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Abstract: The shape of the crystal size distribution directly determines the quality of crystal products.
It is often assumed that distributional properties of crystal size conform to the Gaussian distribution
or the log normal distribution. The mean and variance or relative crystal number are widely adopted
to describe the crystal size distribution and taken as the control objectives. Therefore, the resulting
control methods have difficulties in controlling the crystal size distribution with a general shape.
In this article, a novel feedback control system of crystal size distribution based on image analysis
is designed for the effective control of crystal size distribution with a general shape. First, a deep
learning network-based image analysis method is adopted and implemented to extract the crystal
size distribution. Second, the crystal size distribution is approximated by a radial basis function
neural network. Consequently, a feedback controller is designed and the tracking control of the target
crystal size distribution is finally realized. The results of crystallization experiments demonstrate the
effectiveness of the proposed method.

Keywords: cooling batch crystallization; crystal size distribution; deep learning network; feed-
back control

1. Introduction

Cooling batch crystallization is widely applied in the production of raw material of
nonferrous metals, drugs, and fine chemicals. Because the shape of the crystal size distribu-
tion directly determines the quality of crystal products, the description and control of the
crystal size distribution (CSD) shape has attracted the interest of many researchers [1,2].
In a typical industrial application, feedback control of easily measured variables, such as
temperature, is quite common, but feedback control of CSD is rarely done [3]. The reason
stems from the online measurement of the full distribution and the distributed nature of
the crystallization process.

The research of mathematical models is an effective method to describe the crystal
growth dynamics. Hulburt et al. [3] and Randolph et al. [4] developed the population
balance (PB) models to describe the temporal and spatial evolution of crystal particles.
Grosso et al. [5–7] proposed the Fokker–Planck equation (FPE) and considered the natural
fluctuations where the crystal size was selected as a random variable. These models
provided effective tools to understand the dynamic and underlying phenomena of the
cooling batch crystallization process. Semino and Ray [8] firstly addressed controllability
analysis problem of crystal size distribution on the basis of the population balance model.
However, the solution of these models can become complicated, time consuming, and
inaccurate due to the inherent complexity. Hence, few experimental results have been
reported in the literature before, in which the full mathematical models are adopted to
implement feedback control. To deal with this problem, Chiu and Christofides [9] adopted
the method of weighted residuals and an approximate inertial manifold to construct a
low-order ordinary differential equation from the PB model. As a result, the overwhelming
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majority of real-time controllers adopted the reduced order moment model because of its
decreased computational expense and high accuracy [10–12]. In the past years, the mean
and variance or relative crystal number have been widely adopted to describe the crystal
size distribution and taken as the control objectives [13]. Therefore, the published control
methods cannot easily effectively control the distribution shape.

In addition, distribution shape control methods can also be found in many industrial
systems other than crystallization process. Flores-Cerillo and MacGregor [14] controlled
the full CSD of a styrene emulsion polymerization reactor adopting a PLS model to predict
the weight-averaged CSD and Gaussian distribution to parameterize the distribution.
Wang [15] and Guo [16] proposed stochastic distribution control algorithms to ensure
the output probability density functions (PDFs) to track a desired PDF shape. Stochastic
distribution control algorithms have been applied in many industrial processes such as
the refining process [17] and foam size in the process of copper roughing [18]. In brief,
the experimental implementation of a feedback control system that uses the crystal size
distribution is still an open problem in the literature.

As mentioned above, another important issue for feedback control of CSD is online
measurement of the full distribution. Process analytical technology (PAT) provides in situ
information about the crystallization process and has been widely used in the real-time
monitoring and control of the crystal size distribution [19,20]. FBRM is an effective PAT
tool and enables the efficient design of feedback control systems for the crystallization
process [21–23]. Szilágyi et al. [24] demonstrated an experimental implementation result
of a nonlinear model predictive control system that used the chord length distribution
(CLD) signal as feedback information. However, the laser light scattering based measured
signal of FBRM is easily be influenced by crystal properties or operating conditions (e.g.,
mixing) [25]. Moreover, the chord length distribution (CLD) of crystals is statistically
related to the CSD. For the control of CSD, it is necessary to restore the CSD from CLD.
Hence, the time-consuming calculations [26,27] cannot be avoided and the geometry of the
crystals must be known.

