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Abstract: Bulk metallic glasses (BMGs) have been extremely popular in recent decades, owing to
their superior properties. However, how to improve the surface functions and durability of BMGs
has always been a key engineering issue. In this work, a facile laser-based surface structuring
technique was developed for modulation and control of the surface functionalities of Zr-based BMG.
For this technique, a laser beam was first irradiated on the surface to create periodic surface structure,
followed by heat treatment to control surface chemistry. Through experimental analyses, it was clearly
shown that laser surface structuring turned the BMG surface superhydrophilic, and subsequent
heat treatment turned the surface superhydrophobic. We confirmed that the combination of laser-
induced periodic surface structure and modified surface chemistry contributed to the wettability
transition. The laser-heat-treated surface also exhibited improved antifriction performance with the
help of lubrication medium. This work provides a feasible method for surface modification of BMG,
suggesting applications in the areas of medicine, biology and microelectronics.

Keywords: laser surface structuring; metallic glass; surface morphology; surface chemistry; wettability;
tribological performance

1. Introduction

In contrast to traditional crystalline materials, bulk metallic glasses (BMGs) are a class
of metallic materials without long-range translational order [1,2]. This unique material
structure endows BMGs with superior mechanical and physical properties, including ul-
trahigh strength and hardness [3,4], good corrosion and wear resistance [5], etc. These
properties make BMGs suitable for a series of key applications in the areas of mechanical
engineering, materials engineering, microelectronics and biomedical devices [6,7]. Con-
sequently, development of forming and processing techniques for BMGs has become a
popular research topic, triggering the emergence of various techniques, including copper
mold casting [8], nanomolding [9–11], magnetron sputtering [12,13] and microarc oxida-
tion [14]. However, with increasing demand for fabrication of complex BMG components,
the abovementioned techniques present significant limitations. For example, the processing
efficiency of the copper mold casting process is relatively satisfactory, although it also
imposes limitations on the forming size of BMG components. In addition, although the
forming accuracy of nanomolding techniques is very high, they also limit the forming size
of BMG components, in addition to high requirements for powder constituents. Other tech-
niques, such as conventional machining [15] and microelectro-discharge machining [16],
tend to crystallize the BMG materials during the machining process.

Therefore, development of high-efficiency processing techniques for BMGs is of great
significance. In recent years, laser surface texturing has been demonstrated as an efficient
method for processing metallic materials [17–25] due to several key advantages, such
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as high precision, high process flexibility, ease of automation and low environmental
pollution. When processing BMGs using pulsed lasers, the heating and cooling cycles
can be well controlled; thus, BMGs can be manufactured without the tendency of being
crystallized. Some research progress has been achieved in the area of pulsed laser texturing
for BMGs. Huang et al. [26] fabricated hierarchical micro/nanostructures on Zr-based BMG
using nanosecond pulsed laser texturing. The experimental results demonstrated that the
effective surface area on BMG was increased via laser texturing, and the material retained
an amorphous state and exhibited uniformly distributed surface chemistry. Jiao et al. [27]
fabricated periodic surface structures, including microdimples and microgrooves on Zr-
based BMG using nanosecond-based laser texturing. The surface characterization results
indicated that the wettability [28] and biocompatibility [29] of BMG is strongly correlated
with its laser-induced surface structure and chemistry. Du et al. [30] created four different
types of laser-induced periodic surface structures on Zr-based BMG using a femtosecond
laser. The experimental results demonstrated that laser-induced surface structures can
effectively reduce the adhesion of bacteria on BMG substrates, improving the antibacterial
properties of BMG. This indicates that pulsed laser texturing has become an important
method for fabrication and manufacturing of BMGs, particularly in the area of surface
modification and functionalization.

