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Abstract: The increase of agri-food wastes by agriculture and industries is one of the main causes
of environmental pollution. Here we propose the recycling of Cynara scolymus L. wastes to obtain
polymorph II cellulose nanocrystals (CNC). Two different extraction procedures are compared:
(i) Soxhlet extraction in an ethanol/toluene mixture, and (ii) water boiling of the agricultural waste.
Both procedures were followed by purification of cellulose fibers through bleaching treatments and
extraction of cellulose nanocrystals by acid hydrolysis. CNCs have been extensively characterized by
FTIR spectroscopy, electrophoretic light scattering measurements, X-ray powder diffraction methods,
transmission electron microscopy, and thermogravimetric analyses. Extracted CNC are rod-like-
shaped polymorph IIs with a good crystallinity index, and they are characterized by high hydrogen
bonding intensity. The ELS measurements on samples from both procedures show good results
regarding the stability of the CNC II sol (ζ <−40± 5 mV), comparable to that of the CNC polymorph I.
Both polymorph II CNCs show better thermal stability, compared to CNC I. The results show that
the easy extraction procedure from agricultural Cynara scolymus L. waste can be used to produce
high-quality cellulose nanocrystals as a green alternative to the commonly used synthetic route.

Keywords: agri-food waste recycling; cellulose nanocrystals of polymorph II; CNC extraction proce-
dure optimization; spectroscopic characterization

1. Introduction

The increase of solid waste production from agriculture and industry is one of the
main causes of environmental pollution. It has been estimated that about 45% of the world’s
fruit and vegetable production is wasted [1]. For this reason, the use of biodegradable and
renewable wastes represents an opportunity to produce a new generation of materials.

Cellulose nanocrystals are one the most promising new bio-nanomaterials, as pointed
out in several papers [2–4].

Most of the lignocellulosic biomass of agri-food origin is mainly composed of cellulose,
hemicellulose, and lignin. The efficient separation of the constituent components of these
biomasses is one of the major obstacles to efficient use of renewable resources.

The objective of this work is to find a rapid and economic process to obtain stable
colloid suspension of cellulose nanocrystals from agricultural wastes.

The Cynara scolymus L. plant, known as artichoke, belongs to the Asteraceae family
and is typical of the Mediterranean region. The artichokes are globally recognized as a
salutary food for their nutritional composition, as well as for high antioxidant properties [5].
The inflorescence, named the head, is the only edible part of the plant. The solid waste
consists of the stems and external bracts of the flowers (70–80%). This agri-food residue, of
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lignocellulosic nature, is mostly used as green manure and livestock feed, or it is burned [6].
Italy is the world’s largest producer of artichokes, producing about 500,000 tons/years,
followed by Egypt, Spain, and Peru [7]. The artichoke canning industry produces annually
about 900,000 tons of wastes, according to the Food and Agriculture Organization of
the United Nations [1]. The 2014 “zero-waste” program of the European Commission
encourages the recycling and resource reuse of agri-food residues as relevant sustainable
strategies for an efficient circular economy [8]. The most effective way to reduce waste
disposal in landfills is to recycle it to produce new materials. Here we propose the extraction
from artichoke waste of nanocellulose, a very promising functional bio-nanomaterial, as a
sustainable strategy for an efficient circular economy.

Cellulose, a biopolymer made of β-1,4-bound glucopyranose units, is characterized by
high-order (crystalline) and low-order (amorphous) regions. Due to the intra- and inter-
molecular hydrogen bonds between the hydroxyl groups on the glucopyranose units with
oxygen atoms on the same or on neighbor chains, four different crystalline structures (I–IV)
are reported in the literature [9]. Native cellulose occurs in two polymorphs: the triclinic Iα
mainly found in bacteria and the monoclinic Iβ typical of plants. Both polymorphs consist
of parallel chains arranged in packed sheets. In the Iα polymorph, the sheets are directly
stacked on top of each other, whereas in the Iβ form, the stacked sheets are staggered
between alternating layers [10–12]. When cellulose I is treated with sodium hydroxide or
liquid ammonia, cellulose II or cellulose III, respectively, are obtained. Cellulose IV can be
produced from cellulose III by a high-temperature treatment in glycerol [13,14].

Cellulose II has a higher chemical reactivity than cellulose I and it is industrially the
most relevant. It is characterized by a monoclinic crystal structure with antiparallel stacked
sheets, and it contains more intramolecular hydrogen bonds than cellulose I [15,16].

The removal of lignin and hemicellulose to obtain cellulose II from a lignocellulose
source can be achieved by means of an alkali solution [13,17,18]. The most used methods
are the chemical pulping process, called the Kraft or bisulphite process [19,20], and mercer-
ization, which also has the function of removing hemicellulose and impurities leading to
a reorganization of inter-fibrillar regions in the lignocellulosic fibers [21,22]. Treatments
with alkalis can improve the mechanical properties of cellulose fibers, such as dimen-
sional stability, fibrillation tendency, tensile strength, dyeability, reactivity, luster, and fabric
smoothness [23].