In recent years, image processing tools have been widely applied for crystallization
processes [25]. Image processing algorithms, e.g., edge detection, region-based segmen-
tation, and clustering segmentation have been developed to some extent [28–32]. These
techniques can be used for the monitoring and control of the crystal size distribution. Bor-
sos et al. [25] proposed an image analysis based real-time direct nucleation control method.
Ghadipasha et al. [33,34] presented an image processing technique based online controller
to reach a desired crystal mean size and standard deviation. However, the traditional
image processing methods have difficulties in detecting crystals that are touching and
overlapping. Moreover, another disadvantage of the traditional image analysis methods is
that there are many parameters needed to be tuned according to the imaging conditions.
Therefore, researchers has adopted the deep learning to extract the underlying patterns in
the images [35,36]. Gao et al. [37] adopted Mask Regional Convolutional Neural Networks
(R-CNNs) to measure the individual crystals. Manee et al. [38] proposed a modified deep
learning neural network based on the RetinaNet, which mitigated the crystal detection
problem in high-density solute. The deep learning-based image analysis method is referred
to as an end-to-end method without manually tuning the threshold parameters, which
makes the deep learning-based approach suitable for online feedback control of CSD for
crystallization processes.

In this contribution, a novel image analysis-based CSD feedback control method is
proposed for the cooling batch crystallization process. First, a deep learning network-
based crystal image analysis method is adopted and implemented to extract crystal size
distribution. Deep learning-based image analysis methods are becoming increasingly
attractive due to the adaptability of this technique for feedback control application. Second,
the crystal size distribution is approximated by a radial basis function neural network.
Consequently, a feedback control system of crystal size distribution is designed and the
tracking control of the target crystal size distribution is finally realized.
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2. Image Analysis Based Feedback Control of CSD
2.1. Experimental Setup

The feedback control system of crystal size distribution with the experimental setup
is presented in Figure 1. The crystallization experiment is carried out in a 2L jacketed
glass crystallizer. The mixing in the crystallizer is realized by a variable speed stirrer. The
temperature in the crystallizer is measured by a PT100 thermometer (produced by Lauda
company, Lauda Koenigshofen, Germany). The temperature control device adopts the
proline enhanced thermostatic controller of the Lauda company, Lauda Koenigshofen,
Germany. The camera probe (produced by PharmaVision Nanosonic Technology Ltd.,
Qingdao, China.) is inserted into the solute, using an optical lens and a USB3.0 Vision
Camera. The maximum frame rate of the camera is up to 30 fps and the minimum exposure
time is up to 44 µs. The captured image has a resolution of 2000 × 1536 pixels. The imaging
system is connected to an industrial computer. The crystals in the solute can be captured
in real time through the matching image analysis software. At the same time, the online
measurement software of crystal size distribution can read the pictures in real time to
segment, extract, and compute the statistics of the crystals in the images. The data of the
crystal size distribution curve are finally generated. The CSD control system is composed
of an industrial computer. The distribution control software was designed and developed.
The proposed distribution control method computes the next temperature profile as the
target temperature and sends it to the Lauda thermostat system, which implements it
through a chiller and heater.

Figure 1. Schematic diagram of experimental equipment.

2.2. Measurement of Crystal Size Distribution
2.2.1. Deep Learning Based Image Analysis Method

Mask R-CNN is a two-stage multi-task deep learning neural network [38,39], which
can be used for target detection, target classification, semantic segmentation, instance seg-
mentation, and other different tasks. The overall architecture of Mask R-CNN is presented
in Figure 2. Mask R-CNN combines the ideas of Feature Pyramid Networks (FPN) and
Fully Convolutional Network (FCN) with an FCN branch added to Fasters-RCNN, which
can generate the corresponding mask. First of all, Resnet101 and FPN form the backbone
network to extract feature maps from the images, and then the Region Proposal Network
(RPN) generates proposals of crystal object locations. The second stage is the head of the
adopted Mask R-CNN, which is composed of three branches. The box branch is used to
generate the locations of crystal particles. The class branch is adopted to classify the crystal
particles. The mask branch is applied to provide pixel-level predictions of crystal particles
using a full convolutional network. Finally, the outputs of the three branches are integrated
together to generate a pixel-level map, in which each crystal is represented by a different
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color. In the training process, we use the official Mask R-CNN project on the open-source
framework TensorFlow and Keras (http://github.com/matterport/Mask_RCNN, accessed
on 1 April 2019).