Owing to the high hardness of BMGs, they have been considered promising candidates
for high-wear applications. However, to realize industrial applications, researchers are
still exploring high-efficiency and low-cost methods to enhance the tribological properties
of BMG. Sawyer et al. [31] utilized ceramic conversion treatment to convert the surface
of BMG into ceramic layers, which significantly improved the tribological properties of
the BMG. Wu et al. [32] investigated the effect of oxygen on the tribological behavior of
a Zr-based BMG using pin-on-disk wear test. The experimental results indicated that
the wear rate of BMG was substantially increased with the increase in oxygen content,
demonstrating the importance of environmental condition for determining the tribological
performance of BMG. Wu et al. [33,34] also prepared Ti-based metallic glass composite
coatings by laser cladding and investigated the tribological behavior of both the substrate
and coatings. The experimental results indicated that with the addition of Sn, both the
hardness and wear resistance of the laser-cladded coatings can be significantly improved.
This reveals that with a proper surface treatment technique, the tribological performance of
BMG can be considerably improved.

Nevertheless, although laser texturing has been demonstrated as a high-efficiency
method for processing BMGs, some issues still remain. On the one hand, although re-
searchers have modified the surface functionalities of BMGs by laser texturing, control and
tuning of the related functionalities, such as how to realize switchable control of surface
wettability from superhydrophilicity to superhydrophobicity, remains a challenge. On
the other hand, little research progress has been achieved with respect to improving the
tribological performance of BMGs using laser-based methods, and further exploration is
urgently needed in this area.

In this work, a laser-based surface structuring technique was developed to function-
alize the BMG surface. The technique mainly consists of two steps: first, a nanosecond
pulsed laser was utilized to induce the generation of a periodic surface structure on the
BMG surface; then, heat treatment was employed on laser-structured BMG surface to
modify the surface chemistry. Furthermore, the surface structure, surface chemistry, surface
wettability and tribological performance of the BMG surfaces with different treatment steps
were characterized. The experimental results indicated that with the combined effects of
laser surface structuring and heat treatment, a periodic surface structure was generated
on the BMG surface, and the surface wettability was converted from superhydrophilicity
to superhydrophobicity. In the meantime, with the help of lubrication medium, the laser-
heat-treated superhydrophobic BMG surface exhibited significantly improved tribological
performance. The developed technique provides a reliable method for processing BMG,
with strong potential for applications in diverse areas.
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2. Materials and Methods
2.1. Materials

Commercially available Zr-based bulk metallic glass (BMG) Vitreloy 1 (purchased from
METALLAB, Changzhou, China) was used in this work. The samples were first machined
into thin sheets with dimensions of 30 mm × 30 mm × 2 mm and then mechanically
grinded. Before the laser surface structuring experiments, the samples were ultrasonically
cleaned successively with acetone, ethanol and deionized water.

2.2. Laser Surface Structuring

In this work, laser surface structuring experiments were conducted with a laser mark-
ing machine (TH-UV200A, Tianhong Laser, Suzhou, China) equipped with a 355 nm
UV laser source (AWAVE 355-15W-30K, Advanced Optowave Corporation, Ronkonkoma,
NY, USA). The laser beam is emitted by the laser source and guided by reflective mirrors.
The attenuator and beam expander control the intensity and laser beam diameter, respec-
tively. The focal spot diameter provided by the focusing lens of the system was ~35 µm
in this work. A unidirectional line pattern was used for surface fabrication, as shown in
Figure 1. The laser processing parameters can be found in Table 1, and schematics of the
laser surface structuring and heat treatment experiments are shown in Figure 2.
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Figure 1. Pattern design used for laser surface structuring of BMG.

Table 1. Processing parameters for the laser-based surface structuring experiments.

Name of Parameter Value

Average power (W) 15.0
Repetition rate (kHz) 30

Pulse width (ns) 20
Scanning speed (mm/s) 20, 40, 60, 80

Step size (µm) 150
Power intensity (GW/cm2) 2.60

Pulse energy (mJ) 0.5
Heat treatment temperature (◦C) 150

Maximum heat treatment duration (hours) 2

Immediately after laser surface structuring, the laser-structured BMG surfaces became
superhydrophilic. With low-temperature annealing treatment in a conventional furnace, the
laser structured BMG surfaces achieved wettability transition. During the heat treatment,
the annealing temperature was set to 150 ◦C, and the treatment duration was set to a
maximum of 2 h.
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Figure 2. Schematic of the laser-based surface structuring experiments of BMG.