Cellulose is characterized by an intrinsic supramolecular structure that can be isolated
as a cellulose nanocrystalline (CNC) species [24]. CNCs can be utilized as building blocks
for renewable nanomaterials and new functional bio-nanomaterials [25]. They can be ob-
tained from cellulosic natural sources such as plants, bacteria, animals (tunicate), and algae,
and from renewable sources and by-products of agricultural and food processing [26–30].
CNC exhibits fascinating properties such as high strength and high modulus, optical
transparency, low coefficient of thermal expansion, biocompatibility, biodegradability, and
renewability and low toxicity, which make it suitable for various applications [31].

It is well known [32] that CNC I has better mechanical properties; on the other hand,
CNC II seems to be more efficient in terms of functionability. Moreover, it shows better
thermal stability, which is an essential requirement for a CNC to be used as additive or filler
in composite materials [33]. This arises also from the stronger hydrogen bond network in
CNC II compared to CNC I. CNC II can be used as it is or chemically functionalized in the
formation of membranes for water pollution, in particular for the adsorption of cationic
metals [34]. CNC II can also be used as an adsorber for charged particles and organic
dyes [35]. Cellulose nanocrystals of polymorph II allow a wide range of applications,
including packaging and synthesis of nanocomposites, drug carriers, food thickeners, and
biomedical products [36,37].

In the Table 1, a list of the most important synthesis methodologies and characteristics
of CNC polymorph II is reported.
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Table 1. Synthesis methodologies and characteristics of CNC polymorph II.

Source Preparation Method Length (nm) CI (%) Yield% Reference

Buckeye cellulose HCl/H2SO4 hydrolysis 500 67 33 [38]
Bacterial cellulose SO3/Py - 69.9 34 [39]

Cellobiose Cellodextrin phosphorylase from the
cellulolytic bacterium 254 - [40]

Lignicellulosic materials NaOH Mercerization - 73 67 [41]
Commercial Cellulose NaOH Mercerization 120 43 - [34]
Oil palm fronds HCl hydrolysis >200 47 - [35]

Jute fibers TEMPO mediated oxidation and
mechanical disgregation 250 56 - [42]

Softwood pulp Mercerization 75 55 - [33]

Cellulose pulp NaOH Mercerization H2SO4
hydrolysis 140 - [43]

To obtain CNC from purified cellulose sources, the acid hydrolysis is the most used
process. In this way, the amorphous regions of the cellulose fibrils are removed to extract
the crystalline domains. The commonly used acids are phosphoric, sulfuric, hydrochloric
acids, and their mixtures [44]. Sulfuric acid gives CNC suspension with good stability in
water, thanks to the presence of negative sulphate surface charges [45].

In this work, an approach of a circular economy that is “zero waste” by the alternative,
green extraction of cellulose nanocrystals of polymorph II from Cynara scolymus L. is
proposed. The removal process of lignin and hemicellulose is optimized to obtain cellulose
pulp in a cheap, simple, and fast way, comparing two different methods. The first procedure
(i), inspired on [30] changing some parameters, is based on the use of a Soxhlet apparatus,
in the presence of different solvents and reagents; the second procedure (ii) is carried out
simply boiling the lignocellulosic materials in an alkaline medium. The latter is a green
method: no solvent harmful to the environment is used; no polluting waste is produced.
As known, a very efficient whitening is obtained by using NaClO (at a low concentration
to avoid strong oxidation of the cellulose). A less aggressive method using a mixture of
NaCl and CH3COOH was preferred. To ensure effective purification of the extracted pulp,
after bleaching, a further treatment with sodium bicarbonate was carried out to remove
the hemicellulose component [46]. In the procedure (ii), a new, easy, and ecofriendly
extraction method is proposed, experimenting on a single bleaching/purification step with
sodium carbonate.

The extracted CNCs have been fully characterized: the CNC sols stability was evalu-
ated by ELS measurements; TEM was employed to investigate the morphology and size of
nanofibers; the complex intra- and intermolecular hydrogen bonding system and charac-
teristics of cellulose I and II were explored by FTIR spectroscopy; structural details of the
cellulose nanofibers (polymorphs identification, preferred orientation and amorphous frac-
tion, and crystallinity index) were obtained by an X-ray powders diffraction investigation;
diffraction data were analyzed by profile fitting procedures to determine the crystalline size
of the extracted cellulose fibers; thermogravimetric analysis was carried out to assess the
thermal stability. The CNCs obtained by both procedures were compared to cotton-based
CNC (defined as CNC-CF) and mercerized CNC (CNC-MF).