Figure 2. Overall architecture of the deep learning-based image analysis method.

2.2.2. Kernel Density Estimation of Experimental Histogram

The number of crystals is a key issue to measure the crystal size distribution. Although
a large number of crystals can increase the measurement accuracy of the crystal size
distribution, it will take more time for image analysis. To test the effect of the crystal
number on the results, two performance indexes [40,41] are introduced, which are reduced
confidence interval and the coefficient of variation. A large number of images, comprising
sufficient crystals, is considered for image analysis to calculate the crystal size distribution.
The histogram can be drawn after the information of crystal size is obtained. Because
the histogram can be regarded as a superposition of a series of step functions and the
probability density is not continuous and differentiable, it is necessary to smooth the
calculated histogram. In this work, kernel density estimation method is adopted to obtain
the smooth crystal size distribution curve.

2.3. Feedback Control Algorithm of Crystal Size Distribution

As mentioned above, traditional stochastic control methods only consider the out-
put mean and variance of crystal population. The object of the feedback control of the
crystal size distribution is to control the shape of the output probability density functions
(PDFs) [17,42]. For the crystallization dynamic system, the output crystal size is denoted as
a continuous random variable y ∈ [a, ζ]. Let u(t) be the control input that controls the distri-
bution of crystal size y. The probability of the output crystal size y can be characterized by
its PDF γ(y, u(k)):

P(a < y < ζ, u(k)) =
∫ ζ

a
γ(y, u(k))dy (1)

In this contribution, it is assumed that γ(y, u(k)) is continuous and bounded with the
interval [a, b], which is assumed to be known. According to the approximation principle
of RBF-NN, the square root of the output PDF is approximated using the following RBF
neural network: √

γ(y, u(k)) =
n

∑
i=1

ωi(u(k))Ri(y) + ε(y), i = 1, 2, . . . , n (2)

where γ(y, u(t)) represents the crystal size distribution in the crystallization process, y is the
characteristic size variable of the crystal, Ri(y) represents the ith basis function, ωi(u(t)) is
the weight corresponding to the ith basis function, and ε(y) represents the approximation
error. The Gaussian basis function is expressed as follows.

http://github.com/matterport/Mask_RCNN


Crystals 2022, 12, 570 5 of 12

Ri(y) = exp

(
− (x− µi)

2

δi
2

)
, i = 1, 2, . . . , n (3)

where µ represents the center value of the Gaussian basis function and δ represents the
width of the Gaussian basis function.

By choosing the appropriate Gaussian basis function, the approximation error can
be reduced infinitely. So, in the case of ignoring the approximation error, Equation (2) is
changed to the following equation:√

γ(y, u(t)) =
n

∑
i=1

ωi(u(t))Ri(y), i = 1, 2, . . . , n (4)

The target crystal size distribution g(y) can be estimated by the same Gaussian basis
functions as: √

g(y) =
n

∑
i=1

ωgi(t)Ri(y), i = 1, 2, . . . , n (5)

where ωgi is the target weight vector.
Tracking error e(y,t) can be defined as follows:

e(y, t) =
√

g(y)−
√

γ(y, u(t)) = C(y)w(t) (6)

where C(y) = [R1(y), R2(y), . . . , Rn(y)], w(t) =
[
ωg1 −ω1, ωg2 −ω2, · · · , ωgn −ωn

]T .
The error w(t) is a function of the Gaussian basis function output y and time t. Accord-

ing to the continuity theory of the function, if and only if w(t) tends to 0, e(y,t) tends to 0.
Therefore, the real-time crystal size distribution can be realized by controlling the real-time
weight to track the target weight. Now we can approximate the crystal size distribution
curve of the crystallization process by a set of selected Gaussian basis functions, and trans-
form the control problem of the crystal size distribution into the control problem of the
corresponding weights of a set of selected Gaussian basis functions.