2.3. Surface Characterizations

The surface morphology was analyzed using a field emission scanning electron micro-
scope (FESEM, FEI Sirion, Hillsboro, OR, USA), and the surface chemistry was analyzed
using energy-dispersive X-ray spectroscopy (EDX, FEI Sirion, Hillsboro, OR, USA) and
X-ray photoelectron spectroscopy (XPS, PREVAC, Rogów, Poland). For the surface wetta-
bility, water contact angle (WCA) measurements were performed using a contact angle
goniometer (SDC-200, Sindin Precision Instrument Co., Ltd., Dongguan, China). For each
measurement, a water droplet with a volume of ~4 µL was dropped onto the sample
surface. A CMOS camera was used to capture an optical image of the water droplet, and
image analysis software was employed for WCA value analysis. For experimental accuracy,
four WCA measurements were performed for each sample, and the average value was
reported with the standard deviation.

Wear resistance was evaluated using a ball-on-disc wear tester (WTM-2E, Zhongkekai-
hua Technology Development Co., Ltd., Lanzhou, China). The pin was a Si3N4 ceramic
ball with a 4 mm diameter, and the sample surface was used as the disk. The wear test was
conducted under a load of 4 N and a rotational speed of 150 rpm, and the test duration was
set to 10 min. Before the test, the surface was pre-rubbed for 2 min to ensure full contact of
the friction pairs.

3. Results
3.1. Surface Morphology

The SEM micrographs of the untreated BMG surface and laser-structured BMG sur-
faces at different scanning speeds can be found in Figure 3. As seen in Figure 3a, the
untreated BMG surface shows high flatness and low surface roughness, and only some
horizontal grinding marks are visible on the surface. However, after laser surface structur-
ing, the laser-structured surfaces exhibit highly distinct surface morphology, as shown in
Figure 3b–e. With relatively low scanning speed (20 mm/s, Figure 3b), the laser-structured
surface exhibits a periodically arrayed linear bump structure at the micron level with
a step size of 150 µm. Between microbump paths, some tiny submicron and nanoscale
particles can be observed, which could be attributed to the strong ablation and evaporation
of the substrate material during laser–material interaction, resulting in the redeposition
of these particles on the surface. As the scanning speed increases (40 mm/s, Figure 3c),
the microbump structure is still present on the surface, whereas the structural uniformity
slightly decreases. When the scanning speed is further increased to 60 mm/s (Figure 3d)
and 80 mm/s (Figure 3e), the surface morphology of the laser-structured surfaces exhibits
distinct transformation from microbump structure to microconcave structure. In the mean-
time, it is clearly observed that some micro-/nanoscale particles are distributed on the
laser-scanned path, regardless changes in scanning speed. The experimental results indicate
that the surface structure can be effectively modulated by controlling the laser processing
parameters. Figure 4 shows the surface morphology of the laser-structured BMG surfaces at
different scanning speeds before and after heat treatment. It can be clearly observed that the
surface morphology of different surfaces remains almost unchanged after heat treatment,
indicating that heat treatment does not affect the surface morphology. For the variation
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of surface structures subject to different laser processing conditions, Huang et al. [35] pro-
cessed Zr-based metallic glass with varied laser processing parameters using a 1064 nm
nanosecond laser and observed the transformation from microconvex structure to micro-
concave structure on the laser-textured surface. The authors proposed that the structural
transformation could be ascribed to the combined effects of recoil pressure and Marangoni
flow during laser–material interaction. By properly controlling the laser energy density
and pulse number (controlled by scanning speed), the conversion between microconvex
structure and microconcave structure can be effectively realized. Therefore, as the scan-
ning speed changes from 20 mm/s to 80 mm/s in this work, the number of laser pulses
per irradiation points constantly decreases. When the pulse number is relatively high,
surface tension dominates the molten pool formed during the laser ablation of the BMG
substrate. Due to the increase in surface temperature, the surface tension coefficient might
change from negative to positive after reaching a critical temperature value, resulting in
a significant change in the flow behavior of molten material. Accordingly, the molten
material would exhibit radially inward flow due to the highest temperature in the center of
the molten pool, resulting in the formation of a microconvex structure. On the contrary,
when the pulse number is relatively low, the molten material would flow radially outward
with recoil pressure as the dominating force, leading to the formation of a microconcave
structure [35]. In addition, we utilized a UV nanosecond laser with a wavelength of 355 nm
for fabrication of a periodic surface structure on the BMG. Besides precisely controlling the
type of surface structure, the use of UV laser also demonstrates the effectiveness of reducing
the thermal effect and minimizing the heat-affected zone during laser material processing.
More importantly, crystallization of the BMG substrate can be effectively avoided [26,36],
which lays a solid foundation for surface functionalization of BMGs.
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Figure 3. SEM micrographs of untreated BMG surface and laser-structured BMG surfaces at different
scanning speeds: (a) untreated surface; (b) 20 mm/s; (c) 40 mm/s; (d) 60 mm/s; (e) 80 mm/s.