2. Materials and Methods
2.1. Materials

Cynara scolymus L. was acquired from a local market. Cotton linter pulp was pur-
chased from Parchin Chemical Industries Co., Tehran, Iran. Sodium chloride (99.9%,
Merk, Darmstad, Germany), sodium hydroxide (Carlo Erba, Emmendingen, Germany),
sodium bicarbonate (Carlo Erba, Emmendingen, Germany), glacial acetic acid (100%,
Sigma-Aldrich, Darmstad, Germany), and ethanol (96%, Sigma-Aldrich, Darmstad, Ger-
many) were used for separation of cellulose from Cynara stems and bracts. Sulfuric acid
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(95–97%, Merk, Darmstad, Germany), hydrochloric acid (37%, Fluka, Darmstad, Germany),
and phosphoric acid (85–90%, Fluka, Darmstad, Germany) were utilized for hydrolysis.
Chemical reagents and solvents were used as received without further purification.

2.2. Cellulose Isolation Procedures

Cynara scolymus L. consists of cellulose (35%), hemicellulose (16%), lignin (17%), ashes
(8%), and other compounds (polyphenols, fatty acids, pigments, and various impurities)
(24%) [30].

The extraction of cellulose fibers requires pre-treatment steps, including alkaline
treatments and bleaching. First, the bracts and stems of Cynara were washed in lukewarm
tap water, dried in a ventilated oven at 40 ◦C for 24 h, and finely chopped. At this stage,
two different procedures have been followed to eliminate non-cellulosic components:

Procedure (i): dried, small Cynara pieces were extracted with a solution of toluene/
ethanol (2:1, v/v) in a Soxhlet apparatus for 6 h; the solid residue was dried in a vacuum
pump, then extracted in ethanol for 2 h to eliminate the residual toluene, and again dried
under vacuum. The use of mixtures of polar and non-polar solvents allows to remove both
soluble and insoluble fractions (mainly waxes and fatty acids). The solid residue was then
delignified by a 2.5 M NaOH solution (using solid to solution ratio of 1/8 (w/v) at 95 ◦C
for 2 h). The pulp bleaching was performed by using sodium chloride and acetic acid, in a
molar ratio of 4/1. The dried pulp was dispersed in distilled water and heated to 80 ◦C,
then, at regular intervals of 30 min, an aliquote of a bleaching agent (about 5/1 with the
pulp) was added. The procedure was repeated 6 times. The resulting pulp was recovered,
repeatedly washed, and dried in an oven at 40 ◦C for 24 h. To ensure effective removal of
hemicellulose, the holocellulose pulp was purified by dispersing the residue in a sodium
bicarbonate solution (1 M) at 80 ◦C for 3 h. Finally, the solid residue was separated by
centrifugation, washed, filtered, and dried. The final product was called Cel-S.

Procedure (ii): dried, small Cynara pieces were dispersed in distilled water at 80 ◦C
for 2 h. The residue was dried at 40 ◦C for 24 h. The cycle was repeated two times. The
pulp delignification was carried out in a 5 M NaOH solution (using solid to solution
ratio of 1/8 (w/v) at 80 ◦C for 2 h) and then washed in distilled water and dried for 24 h
at 40 ◦C. Sodium carbonate, a dry pulp/Na2CO3 ratio of 1/10 (w/w), was used both to
leach from hemicelluloses and to bleach solid pulp. Finally, the dispersion was heated to
80 ◦C and vigorously stirred for about 4 h, until the solid became white. The dispersion
was centrifuged, and cellulose fibers were washed and dried. The final product was
named Cel-NS.

2.3. Cellulose Nanocrystals Preparation

The cellulose pulp samples obtained by the procedures described above were sub-
jected to sulfuric acid (40% w/v) hydrolysis to separate the nanocrystalline phase. An
acid/cellulose ratio of 8.75 (w/w) was chosen. The hydrolysis reaction was carried out at
45 ◦C for 30 min [47], then quenched with iced water. The obtained suspension was then
centrifuged at 6000 rpm for 10 min to eliminate excess water and acid. The precipitate was
suspended in distilled water and centrifuged until an opalescent suspension was obtained.
The purification of the CNC suspension was carried out using dialysis membrane tubes
(cut-off of 10–12 kDa, Sigma-Aldrich) in ultrapure water, changing water every 24 h, up to a
neutral pH. The cellulose suspension was sonicated for 30 min using a horn ultrasonicator.
The CNCs obtained from Cel-S and Cel-NS were named CNC-S and CNC-NS, respectively.
The procedure scheme was graphicated in Figure 1.

For comparison, CNC suspensions were prepared by hydrolysis with sulfuric acid
(64%) [48] starting from raw cotton fibers (CNC-CF) or mercerized fibers (CNC-MF). The
mercerization was attempted by treatments with an NaOH solution (20%) at 60 ◦C for 2 h.
To remove NaOH, the samples were washed repeatedly until reaching a neutral pH.
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and CNC-NS, respectively.

All the CNC suspensions were cast into glass Petri dishes and dried in an oven at
40 ◦C for 24 h.

