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Abstract: This paper presents a recent study on the synthesis of AlN nanowires. AlN nanowires
were successfully prepared on sapphire substrate by the Al-Sn flux method. The obtained nanowires
were hundreds of nanometers in diameter and tens of microns in length. The results of transmission
electron microscopy (TEM) show that the growth direction of AlN nanowires was perpendicular to
the C axis. The photoluminescence (PL) spectrum of AlN nanowires shows a broad peak, which is
ascribed to the defect levels in the AlN bandgap. This work provides a novel method for growing
AlN nanowires, which offers a potential material for the application of photoelectron devices.

Keywords: AlN; nanowires; optical properties; flux method

1. Introduction

As one of the wide-bandgap semiconductor materials, AlN has excellent performance.
First of all, it is an important UV luminescent material, with a direct bandgap of 6.2
eV [1]. Secondly, AlN has the characteristics of high thermal conductivity and exceedingly
good electronic properties, which makes it an excellent material for high-power electronic
devices [2,3]. Moreover, AlN along the C-axis has been used in surface acoustic wave
devices due to its good piezoelectric properties [4]. In addition, the lattice constants and
thermal expansion coefficient of an AlN crystal are similar to those of a GaN crystal,
which makes the AlN crystal suitable as a substrate material for epitaxial growth of the
GaN crystal [5].

Compared with AlN crystals, AlN nanowires are potential materials for electronic and
photoelectronic applications due to their high specific surface area and unique quantum
confinement effects [6]. Therefore, the synthesis and properties of the AlN nanowires have
attracted much attention. At present, AlN nanowires have been successfully synthesized by
many methods, such as the Al-N direct synthesis method [7], direct sublimation method [8],
chemical gas reaction method, and arc discharge method, etc. For example, Zhang et al. [9]
successfully synthesized AlN nanowires by a chemical gas reaction method using Al
powders as precursors and AlCl3 as an additive. Shen et al. [10] found that abundant AlN
nanowires could be obtained by the direct current arc discharge method in five minutes.
However, due to the complexity of the arc discharge process itself or the severe impurities
from the precursors, the purity of the nanowires obtained is difficult to control.

In this paper, AlN nanowires were successfully obtained using an Al-Sn flux method.
N2 was used as the nitrogen source to avoid the possible pollution of NH3. In addition,
the vapor pressure of Sn was low, which did not cause great pollution of the product. The
synthesized nanowires were characterized and the optical properties were measured. The
growth mechanism of AlN nanowires was discussed at length.

2. Materials and Methods

Figure 1 shows the experimental flow chart. First, Al and Sn particles were mixed
in a PBN crucible with a molar ratio of 3:7. The PBN crucible was placed in a homemade
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induction furnace, which was vacuumed to below 10−3 KPa to remove residual oxygen
and moisture. Then, the furnace temperature was raised to 700 ◦C and pure argon with
a partial pressure of 34 KPa was introduced. Additionally, the furnace temperature was
then further elevated at a rate of 6.7 ◦C/min. After two hours, the temperature reached
1500 ◦C. During this process, the sapphire substrate remained above the solution. When
the temperature reached 1500 ◦C, N2 with a partial pressure of 67 KPa was introduced.
Subsequently, a sapphire substrate was dipped into the Al-Sn solution and kept for 5 h
under 1500 ◦C. After five hours, the sapphire substrate was lifted and the furnace began
to cool at a rate of 4 ◦C/min until it returned to room temperature. After being grown,
the product was corroded with aqua regia to remove the metal covering the surface. After
pickling, the product was characterized.

Figure 1. Experimental flow chart.

3. Results and Discussion
3.1. The Morphological and Crystallization Quality of AlN Nanowires

Figure 2 shows a picture of AlN nanowires on the sapphire after corrosion by aqua
regia. A large amount of gray-white product was evenly distributed and formed a thin film
covering the sapphire substrate. There was some residual metal at the edge of the sapphire.
This may have been due to the fact that it was not corroded completely.

