
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cyanide tailings were confirmed. In another work [6], the dissolution behavior of Al2O3
into molten self-propagating high-temperature synthesis (SHS) metallurgical slags was
investigated by employing a rotating cylinder and static dissolution methods; it was found
that both temperature and rotating speed could increase the dissolution rate, and the rate
limiting step was the diffusion of alumina in the boundary layer. The work in ref [7]
determined the optimal roasting conditions for oxidized pellets used in vanadium-titanium
magnetite (VTM) ores smelting were as follows: calcination temperature of 1523 K and
a calcination time of 20 min. Lai et al. [8] proposed a series of Ti-bearing blast furnace
slag-based glass ceramics with various amounts of TiO2, and the crystallization process
and mechanical properties were analyzed as well. Pei et al. [9] investigated the use of the
gas quenching process for preparing porous bead slag abrasives. Zhang et al. studied
the effects of Fe [10] and sintering temperature [11] on the microstructure and mechanical
properties of Fe/FeAl2O4 cermet prepared by hot press sintering. Ren et al. [12] showed
Mulliken populations, energy bands and density of states of Ti-bearing blast furnace (TBBF)
slag using density functional theory (DFT).

The second group of papers focuses on hydrometallurgy, which is a metallurgical
process carried out in a solution and includes leaching, purification, and metal prepa-
ration. In this field, Li et al. [13] described the feasibility and rationality of a cleaner
zinc recovery process using secondary zinc oxide (SZO) coming from the zinc indus-
try in a NH3-NH4HCO3-H2O system. The ultrasonically-enhanced leaching technology
for multicomponent and complex nickel containing residue was studied via systematic
ultrasonic-conventional comparative experiments by Guo et al. [14] and an ultrasonic
leaching kinetics model was established, which provided reliable technological guidance
and basic theory of the comprehensive utilization of nickel-containing residue. Further
examples of hydrometallurgy are given by Li et al. [15] who designed an electrochemical
method that could be used to remove impurities in zinc leaching night and enrich zinc
ferrite in the ammonia leaching residue of the solution, and that of ammonia leaching
slag after ammonia leaching of zinc hypoxide. Wang et al. [16] investigated the potential
of argon oxygen decarburization slag (AODS) for use as a supplementary cementitious
material, and explored the mechanisms of stabilization/solidification (S/S) of chromium in
cement-based composite pastes.

Last but not the least, in the final group of papers, we mainly studied the application
of electrometallurgy. Li et al. [17] prepared EAF stainless steel slag (EAF slag) samples with
different carbonation degrees using the slurry-phase accelerated carbonation route, and Guo
et al. [18] proposed a new method for oxygen-enriched microwave roasting to improve the
dechlorination process. Molten salt electrolysis is a metallurgical process that uses electrical
energy to extract and purify metals. Liu et al. [19] studied the electrochemical reduction
process of ZnFe2O4 in NaCl-CaCl2 melts and Fe2O3-Al2O3 was electro-deoxidized in an
NaCl-KCl system by molten salt electrolysis to prepare FeO/Al2O3 [20]. Li et al. [21]
proposed a new way of preparing W-Cu functional gradient materials (FGM) with molten
salt electro-deposition. Fang et al. [22] attempted to add oxalic acid and phosphate to
molten salt containing lithium ions to realize a two-part precipitation method to extract
lithium, and a study of square wave voltammetry and open-circuit-chronopotentiometry
showed that the reaction process of LiMn2O4 reduction to manganese in NaCl-CaCl2
molten salt was: Mn (IV)→Mn (III)→Mn (II)→Mn [23].
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