The yield (%) of obtained CNCs was calculated according to the following equation:

Yield (%) = m( f )V1m( f )V1/m(i)V2 × 100 (1)

In this equation, mf is the mass of the vacuum-dried sample (g), mi is the initial mass
of dry cellulose sources (g), V1 is the volume of the total CNCs suspension after dialysis
(mL), and V2 is the volume of CNCs suspension which was dried with vacuum (mL).

The obtained yield for CNC-CF, CNC-MF, CNC-S, and CNC-NS was 83%, 32%, 25%,
and 26%, respectively [2,49,50].

2.4. Methods
2.4.1. Electrophoretic Light Scattering (ELS) Measurements

The surface charge (zeta potential) of the CNC particles was determined by elec-
trophoretic light scattering (ELS). A Brookhaven 90 Plus Particles Size analyzer operating
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in the particle range of 0.6 nm–6 µm was used. All sols were diluted in distilled water in a
ratio of 1:10 (v/v), with a final concentration of about 0.20 mg/mL.

2.4.2. TEM Analysis

Transmission electron microscopy (TEM) observations, to investigate the morphology
and size of nanofibers, were carried out with a JEOL 2200FS field emission microscope
operating at 200 kV accelerating voltage, equipped with two High Angle Annular Dark
Field detectors (HAADF) and the Energy Dispersive X-ray Spectrometer (EDX). All the
investigations were performed in the HAADF Scanning TEM (STEM) mode in order to
detect the Z contrast in the images and to obtain compositional maps of the samples by
EDX. The samples for the observations were prepared by dropping a diluted (0.01, w/w%
in water) and sonicated suspension of the CNCs onto 300-mesh holey carbon copper grids.

2.4.3. X-ray Powder Diffraction Analysis (XRPD)

Powder diffraction measurements were carried out to ascertain the polymorphic
variant featuring the nanocrystalline cellulose. Furthermore, the crystal size of the nanos-
tructured phases of cellulose was established with a full profile fitting procedure. The X-ray
diffraction characterization was performed with a Thermo ARL X’TRA X-ray diffractometer
with Si-Li detector, using Cu-Kα radiation at 40 kV and 40 mA. The samples were scanned
in a 2θ range of 5–60◦. The crystallinity index (CI%) of the CNCs was calculated according
to the method proposed by Segal [51]:

CI% = [(I200 − Iam)/I200] × 100 (2)

where I200 is the maximum peak intensity corresponding to the (200) reflection at 2θ ≈ 22◦

for cellulose II and ≈ 23◦ for cellulose Iβ, which represents the crystalline region, while Iam,
which concerns the amorphous portion, is the minimum intensity value at 2θ ≈ 16 ÷ 18◦

between the peaks relative to the (110) and (200) reflections [52].
In order to gain further structural details of the cellulose nanofibers in terms of crystal

size, polymorph identification, preferred orientation, and amorphous fraction, a Rietveld
refinement was carried out on the overall X-ray diffraction pattern. To define the diffraction
peaks shape, a pseudo-Voigt profile function was adopted where the gaussian contribution
(G(θ)) is expressed by:

G(θ) = GUtan2θ + GVtanθ + GW + GP/cos2θ (3)

GU, GV, and GW correspond to the Caglioti parameters describing the instrumental
contribution of the variation in full-width at half maximum (FWHM) as a function of the
diffraction angle (obtained by the fitting of the standard Al2O3). The GP term is used in the
Scherrer equation:

CS (crystal size) = Kλ/π
√

GP (4)

where CS is the average diameter of the crystals, K is a form factor (taken 0.90 in spherical
approximation), and λ is the wavelength of the incident beam. GP is the FWHM correlated
to the integral width for each reflection and dependent from the CS.

2.4.4. FT-IR Spectroscopy

The typical functional groups and the hydrogen bonding system of CNCs were studied
by FTIR spectroscopy. The FTIR spectra, in ATR mode, were obtained using the Thermo-
Nicolet Nexus spectrometer equipped with Thermo Smart Orbit ATR diamond accessory,
in the range 4000–400 cm−1, with a spectral resolution of 4 cm−1. Curve fitting was carried
out by LabSpec 5.78.24 software (Jobin Yvon Horiba, Kyoto, Japan), after background
subtraction by a 2nd degree polynomial. The number of peaks involved were determined
based on the second derivative of FTIR spectra in the range 3300–3700 cm−1 [53].
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2.4.5. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was carried out to assess the thermal stability. TGA
analyses were carried out by means of a Perkin Elmer TGA8000 instrument (mass sam-
ple: 1–3 mg) at a heating rate of 10 ◦C·min−1 in the temperature range 30–550 ◦C. The
measurements were performed at an atmospheric pressure under air atmosphere.