Figure 2. A picture of AlN nanowires on the sapphire.
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The morphology of AlN nanowires was observed by field emission scanning electron
microscopy (FE-SEM), as shown in Figure 3. Obviously, Figure 3a shows a whole view of
the AlN nanowires with high density, revealing that these nanowires did not grow along
the same direction, but were stacked haphazardly across each other. The SEM image of a
single AlN nanowire is shown in Figure 3b, from which it can be seen that the diameter
of the nanowire is about 459 nm and the length of the nanowire is up to tens of microns.
Figure 3c,d show side-view SEM images of the product. Figure 3d is a zoomed image of the
yellow rectangular region of Figure 3c. As shown in Figure 3d, approximately 47.3 µm-thick
AlN film was obtained on the sapphire substrate.

Figure 3. (a) SEM image of the large-scale AlN nanowires; (b) SEM image of a single AlN nanowire;
and (c,d) cross-sectional SEM images of AlN film.

The microstructure and crystal structure of AlN nanowires were further analyzed
by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). From
Figure 4a, it can be seen that the synthesized nanowire has a smooth surface and a diameter
of around 223 nm. The energy dispersive spectrometer (EDS) spectrum in Figure 4b
indicates that the chemical composition of the nanowire mainly contains N and Al elements
with a small amount of other elements from the copper mesh. As can be seen from Figure 4c,
the selected area electron diffraction (SAED) analysis of the nanowire was carried out with
the TEM, which corresponded to a single AlN crystal with hexagonal wurtzite structure
(ICDD-PDF No. 25-1133). From the HRTEM image in Figure 4d, it can be seen that the
lattice distance of the nanowires is 0.25 nm, which matches well with the (002) plane of
AlN, indicating that the growth direction is parallel to the (001) plane. Both the SAED
pattern and the lattice spacing confirm the single structure of the nanowire.

The crystal structure of the nanowires was characterized by the X-ray diffraction (XRD)
with Cu Kα radiation in Figure 5. The nine diffraction peaks in Figure 5 are indexed to
(100), (002), (101), (102), (110), (103), (200), (112) and (201) reflections of the hexagonal AlN,
with lattice parameters of a = 3.111 Å, c = 4.979 Å (JCPDS card No. 25–1133). By gaussian
fitting of the XRD spectrum, the full width at half maximum (FWHM) of (100), (002) and
(101) were found to be 0.09706◦, 0.08801◦and 0.09564◦, respectively. The narrow FWHM of
these peaks certifies that AlN nanowires have good crystalline characteristics [11].
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Figure 4. (a) TEM image of a single AlN nanowire; (b) EDS analysis of the AlN nanowire; (c) SAED
pattern of the AlN nanowire; and (d) HRTEM image of the AlN nanowire.

Figure 5. The XRD pattern of AlN nanowires.

It is well known that Raman spectroscopy can be used to further study the crystalline
quality by the phonon modes. AlN is a tetrahedral coordination compound with a hexag-
onal wurtzite crystal structure, and belongs to the C4

6v(P63mc) space group. As shown
in Figure 6, six signals at 247.8 cm−1, 615.6 cm−1, 654.6 cm−1, 668.2 cm−1, 863.7 cm−1

and 906.5 cm−1 correspond to the E2(low), A1(TO), E2(high), E1(TO), A1(LO) and E1(LO)
phonon modes, which matches well with the space group of hexagonal aluminum ni-
tride [12]. Compared with an AlN crystal, the Raman spectrum of AlN nanowires obtained
in this experiment shows a slight redshift, which may be related to the size confinement ef-
fect, surface effect and internal stress of the nanomaterials [13–15]. In addition, it is thought
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that widened and asymmetrical Raman peaks may also be explained by the quantum size
effect and internal stress [16].

Figure 6. Room-temperature Raman scattering spectrum of AlN nanowires.