3.2. Surface Chemistry

As discussed by Fasasi et al. [37], the surface chemistry of a metallic substrate can
be substantially modified during laser texturing due to material vaporization and laser-
induced oxidation. To investigate the evolution of surface chemistry and elemental changes
on different BMG surfaces, the XPS elemental analysis technique was employed. Figure 5
and Table 2 show the XPS full spectra and detailed atomic elemental compositions for
the untreated BMG surface, the laser-structured BMG surface and the laser-heat-treated
BMG surface. As shown in Figure 5a, elements including C, O, Be, Zr, Ti, Ni and Cu
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can be detected on the untreated BMG surface. Be, Zr, Ti, Ni and Cu come from the
substrate material, whereas O and C originate from the oxidation and slight contamination
on the surface layer of the substrate material, respectively. However, after laser surface
structuring, the surface chemistry on the laser structured BMG surface exhibits clear
changes compared with that of the untreated BMG surface, as shown in Figure 5b. Both of
the elements that come from the substrate and the C and O show clear variation of their
atomic elemental compositions.
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Figure 4. SEM micrographs of laser-structured BMG surfaces at different scanning speeds before
and after heat treatment: (a) 20 mm/s before heat treatment; (b) 40 mm/s before heat treatment;
(c) 60 mm/s before heat treatment; (d) 80 mm/s before heat treatment; (e) 20 mm/s after heat
treatment; (f) 40 mm/s after heat treatment; (g) 60 mm/s after heat treatment; (h) 80 mm/s after
heat treatment.
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heat-treated BMG surface.

Table 2. Detailed atomic elemental compositions for the XPS full spectra as shown in Figure 5
(a) untreated BMG surface; (b) laser-structured BMG surface; (c) laser-heat-treated BMG surface.

Element (Atomic %) Untreated Laser-Structured Laser-Heat-Treated

C 1s 62.35 30.85 37.80
O 1s 26.88 47.85 41.51
Be 1s 8.17 8.58 8.16
Zr 3d 2.08 3.91 4.16
Ti 2p 0.18 2.72 1.18
Ni 2p 0.23 1.43 1.46
Cu 2p 0.11 4.66 3.96
Si 2p - - 1.77
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As seen in Table 2, the atomic elemental composition of C is decreased from 62.35% to
30.85%, whereas the atomic elemental composition of O is increased from 26.88% to 47.85%
for the laser-structured BMG surface. This indicates that laser surface structuring not only
induced periodic surface structures on the BMG surface but also resulted in strong surface
oxidation, leading to the generation of a significant amount of polar functional groups,
including −OH and −COOH [38]. For the laser-heat-treated BMG surface, its surface
chemistry differs from that of the laser-structured surface in the following two aspects
(Figure 5c): (1) The atomic elemental composition of C was increased after heat treatment.
(2) Si with an atomic percentage of 1.77% was detected on the heat-treated BMG surface.
The increase in the elemental composition of C can be mainly attributed to the deposition
of airborne non-polar hydrophobic functional groups (−CH2-, −CH3 and C=C) on the
surface, which was accelerated by the heat treatment process. The appearance of Si can be
attributed to the silicone seal on the furnace used in this work. During heat treatment at a
temperature of 150 ◦C, the silicon atoms are vaporized into air and then deposited onto the
BMG surface, forming a silicon-based thin film [39,40]. This helps to clearly elucidate the
change in elemental composition of C and Si on the laser-heat-treated BMG surface.