3. Results
3.1. ELS Measurements

The stability of the sols was evaluated by ELS measurements (Table 2). All cellulose
nanocrystals suspensions are negatively charged because of the sulfate groups on the
surface due to the esterification with hydroxyl groups and sulfuric acid. These groups
contribute to the stabilization of the suspensions thanks to electrostatic repulsion [45].
Generally, values of the zeta potential outside the −30 mV/+30 mV range indicate good
sol stability [37]. The results indicate good stability for all the CNCs extracted from
Cynara scolymus L. compared to CNC from cotton linter. In particular, ELS measurements
suggest high sol stability of CNC-NS, in perfect agreement with that of CNC-CF. Probably,
the procedure (i) does not have a high efficacy in terms of lignin removal; therefore, the
acid hydrolysis does not bring the same amount of charge as the procedure (ii) due to the
greater presence of amorphous regions. The CNC-S Zeta potential is therefore comparable
to that of the CNC-MF.

Table 2. Zeta potential of CNC suspensions.

CNC-S CNC-NS CNC-CF CNC-MF

Zeta potential (mV) −33 −45 −51 −32

3.2. TEM

The conventional TEM imaging techniques could not be used to obtain information on
these samples, due to the poor contrast. All the samples have been investigated by means
of the HAADF STEM technique, so-called Z contrast, that allows to enhance the contrast
in the images between regions with different average atomic numbers and/or different
amounts of material. Figure 2 represents the comparison between the samples CNC-CF,
CNC-NS, and CNC-S. CNC-S and CNC-CF are similar. The crystals appear in the form of
rod-like whiskers, as reported in the literature [54]. Their dimensions are comparable: the
average length is about 200 nm, while they are 20 nm or less thick. In comparison, CNC-NS
sample presents tangled crystals, possibly embedded in amorphous material, that could
not be studied individually. The images of CNC-S and CNC- NS appear noisy due to the
need of using a short acquisition time to avoid the fast contamination of the samples under
the beam irradiation.
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3.3. XRPD Analysis

The cellulose polymorph Iβ can be irreversibly converted into the form II by mercer-
ization with an NaOH aqueous solution followed by washing and recrystallization. In
this work CNC-S and CNC-NS were obtained after NaOH treatment of Cynara Scolymus L.
waste and CNC-MF after mercerization of pure cotton fiber cellulose. Accordingly, the
nanocrystals show the cellulose II phase. On the other hand, CNC-CF, obtained by acid hy-
drolysis of pure cotton, exhibits a cellulose Iβ phase. Although both Iβ and II polymorphs
possess the same monoclinic symmetry with the P21 space group, they are characterized by
a different spatial distribution of the polymeric cellulose chains [11,15].

In the two crystal structures, the chains are aligned along the c axis, but, as depicted
in Figure 3, they are characterized by a different packing mediated by intermolecular
hydrogen bonds. The two crystal structures and corresponding atomic positions were
obtained from earlier literature [11,12].
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In the Iβ polymorph, the planar sheets of polysaccharide chains are stacked along the
b axis, whereas the phase II is constituted of a honeycomb-like distribution of the chains.
The detailed structure may be found in literature [11,55]. The unit cell parameters for the
two polymorphic phases calculated for the samples here analyzed are listed in Table 3.

Table 3. Unit cell parameters obtained for the two crystalline phases Iβ and II featuring the investi-
gated CNC suspensions.

Iβ Phase
CNC-CF

II Phase
CNC-MF

II Phase
CNC-S

II Phase
CNC-NS

Symmetry P21 P21 P21 P21
a (Å) 7.826 (6) 8.033 (4) 8.094 (4) 8.090 (3)
b (Å) 8.316 (5) 9.056 (5) 9.041 (5) 9.069 (4)
c (Å) 10.349 (7) 10.157 (6) 10.171 (7) 10.37 *
γ (◦) 95.10 (6) 118.14 (8) 118.14 (9) 118.17 (2)

* the c parameter was not refined, owing to the limited scattering from the polymorph II.

The first two samples analyzed by XRPD were cotton-based CNC-CF and CNC-MF,
used as standard of forms Iβ and II, respectively, to define a structural analysis protocol.
Figure 4 displays the Rietveld refinement based on the crystal structure for the Iβ phase [11]
and featured by the three intense peaks at 2θ–15◦, 16.7◦, and 23◦.

The fitted background, obtained by a polynomial function, is composed by a prominent
bump at 2θ–22◦ which corresponds to the contribution of the amorphous fraction of
cellulose [56].

The Rietveld refinement converges to a value of GP, indicating a crystal size of approx-
imately 16 nm for the Iβ nanocrystalline cellulose. It is worthy of notice that, in the case of
elongated nanocrystals, it is only possible, with classical XRPD experiments, to estimate
the short size of the nanoparticles. The (200) reflection is featured by a prominent intensity
related to the preferred orientation of the nanofibers. By introducing March–Dollase correc-
tion for preferred orientation, an evident improvement of the structural refinement yields
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final agreement factors Rp = 3.5% and Rwp = 4.8%. Such an effect is expected, considering
that the cellulose fiber grows along the c axis and the reflections showing appreciable
intensity belong to the hk0 class.
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Figure 4. Rietveld analysis for the phase Iβ characterizing the CNC-CF. The ticks mark the reflections
of the monoclinic crystal structure, and the red curve indicates the calculated fitting.

