Appearance of Supersonic Stoneley Waves in Auxetics
Abstract
:1. Introduction
2. Solving Secular Equation
2.1. Basic Relations
2.2. Secular Equation at Condition
3. Supersonic Stoneley Waves
3.1. Solutions for
3.2. Solutions for
3.3. Numerical Analysis
4. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoneley, R. Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond. Ser. A—Math. Phys. Sci. 1924, 106, 416–428. [Google Scholar]
- Scholte, J.G. On the Stoneley wave equation. I. Proc. K. Ned. Akad. Van Wet. 1942, 45, 20–25. [Google Scholar]
- Scholte, J.G. On the Stoneley wave equation. II. Proc. K. Ned. Akad. Van Wet. 1942, 45, 159–164. [Google Scholar]
- Sezawa, K. Formation of boundary waves at the surface of a discontinuity within the Earth’s crust. Bull. Earthq. Res. Inst. Tokyo Univ. 1938, 16, 504–526. [Google Scholar]
- Sezawa, K.; Kanai, K. The range of possible existence of Stoneley waves, and some related problems. Bull. Earthq. Res. Inst. Tokyo Univ. 1939, 17, 25. [Google Scholar]
- Cagniard, L. Reflexion et Refraction des Ondes Seismiques Progressive; Gauthier-Villard: Paris, France, 1939. [Google Scholar]
- Kuznetsov, S.V. SH-waves in laminated plates. Q. Appl. Math. 2006, 64, 153–165. [Google Scholar] [CrossRef]
- Vinh, P.C.; Malischewsky, P.G.; Giang, P.T.H. Formulas for the speed and slowness of Stoneley waves in bonded isotropic elastic half-spaces with the same bulk wave velocities. Int. J. Eng. Sci. 2012, 60, 53–58. [Google Scholar] [CrossRef]
- Barnett, D.M.; Lothe, J.; Gavazza, S.D.; Musgrave, M.J.P. Consideration of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces. Proc. R. Soc. Lond. Ser. A—Math. Phys. Sci. 1985, 412, 153–166. [Google Scholar]
- Chadwick, P.; Borejko, P. Existence and uniqueness of Stoneley waves. Geophys. J. Int. 1994, 118, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.V. Abnormal dispersion of Lamb waves in stratified media. Z. Für Angew. Math. Und Phys. 2019, 70, 175. [Google Scholar] [CrossRef]
- Kuznetsov, S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates. Z. Für Angew. Math. Und Phys. 2019, 70, 89. [Google Scholar] [CrossRef]
- Wootton, P.T.; Kaplunov, J.; Prikazchikov, D. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA J. Appl. Math. 2020, 85, 113–131. [Google Scholar] [CrossRef]
- Aydin, Y.; Erbas, B.; Kaplunov, J.; Prikazchikova, L. Asymptotic analysis of an anti-plane dynamic problem for a three-layered strongly inhomogeneous laminate. Math. Mech. Solids 2018, 25, 3–16. [Google Scholar]
- Ilyashenko, A.V.; Kuznetsov, S.V. SH waves in anisotropic (monoclinic) media. Z. Für Angew. Math. Und Phys. 2018, 69, 17. [Google Scholar] [CrossRef]
- Ilyashenko, A.V.; Kuznetsov, S.V. Pochhammer–Chree waves: Polarization of the axially symmetric modes. Arch. Appl Mech. 2018, 88, 1385–1394. [Google Scholar] [CrossRef]
- Menahem, A.B.; Singh, S.J. Seismic Waves and Sources; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Goldstein, R.V.; Dudchenko, A.V.; Kuznetsov, S.V. The modified Cam-Clay (MCC) model: Cyclic kinematic deviatoric loading. Arch. Appl. Mech. 2016, 86, 2021–2031. [Google Scholar] [CrossRef]
- Kravtsov, A.V.; Kuznetsov, S.V.; Sekerzh-Zen’kovich, S.Y. Finite element models in Lamb’s problem. Mech. Solids 2011, 46, 952–959. [Google Scholar] [CrossRef]
- Kuznetsov, S.V. Lamb waves in stratified and functionally graded plates: Discrepancy, similarity, and convergence. Waves Random Complex Media 2021, 31, 1540–1549. [Google Scholar] [CrossRef]
- Goldstein, R.V.; Kuznetsov, S.V. Long-wave asymptotics of Lamb waves. Mech. Solids. 2017, 52, 700–707. [Google Scholar] [CrossRef]
- Saxena, K.K.; Das, R.; Calius, E.P. Three decades of auxetics research—Materials with negative Poisson’s ratio: A review. Adv. Eng. Mater. 2016, 18, 1847–1870. [Google Scholar] [CrossRef]
- Reda, H.; Elnady, K.; Ganghoffer, J.F.; Lakiss, H. Nonlinear wave propagation analysis in hyperelastic 1D microstructured materials constructed by homogenization. Mech. Res. Commun. 2017, 84, 136–141. [Google Scholar] [CrossRef]
- Kuznetsov, S.V. Stoneley waves in auxetics and non-auxetics: Wiechert case. Mech Adv. Mater. Struct. 2020, 29, 873–878. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, S.V. Appearance of Supersonic Stoneley Waves in Auxetics. Crystals 2022, 12, 430. https://doi.org/10.3390/cryst12030430
Kuznetsov SV. Appearance of Supersonic Stoneley Waves in Auxetics. Crystals. 2022; 12(3):430. https://doi.org/10.3390/cryst12030430
Chicago/Turabian StyleKuznetsov, Sergey V. 2022. "Appearance of Supersonic Stoneley Waves in Auxetics" Crystals 12, no. 3: 430. https://doi.org/10.3390/cryst12030430
APA StyleKuznetsov, S. V. (2022). Appearance of Supersonic Stoneley Waves in Auxetics. Crystals, 12(3), 430. https://doi.org/10.3390/cryst12030430