3.2. Absorption Spectrum and PL Spectrum of AlN Nanowires

The optical absorption spectrum of AlN nanowires was obtained by ultraviolet–visible
(UV) spectroscopy. The absorption spectrum of AlN nanowires, which ranged from 190 nm
to 400 nm, is shown in Figure 7. There is a significant absorption peak at 199 nm, matching
the AlN bandgap of 6.23 eV. In addition, two wider absorption peaks were observed at
219 nm and 237 nm, which may be attributed to nitrogen vacancies and oxygen-related
defects [17]. However, we emphasize here that the two absorption peaks are located in the
UV-C spectral region, which is the most relevant to medical applications [18]. For example,
UV-C LEDs are used for disinfection and purification.

Figure 7. The absorption spectrum of AlN nanowires.

The luminescence properties of AlN nanowires were investigated by PL spectrogram
with a 532 nm laser. As can be seen from Figure 8, there is a very wide absorption peak
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ranging from 530 nm to 830 nm, and the center of the absorption peak is 657 nm. In addition,
there are several weak defect-level emission peaks at about 552, 571, and 610 nm. These
luminescence peaks may be generated by a few defect levels inside the AlN bandgap [19].
The emission peak at 657 nm (1.90 eV) is possibly due to the electronic transition from
the deep level of VAl-ON to the valence band [20]. The emission peak at 552 nm (2.25 eV)
may be due to the transition of the defect level generated by VAl to the top of the valence
band [21,22]. The luminescence peak at 571 nm (2.18 eV) may be related to the transition
from the ON-ON defect pair to the complex defect level produced by VAl-2ON. Additionally,
the emission peak at 610 nm (2.04 eV) can be ascribed to the transition from the conduction
band to the impurity level associated with oxygen (IO) [23].

Figure 8. Room-temperature PL spectrum of AlN nanowires.

3.3. The Growth Mechanism of AlN Nanowires

As shown in Figure 9, the growth process of AlN nanowires can be divided into two
steps: (1) the formation of the nucleation site of AlN, and (2) the growth process of AlN
nanowires. Because the heater and insulation blanket are graphite components, carbon re-
acts with oxygen to form carbon monoxide when oxygen is insufficient (Equation (1)). Car-
bon monoxide reduces alumina to an Al gas or oxide with low-price Al (Equations (2)–(4)),
and then aluminum-containing gas reacts with nitrogen gas to produce AlN
(Equations (5)–(7)) [24]. This formed the nucleation site of AlN on the sapphire surface,
and then AlN nanowires grew on the nucleation site. The nucleation sites of AlN then con-
stantly absorbed Al and N atoms, and the AlN crystal grew gradually to form nanowires.
In the growth process, the nucleation point of AlN is not caused by the direct nitriding of
sapphire, so the growth direction of AlN nanowires is independent of substrate orientation.

2C (s) + O2 (g) = 2CO (g) (1)

Al2O3 (s) + 2CO (g) = Al2O (g) + 2CO2 (g) (2)

2Al2O3 (s) + 6CO (g) = 4Al (g) + 6CO2 (g) (3)

Al2O3 (s) + CO (g) = 2AlO (g) + CO2 (g) (4)

Al2O (g) + N2 (g) = 2AlN (s) + 1/2O2 (g) (5)

Al2O (g) + CO (g) + N2 (g) = 2AlN (s) + CO2 (g) (6)

2Al (g) + N2 (g) = 2AlN (s) (7)
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Figure 9. Schematic illustration of the growth process for AlN nanowires.

4. Conclusions

In summary, AlN nanowires tens of microns in length and hundreds of nanometers
in diameter were successfully synthesized by the Al-Sn flux method at 1500 ◦C for 5 h.
The results show that the growth direction of aluminum nitride nanowire is parallel to
the (001) planes. The UV studies indicate that AlN nanowires have a promising future
in the UV-C devices field. The PL spectrum exhibits a broad emission peak with several
weak peaks, which may be ascribed to the electronic transition between defect levels of the
AlN bandgap.
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