The Rietveld refinement for the polymorph II of the cotton-based CNC standard was
performed following the same procedure. The CS approaches 10 nm, indicating a slight
decrease of the crystallites dimension if compared to the Iβ counterpart. Seemingly, the
mercerization process required for the crystallization of the II form determines unfavorable
conditions for the growth of the crystalline domains.

The XRPD patterns collected on the CNC samples displayed in Figure 5 indicate that
the cellulose shows the form II as a single phase. The CNC-NS is constituted by a large
fraction of amorphous cellulose with a minute crystal size (CS) for the nanocrystalline
phase. The lack of an appreciable fraction of nanocrystals prevented the accurate structural
analysis and, in this case, we performed a Le Bail profile fitting to determine only unit cell
constants and the CS parameter as well. Hence, the polymorph II is therefore composed by
minute crystals ranging from 5 to 9 nm.
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Figure 5. (Left): XRD for the mercerized CNC samples showing the typical pattern of the polymorph
II (red-CNC-MF standard, green-CNC-S, Blue-CNC-NS). (Right): Rietveld plot for the structural
refinement of CNC-S.

Interestingly, the Rietveld analysis of the XRPD pattern (see Figure 5) for CNC-S
indicates the presence of the phase II with an average dimension of nanocrystals of 13 nm.
As already stressed for the Iβ form, the determination of the domain extension of the
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mercerized crystals is limited to the ab plane perpendicular to the fiber’s growth direction.
Nevertheless, the crystals do not exhibit a preferred orientation and no correction was
introduced during the Rietveld refinement.

Crystallinity index (CI%) was determined using the conventional Segal method
(Equation (2)) [51]. The CI% for CNC-S and CNC-NS is 75% and 63%, respectively, in
agreement with [57,58]. Although the crystallinity index found for the CNC-NS sample is
the lowest, these results are in agreement with those found for the standard of polymorph
II, in which CNC-MF has a CI% (67%) suggesting that both methods studied gave good
extraction results. The CI% obtained for CNC-CF (89%) is higher because of the use of a
pure cotton, raw cellulose material and a fewer number of extraction steps according to
literature [47,58]. The CI% results are summarized in Table 4.

Table 4. Crystallinity index (CI%) of CNCs calculated with the Segal method.

Sample Crystallinity Index (CI%)

CNC-NS 63
CNC-MF 67
CNC-S 75

CNC-CF 89

3.4. FTIR Spectroscopy

FTIR spectra of CNC samples, isolated from raw and mercerized cotton linter and from
Cynara scolymus L., are shown in Figure 6. All spectra were normalized with respect to the
band associated with the CH stretching vibrations in the 2750–2980 cm−1 range. All CNCs
are dominated by the characteristic bands of the cellulose associated with alcohol groups
vibrations: a strong-broad band due to νO-H in the 3500–3200 cm−1 region and very strong
bands due to νC-O in the 1200–900 cm−1 region. As clearly observable in the CNC-S and
CNC-NS spectra, both the cellulose extraction procedures from Cynara scolymus L. wastes
were effective. The features of lignin components, the νC-O of acetyl and ester groups at
1730 cm−1, the νC = C of the aromatic ring at about 1600–1510 cm−1, and the νC-O of aryl
the groups at 1240 cm−1 [59,60] are absent.
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Figure 6. FTIR spectra of CNC isolated from cotton linter (CNC-CF and CNC-MF) and from
Cynara scolymus L (CNC-NS and CNC-S).

Due to the alkali treatments of cellulose pulp from cotton (CNC-MF) and from Cynara
(CNC-S and CNC-NS), the cellulose polymorph II is obtained. The FTIR spectra show
the characteristic peaks at 3494 cm−1 and 3441 cm−1 due to the stretching vibrations of
OH groups engaged in H-bonds, the band at 1419 cm−1 due to CH2 bending and the



Crystals 2022, 12, 672 11 of 16

band at 892 cm−1, and the characteristic of the polymorph II, assigned to νC-O-C of the β-
glycosidic linkage [15]. The two last bands are found in the polymorph Iβ at 1430 cm−1 and
895 cm−1, respectively [16].The CNC-CF FTIR spectrum, reported for comparison, exhibits
the features of the Iβ structure, with the identifying bands at 3338 cm−1 and 3274 cm−1

associated to intra-molecular hydrogen bonds, and the features at 1430 cm−1 and 710 cm−1

assigned to CH2 bending and rocking vibrations, respectively [47], as well as the band at
550 cm−1 attributed to C6-OH torsion. The main changes between the polymorph I and II,
due to the different inter- and intramolecular bonds, are in the νOH vibration region and in
the 1500–600 cm−1 fingerprint region, where band shifts and absorbance intensity variation
can be noted. In Table 5 are reported the main FTIR bands and their assignments [15,16,61].

Table 5. The assignment of the main FTIR bands of CNC Iβ (CNC-CF) and CNC II (CNC-MF, CNC-S,
CNC-NS) according to references, and the band shift and absorbance intensity variation from cellulose
Iβ and cellulose II.