The feedback control strategy applied is a PI algorithm by manipulating the crystallizer
temperature, which is presented mathematically as follows:

u = KPw + KI

∫ t

0
wdτ (7)

where u denotes input variables, which provide the target temperature for the thermostatic
control system. KP and KI illustrate the proportional gain matrix and integral time constant
matrix.

3. Results and Discussion

To exhibit the effectiveness of the presented control system, a cooling crystallization
experiment with the growth of alum crystals from water was conducted. The alum crystals
are produced by Aladdin company, Shanghai, China. The solubility of alum crystals is
10.8 g/100 g H2O at 20 ◦C. A quantity of 1500 g distilled water and 165 g high-purity
alum were added into the crystallizer and the rotating speed of the agitator was set to
150 rpm/min to evenly mix the solution.

In the training stage of the deep learning network, linear the cooling control method
at the cooling rate of 0.1 ◦C/min is first implemented to gather enough images. Images cap-
tured from different stages can improve the accuracy and robustness of the deep learning
network. In this work, a total of 250 pictures are selected from the total crystallization pro-
cess as the training set, and another 70 pictures are selected as the evaluation set. Through
the common data expansion method such as symmetry and rotation of the acquired images,
the number of images in the training set is expanded from 250 to 1000 and number of
images in the evaluation set is expanded from 70 to 280. Finally, all of the images are resized
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from 2000 × 1536 to 800 × 615 pixels to meet the network requirements of input. The VGG
Image Annotator (VIA) image annotation tool is used for annotation of the crystals. In each
image, the target areas are surround by enclosed areas created by the polygon tool of VIA
along the boundary of the target area. Among them, regions marked for crystals shall not
intersect with each other except the boundary. To deal with the problem of crystal overlap-
ping and touching in the images, the modal labeling method [43] is adopted in this paper.
The hidden edges due to crystal overlapping and touching can be reliably estimated by
human labelers. The training process was performed on a hardware platform of R7-4800H
CPU, 32 GB DDR4 RAM, 1 TB SSD, and RTX 2060 GPU. The number of training epochs
was selected as 30. The network was trained for 3.7 h. The performance was evaluated by
the mask average precision (AP) from the COCO evaluation metrics. The AP and AP50
were 24.17 and 59.72, respectively. The training loss curve is shown in Figure 3. Further
improvement can be achieved by enhancing the training dataset.

Figure 3. Training loss.

The results of Mask R-CNN are presented in Figure 4. The raw images are padded
and resized to 1024-pixel-wide squares by Mask R-CNN. After processing, the mask branch
produces binary images with the same spatial size as the input images, as presented in
Figure 4b. The crystals are separated from the background of the binary images. The binary
images are combined with the outputs of the class branch and the box branch. The results
are presented in Figure 4c. The pixel-level maps are obtained with each crystal object
represented by a different color. Then, the pixel-level map is used to extract and compute
the related parameters of crystals. Multidimensional information can be extracted from the
crystallization process through the image analysis method. Crystals can be described in
area, length, width, etc. The relative number of crystals can also be counted. Without loss
of generality, the size of a crystal object is characterized by the width. This information is
then used to represent the crystal size distribution by means of statistics and kernel density
estimation.
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Figure 4. Image processing results based on Mask R-CNN: (a) the raw image, (b) the output of the
mask branch, (c) the final output.

In the inference stage, a test was performed on a set of 4000 crystals. Figure 5 presents
the variations in the reduced confidence interval and the coefficient of variation. A mini-
mum of 1000 crystals should be analyzed to ensure a reduced confidence interval smaller
than 5%. As shown in Figure 5, the effect of the change in the slide around 2500 crystals can
be seen on the coefficients of variation. Therefore, the number of crystals is recommended
to exceed 2500. Figure 6 shows an illustrative example of the result of kernel density esti-
mation method, i.e., the smoothed crystal size distribution is compared with the histogram
of crystal particles.