3.3. Surface Wettability

Surface wettability transition of the BMG surface after each treatment step was exper-
imentally characterized by WCA measurements; the measurement results can be found
in Figure 6. The surface wettability can be categorized into four types and represented by
the corresponding ranges of WCA values: hydrophobic (90◦ < WCA < 150◦), hydrophilic
(10◦ < WCA < 90◦), superhydrophobic (WCA > 150◦) and superhydrophilic (WCA < 10◦).
The WCA on the untreated BMG surface is 86.4 ± 1.2◦ (Figure 6a), indicating that the
untreated BMG surface is hydrophilic. Due to the metastable state of BMG, the atomic
binding on the surface is quite weak; therefore, the atoms in BMG appear to be more active
than those in crystals with similar chemical compositions. As a result, the surface energy
of BMG is relatively high, leading to hydrophilicity [37]. After laser surface structuring,
the WCA is reduced to 0◦, as shown in Figure 6b. This is mainly attributed to the fact
that laser surface structuring notably increases the surface roughness and converts the
droplet from unstable Cassie state to saturated Wenzel state on the laser-induced periodic
surface structure immediately upon laser structuring, which renders the surface super-
hydrophilic [38]. The generation of a large amount of polar functional groups, including
−OH and −COOH, further contributes to the increase in surface superhydrophilicity. Af-
ter a 1 h heat treatment, the WCA of the laser heat-treated BMG surface is increased to
147.2 ± 1.7◦ (Figure 6c), demonstrating high hydrophobicity. Finally, with a heat treatment
of 2 h, the laser-heat-treated BMG surface exhibits distinct superhydrophobicity with a
WCA of 153.8 ± 2.2◦ (Figure 6d). The experimental results indicate that with sufficient heat
treatment time, the surface wettability of BMG can be effectively converted from superhy-
drophilicity to superhydrophobicity. As previously discussed, heat treatment distinctly
changes the surface chemistry with deposition of airborne non-polar functional groups and
silicon-based thin film onto the surface, which are both known to be hydrophobic [39,40].
The combination of these two factors contributes to the realization of superhydrophobicity
on the laser-heat-treated BMG surface.

3.4. Evaluation of Tribological Performance

The tribological performance of the untreated surface and the laser-heat-treated su-
perhydrophobic BMG surface under dry sliding and water lubrication conditions was
investigated by the ball-on-disc wear test, and the measurement results for average coef-
ficient of friction (COF) can be found in Figure 7 and Table 3. As shown in Figure 7a,b,
the COF curve of the untreated BMG surface is much more unstable than that of the
laser-heat-treated superhydrophobic surface. The average COF for the laser-heat-treated
superhydrophobic BMG surface is reduced by ~45% compared with that of the untreated
surface under dry sliding conditions. This is mainly attributed to the reduction in surface
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area due to laser ablation, which alters the actual contact area between the friction ball
and the laser-heat-treated superhydrophobic BMG surface, lowering the average COF. In
contrast, the average COFs for both surfaces exhibit more explicit distinction under water
lubrication conditions. With scanning speeds of 20 mm/s and 60 mm/s, the average COFs
for the laser-heat-treated superhydrophobic surfaces are 0.246 and 0.233, respectively, with
reduction percentages of 51.2% and 54.0% compared with those of the untreated surface
(COF = 0.506) using water as the lubrication medium. This indicates that the average COF
of the laser-heat-treated superhydrophobic surface can be significantly reduced by the
combined effects of lubrication medium, surface wettability and surface structure, resulting
in enhancement of the antifriction performance for BMG.
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Figure 8 shows the wear morphology of the untreated surface and the laser-heat-
treated superhydrophobic BMG surface under different lubrication conditions. As shown
in Figure 8a, the wear on the untreated surface is severe under dry sliding conditions,
mainly consisting of abrasive wear and a certain amount of adhesion wear. Under water
lubrication (Figure 8b), abrasive wear is reduced, and the main wear mode is transformed
to adhesion wear. However, distinct wear track can still be observed with high width
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and depth. For the laser-heat-treated superhydrophobic BMG surface, slight abrasive
wear and adhesion wear can still be observed under dry sliding conditions (Figure 8c),
and the antiwear performance is improved relative to the untreated surface. With water
lubrication (Figure 8d), a minimum degree of wear can be observed on the laser-heat-treated
superhydrophobic BMG surface. On the one hand, abrasive wear totally disappears, and
only very slight adhesion wear can be observed. On the other hand, compared with the
laser-heat-treated superhydrophobic BMG surface under dry sliding conditions, the width
and depth of the wear track is significantly reduced.