Wavenumber (cm−1) ∆ν (cm−1)/Absorbance Change Assignment

CNC Iβ CNC II

3338 3494 +156/- νO3H—O5 intramolecular H bonds
3270 3441 +171/- νO2H—O6 intramolecular H bonds
2900 2887 −13/- νCH
2850 νCH
1482 1470 −12/∆ δCH2
1430 1419 −10/∇ δCH (C1)
1366 1373 +7/∇ δC–H
1336 1336 -/∇ δCOH in plane (C2 or C3)
1236 1226 −10/∆ δCOH in plane (C6)
1203 1195 −8/- δCOH in plne
1160 1153 −7/∇ νasCOC (β-glycosidic bond)
1030 1014 −16/∇ νC-OH of C6
984 994 +10/∆ C-O valence vibration of C6
895 892 −3/∆ COC of the ν-glycosidic bond and/or ether group
660 665 −5/- δCOH out of plane
550 τOH of C6

Key to symbols: ν: stretching, δ: bending, τ: torsion, ∆: increase, ∇: decrease, -: equal.

Cellulose II is characterized by a complex intra and inter-molecular hydrogen bonding
system that forms a tightly compact 3D structure. An empirical relationship known as
Hydrogen Bond Intensity (HBI), proposed by Nada et al. [62], allows obtaining information
on the degree of inter- and intramolecular H-bonding. This relationship is based on the
ratio of the absorption bands at 3336 cm−1 and 1336 cm−1 (associated with the crystalline
order). In agreement with several authors [16,63], it is observed that the CNC-CF is
characterized by higher crystallinity and a lower HBI (1.47(3)), compared to the mercerized
CNCs (CNC-MF = 2.39(2); CNC-S = 1.98(2), CNC-NS = 2.18(4). As observed in Goswami
et al. [63], there is an inverse relationship between CI and HBI, according to results reported
in Table 3, where the higher CI% correspond to CNC-CF (89%). The alkali treatment
during the mercerization process, as suggested by Široký et al. [16], causes the breaking of
the intramolecular H-bond that stabilizes the β-glycosidic linkage in crystalline cellulose.
Because of the conversion of the cellulose Iβ to cellulose II, voids and pores within the
fibers and crystalline structure are modified.

Patterns of hydrogen bonding network in the cellulose polymorphs Iβ and II are
reported in Figure 7. Each glucopyranose unit has three free hydroxyl groups that can
be involved in different inter- and intra-molecular hydrogen bonds with neighboring
molecules (of the same or adjacent chain). Hydroxyl groups can act both as proton donor
and as proton acceptor. Inter-molecular hydrogen bonds are nearly orthogonal to the axis
of the cellulose chains, while intra-molecular H-bond are almost parallel.
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Figure 7. Patterns of inter- and intramolecular bonds in cellulose Iβ (left) and II (right). The cyan
and light green dotted lines indicate intra- and intermolecular hydrogen bonds, respectively.

In Iβ cellulose, intermolecular hydrogen bonds mainly engage primary alcohols as
proton donors, whereas intramolecular hydrogen bonds are preferably established by
secondary alcohols. In the polymorph II, the hydroxyl groups are involved in a complex
3D network of H-bonding between the antiparallel and staggered chains. In the vibrational
spectra, the strong and broad-band associated to the OH stretching vibration is the result
of the convolution of several sub-bands, as shown in Figure 8 [64,65].
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to intra- and intermolecular H-bonds, respectively.

3.5. Thermal Analysis

Thermal analysis was carried out to assess the thermal stability and degradation
profiles of the CNC samples. The TG and DTG curves of the CNCs in Figure 9a,b show that
the decomposition of the CNC fibers occurs at different temperatures, denoting the presence
of distinct components. All TGA curves show a small initial deflection, between 60 ◦C and
150 ◦C. The initial weight loss (less than 10%) is similar in all CNCs and can be mainly
attributed to the loss of moisture absorbed by the surface, including chemisorbed water
and/or hydrogen-bound water [66]. In the high-temperature range (>150 ◦C), the thermal
degradation behavior of CNC I and CNC II is quite different. For the first sample, two
pyrolysis processes are observed in the DTG curve between 180–300 ◦C (40% weight loss)
and 300–500 ◦C (20% weight loss), attributed to sulphate groups on the crystal surface and
to the degradation of the network cellulose, respectively [67]. The presence of sulfate ester
groups, replacing the hydroxyl groups on the surface of the nanocrystals, provide a negative
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charge to CNCs which stabilizes the aqueous suspension against flocculation, but they also
compromise the thermal stability of nanocrystals, as also observed by Naduparambath
et al. [68], and as reported by Chieng et al. [69]. This leads to a decrease in the activation
energy due to CNC degradation, making the sample more sensitive to thermal degradation.
The greater quantity of the sulphate groups is confirmed by the ELS analysis (−51 mV).
Furthermore, as observed in the TEM images, the smaller nanocrystal dimensions of
the CNC-CF compared to other CNCs provide a high surface area of the nanocrystals,
which could play an important role in decreasing their thermal stability [68]. In the case
of cellulose II nanocrystals (CNC-S, CNC-NS, and CNC-MF) the degradation process
is shifted to higher temperatures (270–400 ◦C), probably due to the stronger interaction
of the -OH groups, which require more energy to initiate the degradation process. For
all the samples, there was a weight loss ranging from 56% to 68%. The hydroxide ions
penetrate widely inside the crystals during the alkaline treatment, producing a swelling of
the CNC [32]. After the removal of the ions during dialysis, the cellulose chains recrystallize
into cellulose II, which is thermodynamically more stable. Furthermore, for mercerized
CNCs, as also observed by Johar [70], the removal of hemicellulose and lignin improves the
thermal stability of the materials. The latest weight loss above 500 ◦C is due to the rapid
depolymerization of carbon residues.

