Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Characterization
2.2.1. HR-TEM and VP-SEM
2.2.2. Fourier Transformed Infrared Spectroscopy (FTIR)
2.2.3. X-ray Photoelectron Spectroscopy XPS
2.2.4. X-ray Diffraction
3. Results
3.1. Variable Pressure Scanning Electron Microscopy (VP-SEM)
3.2. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.3. Fourier Transformed Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy XPS
3.4. X-ray Diffraction Results
4. Conclusions
- it allows the chemical functionalization of the surface with controlled SiOH silanols amount,
- it allows the fabrication of nano-fibrous surfaces, observed and confirmed by several microscopy methods as corroborated by HR-TEM showing the presence of SiO2 nanofibers on the surface of lengths ranging from 20 nm to 250 nm,
- it keeps the structural state of the starting 3D SiO2 framework,
- The method developed is free of any polluting compounds,
- The method developed is 100% mineral and free of any organic compound.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarikaya, E.; Çallioğlu, H.; Demirel, H. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos. Part B Eng. 2019, 167, 461–466. [Google Scholar] [CrossRef]
- Oertel, T.; Hutter, F.; Helbig, U.; Sextl, G. Amorphous silica in ultra-high performance concrete: First hour of hydration. Cem. Concr. Res. 2014, 58, 131–142. [Google Scholar] [CrossRef]
- Khouchaf, L.; Boulahya, K.; Das, P.P.; Nicolopoulos, S.; Kis, V.K.; Lábár, J.L. Microstructure study of Amorphous Silica nanostructure using High Resolution Electron Microscopy, Electron Energy Loss Spectroscopy, X-ray Powder Diffraction and Electron Pair Distribution Function. Materials 2020, 13, 4393. [Google Scholar] [CrossRef] [PubMed]
- Khouchaf, L.; Boinski, F.; Tuilier, M.; Flank, A. Characterization of heterogeneous SiO2 materials by scanning electron microscope and micro fluorescence XAS techniques. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 252, 333–338. [Google Scholar] [CrossRef]
- Price, P.M.; Clark, J.H.; Macquarrie, D.J. Modified silicas for clean technology. J. Chem. Soc. Dalton Trans. 2000, 52, 101–110. [Google Scholar] [CrossRef]
- Cauqui, M.; Rodríguez-Izquierdo, J.M. Application of the sol-gel methods to catalyst preparation. J. Non-Cryst. Solids 1992, 147–148, 724–738. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Brews, J.R. Metal Oxide Semiconductor. Physics and Technology; WILEY-VCK: New York, NY, USA, 2002. [Google Scholar]
- Muthalvan, R.S.; Ravikumar, S.; Avudaiappan, S.; Amran, M.; Aepuru, R.; Vatin, N.; Fediuk, R. The Effect of Superabsorbent Polymer and Nano-Silica on the Properties of Blended Cement. Crystals 2021, 11, 1394. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Song, X.; Xu, H.; Zhou, D.; Yao, K.; Tao, F.; Jiang, P.; Wang, W. Mechanical Performance and Microscopic Mechanism of Coastal Cemented Soil Modified by Iron Tailings and Nano Silica. Crystals 2021, 11, 1331. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, W.; Qing, Y.; Duan, S.; Pan, H.; Zhou, Y. Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler. Ceram. Int. 2021, 47, 14455–14463. [Google Scholar] [CrossRef]
- Tahiri, N.; Khouchaf, L.; Elaatmani, M.; Louarn, G.; Zegzouti, A.; Daoud, M. Study of the thermal treatment of SiO2 aggregate. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012002. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.-B.; Le, V.-B.; Phan, V.T.-A. Mechanical Properties of High Strength Concrete Containing Nano SiO2 Made from Rice Husk Ash in Southern Vietnam. Crystals 2021, 11, 932. [Google Scholar] [CrossRef]
- Zhang, Q.; Pang, X.; Zhao, Y. Effect of the External Velocity on the Exfoliation Properties of Graphene from Amorphous SiO2 Surface. Crystals 2021, 11, 454. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Qiu, Q.; Gao, J.; Tang, C. The effect of surface hydroxylation of Nano-SiO2 on the insulating paper cellulose/Nano-SiO2 interface. Mater. Chem. Phys. 2021, 260, 124124. [Google Scholar] [CrossRef]
- Boinski, F.; Khouchaf, L.; Tuilier, M.-H. Study of the mechanisms involved in reactive silica. Mater. Chem. Phys. 2010, 122, 311–315. [Google Scholar] [CrossRef]