Figure 5. Variation in the reduced confidence interval and the coefficient of variation with the number
of crystals.
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As mentioned above, the radial basis function neural network is adopted to approx-
imate the actual CSD. In the following experiment, we selected three Gaussian basis
functions to validate the approximate effects on the actual CSD. The central value vector
corresponding to the Gaussian basis function is: [335.4; 563; 816.6] and the width vector is:
[22,782; 26,505; 27,000]. The target distribution and the estimated distribution of crystals
are presented in the Figure 7. The obtained target weight vector is: [0.5133; 0.3019; 0.1413].
Hence, the control of the distribution of crystal size is transformed into the control of the
target weight vector representing the crystal size distribution.

Figure 7. Comparison of target crystal size distribution and estimated crystal size distribution by
Gaussian basis function.

Before starting the online control of crystal size distribution, the open-loop control
method is used to make the system close to the asymptotic region of target shape of
crystal size distribution. Firstly, the temperature in the crystallizer is rapidly raised to
35 ◦C by the thermostatic system and maintained for 30 min until the crystal is completely
dissolved. Then, the temperature in the crystallizer is reduced to 20 ◦C at the cooling
rate of 0.1 ◦C/min and the temperature is kept for 10 min to obtain the stable saturated
solution. The temperature in the crystallizer is further reduced to 19 ◦C at the cooling rate
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of 0.1 ◦C/min. At the same time, 7 g of evenly ground seed is added into the crystallizer
and maintained at 19 ◦C for 10 min to promote nucleation and to speed up the growth of
alum crystals. Finally, the temperature in the crystallizer is further reduced at a cooling
rate of 0.1 ◦C/min. Images are started to be captured and crystal size distribution of
alum crystals is measured from the captured images. Then, the proposed controller is
put into use. The sampling time is selected as 10 min to ensure that the image processing
steps can be completed. Figure 8 illustrates the size distribution evolution of the crystals
during the whole batch. Figure 9 describes the changes in real-time weights. Figure 10
describes the set temperature and real-time temperature variation in the crystallizer. At
beginning of the cooling crystallization experiment, the error between target curve and
actual curve is clear, as can be seen from Figures 8 and 9. The initial temperature is about
12.4 ◦C and then it is gradually reduced to enhance crystal growth under the action of the
proposed control method. After 60 min, when the crystal size distribution curve exceeds
its target crystal size distribution, the temperate increases and crystals begin to dissolve
such that the sizes of crystals are reduced. Although there are two overshoots in the crystal
size distribution curve, the system output is kept to the desired crystal size distribution
curve after about 160 min. It can be seen that the CSD and the related weights gradually
approach their targets. It can also be seen from Figure 10 that the distribution controller
frequently regulates the temperature of the solution to ensure the crystal size distribution
curve tracking the target crystal size distribution curve. Hence, the regulation of CSD is
implemented by the circulation of growth and dissolution due to temperature control. The
crystallization process reaches a steady state. In addition, the whole evolution trend of the
CSD and the related weights is similar, as can be observed from the results of Figures 8 and 9.
These results are a further proof of the basic idea that the control problem of the crystal
size distribution can be transformed into the control problem of the corresponding weights.
It is worth noting that the proposed PI controller has constant parameters; therefore,
it cannot perfectly deal with the complex nonlinear effect of crystallization process. It
can be seen from Figures 8 and 9 that there is an obvious overshoot in the CSD and the
weights’ trajectory, and, finally, there is a small deviation from the target in the steady state.
Nonetheless, physical experiments show that this method can effectively track the target
crystal size distribution and achieve good experimental results.

Figure 8. Evolution of crystal size distribution profiles.
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Figure 9. Comparison of target weights and actual weights estimated by the Gaussian basis function:
(a) ωg1and ω1, (b) ωg2 and ω2, (c) ωg3 and ω3.

Figure 10. Variation in the computed temperature of the controller and actual temperature of the
solution.
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4. Conclusions

In the current work, a feedback control system of crystal size distribution based on
image analysis is proposed. The image analysis technology using deep learning and kernel
density estimation is adopted to realize the online measurement of CSD. The weights of the
CSD computed at different times are estimated using RBF basis functions, and the control
problem of the CSD is transformed into the control problem of weights representing the
crystal size distribution function. A feedback controller is designed to track the target CSD
shape. Overall, the proposed deep learning-based image analysis provides a new direction
for real-time characterization of CSD. Furthermore, the results obtained corroborated that
the proposed control method represents a powerful tool for effective control of CSD with a
general shape.
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