Table 3. Average COF for different types of BMG surfaces under dry sliding and water lubrica-
tion conditions.

Surface Type Lubrication Condition Average COF

Untreated Dry 0.609
Untreated Water 0.456

Superhydrophobic + 20 mm/s Dry 0.330
Superhydrophobic + 20 mm/s Water 0.246
Superhydrophobic + 60 mm/s Dry 0.331
Superhydrophobic + 60 mm/s Water 0.233
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3.5. Processing Mechanism Analysis

In order to understand the experimental observations for surface wettability character-
ization and wear testing, processing mechanism analyses were conducted for laser-induced
surface wettability transition and varied tribological performance under different lubrica-
tion conditions. For the surface wettability evolution after different treatment steps, laser
surface structuring and subsequent heat treatment should be considered equally impor-
tant. First, the laser beam interacts with the substrate material, resulting in local heating,
melting and vaporization, which induces the generation of a periodic surface structure
with either a microconvex structure or a microconcave structure. Then, laser surface struc-
turing alters surface chemistry simultaneously by oxidizing the surface and generating
a large amount of hydrophilic functional groups. Finally, heat treatment accelerates the
deposition of airborne hydrophobic polar functional groups and induces the generation of
hydrophobic silicon-based thin film, resulting in the conversion from superhydrophilicity
to superhydrophobicity. Therefore, by properly modulating the surface structure and
surface chemistry, the surface wettability evolution can be well controlled. In addition, the
underlying wear mechanism for different lubrication conditions is schematically illustrated
in Figure 9 and analyzed as follows: (1) Lubrication condition significantly affects the
friction characteristics of BMG and can potentially change the wear mode on the surface.
This can be mainly attributed the change in contact mode between the friction ball and
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surface under different lubrication conditions. Water lubrication can wash away the parti-
cles generated during the wear test [41], drastically reducing the extent of abrasive wear.
(2) Laser surface structuring can reduce the actual area on the BMG surface by material
ablation and vaporization (Figure 9a), which changes the contact area between the friction
ball and BMG surface and enhance antifriction performance. (3) With water lubrication,
surface wettability considerably affects the tribological performance of the BMG surface.
Due to superhydrophobicity, the water film on the laser-heat-treated superhydrophobic
BMG surface is relatively thicker during the wear test. It is neither taken away from the
area where friction occurs nor squeezed into the grooves by the friction ball. As a result,
the lubrication medium can provide persistent protection for the surface layer of the BMG
and reduce the depth of wear track and the degree of wear, as shown in Figure 9b. (4) BMG
has intrinsic high hardness and good wear resistance [5]. With the combined effects of
modified surface structure/surface wettability and proper lubrication conditions, the wear
resistance of the BMG surface can be further enhanced. This could provide new insights
for fabrication of highly wear-resistant and reliable BMG structural components.
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4. Conclusions

In this work, a facile laser-based surface structuring technique was developed to
modulate the surface properties, including surface structure, surface chemistry and surface
wettability, as well as the tribological performance of Zr-based BMG. The developed two-
step laser-based technique was first used to fabricate periodic surface structures, and then
heat treatment was employed to alter the surface chemistry/surface energy. The surface
wettability of the BMG surface changes from superhydrophilicity immediately upon laser
texturing to superhydrophobicity after heat treatment, which can be attributed the com-
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bined effects of laser-induced surface structure and surface chemistry. The coefficient of
friction was significantly reduced for the laser-heat-treated superhydrophobic surface when
water was applied as the lubrication medium, demonstrating the improvement of antifric-
tion performance compared with the untreated surface. This work can be utilized to more
efficiently modify the surface properties of BMG, benefiting applications in diverse areas.
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