- Tian, S.; Gao, W.; Liu, Y.; Kang, W.; Yang, H. Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability. Colloids Surf. A 2020, 595, 124682. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potentiel in Colloid Science; Academic Press Inc.: San Diego, CA, USA, 1988. [Google Scholar]
- Iler, R.K. The Chemistry of Silica; Wiley-Interscience: New York, NY, USA, 1979. [Google Scholar]
- Sassi, W.; Dhouibi, L.; Berçot, P.; Rezrazi, M. The effect of SiO2 nanoparticles dispersion on physico-chemical properties of modified Ni–W nanocomposite coatings. Appl. Surf. Sci. 2015, 324, 369–379. [Google Scholar] [CrossRef]
- Fidalgo, A.; Rosa, M.E.; Ilharco, L.M. Chemical Control of Highly Porous Silica Xerogels: Physical Properties and Morphology. Chem. Mater. 2003, 15, 2186–2192. [Google Scholar] [CrossRef]
- Huang, Q.; Gu, M.; Sun, K.; Jin, Y. Effect of pretreatment on rheological properties of silicon carbide aqueous suspension. Ceram. Int. 2002, 28, 747–754. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, D.; Lee, K.; Ahn, K.H.; Kim, B. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications. J. Ind. Eng. Chem. 2008, 14, 515–519. [Google Scholar] [CrossRef]
- Korovkin, M.V.; Ananieva, L.G.; Antsiferova, A.A. Assessment of quartzite crystallinity index by FT-IR. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Heidelberg, 20 March 2012. [Google Scholar]
- Barbosa, G.N.; Oliveira, H.P. Synthesis and characterization of V2O5–SiO2 xerogel composites prepared by base catalysed sol–gel method. J. Non-Cryst. Solids 2006, 352, 3009–3014. [Google Scholar] [CrossRef]
- Kim, H.-U.; Rhee, S.-W. Electrical Properties of Bulk Silicon Dioxide and SiO2/Si Interface Formed by Tetraethylorthosilicate Ozone Chemical Vapor Deposition. J. Electrochem. Soc. 2000, 147, 1473. [Google Scholar] [CrossRef]
- Chen, Z.-L.; Shen, P. Thermally activated sintering–coarsening–coalescence-polymerization of amorphous silica nanoparticles. Ceram. Int. 2013, 39, 2365–2373. [Google Scholar] [CrossRef]
- Jung, K.T.; Chu, Y.-H.; Haam, S.; Shul, Y.G. Synthesis of mesoporous silica fiber using spinning method. J. Non-Crystalline Solids 2002, 298, 193–201. [Google Scholar] [CrossRef]
- Schmidt, P.; Fröhlich, F. Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 1476–1481. [Google Scholar] [CrossRef]
- Schmidt, P.; Badou, A.; Fröhlich, F. Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 552–559. [Google Scholar] [CrossRef]
- Domanski, M.; Webb, J. Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. J. Archaeol. Sci. 1992, 19, 601–614. [Google Scholar] [CrossRef]
- Langer, K.; Flörke, O.W. Near Infrared Absorption Spectra (4000–9000 cm−1) of Opals and the Role of “Water” in These SiO2.nH2O Minerals. Fortschr. Mineral. 1974, 53, 17–51. [Google Scholar]
- Black, L.; Garbev, K.; Stemmermann, P.; Hallam, K.R.; Allen, G.C. Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy. Cem. Concr. Res. 2003, 33, 899–911. [Google Scholar] [CrossRef]
- Miyaji, F.; Iwai, M.; Kokubo, T.; Nakamura, T. Chemical surface treatment of silicone for inducing its bioactivity. J. Mater. Sci. Mater. Med. 1998, 9, 61–65. [Google Scholar] [CrossRef]
- Oufakir, A.; Khouchaf, L.; Elaatmani, M.; Zegzouti, A.; Louarn, G.; Ben Fraj, A. Study of structural short order and surface changes of SiO2 compounds. MATEC Web Conf. 2018, 149, 01041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khouchaf, L.; Oufakir, A. Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method. Crystals 2022, 12, 531. https://doi.org/10.3390/cryst12040531
Khouchaf L, Oufakir A. Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method. Crystals. 2022; 12(4):531. https://doi.org/10.3390/cryst12040531
Chicago/Turabian StyleKhouchaf, Lahcen, and Abdelhamid Oufakir. 2022. "Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method" Crystals 12, no. 4: 531. https://doi.org/10.3390/cryst12040531
APA StyleKhouchaf, L., & Oufakir, A. (2022). Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method. Crystals, 12(4), 531. https://doi.org/10.3390/cryst12040531