Crystals 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

  

Figure 9. TGA (a) and DTG (b) curves for CNC’s powders. 

4. Conclusions 
A novel eco-friendly extraction of cellulose from Cynara scolymus L. waste has been 

successfully carried out to obtain mercerized cellulose nanocrystals of polymorph II. 
The easy procedure developed allows the obtaining of the raw material purification 

by simple boiling using water as a solvent as an alternative to an ethanol/toluene mixture 
of the typical Soxhlet method. With both tested procedures it is possible to obtain a 
suspension of high-quality cellulose nanocrystals after delignification in an alkaline 
medium, followed by acid hydrolysis, centrifugation, and dialysis. All CNCs show rod-
like-shaped crystals about 200 nm long and about 20 nm thick. CNC-S and CNC-CF are 
comparable, while the CNC-NS sample features tangled crystals embedded in amorphous 
material, like the lower crystallinity index (63%) suggests. All sols have good stability in 
water, but the new extraction method gives the best results (ζ −45 mV) comparable to 
those of CNC-CF. The cellulose II nanocrystals (CNC-S, CNC-NS, and CNC-MF) show 
high thermal stability; the degradation process is shifted to higher temperatures than CNC 
I. 

With a view to a zero-waste circular economy, the extraction of cellulose from Cynara 
scolymus waste proposed here can be an effective alternative to recycling waste from the 
agri-food industry. Furthermore, the suggested method of cellulose extraction, to obtain 
CNC II, could be developed to an industrial level, avoiding the use of hazardous and 
environmentally harmful solvents. 

Author Contributions: Conceptualization, C.G. and L.B.; methodology, L.B., M.P., L.R. and L.L.; 
validation, L.B. and P.P.L.; investigation, M.P.; data curation, P.P.L.; writing—original draft 
preparation, L.B., L.R., L.L. and M.P.; writing—review and editing, P.P.L. and C.G.; supervision, 
C.G. and P.P.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: Giovanni Predieri is gratefully acknowledged for useful discussion and 
Francesca Pintabona for experimental work during her degree thesis. Cartire di Guarcino S.P.A. is 
gratefully acknowledged for its collaboration. This work has benefited from the equipment and 
framework of the COMP-HUB Initiative, funded by the ‘Departments of Excellence’ program of the 
program of the Ministero dell’Istruzione, della Università e della Ricerca Italian Ministry for 
Education, University and Research (MIIUR-Italy, 2018–2022). 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work reported in this paper. 

Figure 9. TGA (a) and DTG (b) curves for CNC’s powders.

4. Conclusions

A novel eco-friendly extraction of cellulose from Cynara scolymus L. waste has been
successfully carried out to obtain mercerized cellulose nanocrystals of polymorph II.

The easy procedure developed allows the obtaining of the raw material purification by
simple boiling using water as a solvent as an alternative to an ethanol/toluene mixture of
the typical Soxhlet method. With both tested procedures it is possible to obtain a suspension
of high-quality cellulose nanocrystals after delignification in an alkaline medium, followed
by acid hydrolysis, centrifugation, and dialysis. All CNCs show rod-like-shaped crystals
about 200 nm long and about 20 nm thick. CNC-S and CNC-CF are comparable, while
the CNC-NS sample features tangled crystals embedded in amorphous material, like the
lower crystallinity index (63%) suggests. All sols have good stability in water, but the new
extraction method gives the best results (ζ −45 mV) comparable to those of CNC-CF. The
cellulose II nanocrystals (CNC-S, CNC-NS, and CNC-MF) show high thermal stability; the
degradation process is shifted to higher temperatures than CNC I.

With a view to a zero-waste circular economy, the extraction of cellulose from
Cynara scolymus waste proposed here can be an effective alternative to recycling waste
from the agri-food industry. Furthermore, the suggested method of cellulose extraction, to
obtain CNC II, could be developed to an industrial level, avoiding the use of hazardous
and environmentally harmful solvents.
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