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Abstract: In this study, an artificial neural network approach and a regression model are adopted
to predict the mechanical properties of heat-treated Mg-Zn-RE-Zr-Ca-Sr magnesium alloys. The
dataset for artificial neural network (ANN) modeling is generated by investigating the microhardness
of heat-treated Mg-Zn-RE-Zr-Ca-Sr alloys using Vickers hardness tests. A back-propagation (BP)
neural network is established using experimental data that enable the prediction of mechanical
properties as a function of the composition and heat treatment process. The input variables for
the BP network model are Ca and Sr contents, ageing temperature and ageing time. The output
variable corresponds to the microhardness. The optimal BP network model is acquired by optimizing
the number of the hidden layer nodes. The results indicate that a reliable correlation coefficient is
above 0.95 for architecture (4-8-1), which has a high level of accuracy for prediction. In addition, a
second-order polynomial regression model is developed based on the least squares method. The
results of determination coefficients and Fisher’s criterion indicate that the regression model is
capable of modeling mechanical properties as a function of composition and the ageing process.
Furthermore, supplemental experiments are conducted to check the accuracy of the BP model and
the regression model, suggesting that the model predictions are well in accordance with experimental
results. Therefore, both the BP network and regression models have high accuracy in modeling and
predicting mechanical properties of heat-treated Mg-Zn-RE-Zr-Ca-Sr alloys.

Keywords: artificial neural network; regression analysis; mechanical properties; ageing treatment;
Mg-Zn-RE-Zr-Ca-Sr alloys

1. Introduction

With the emergence of environmental and energy issues, light-weight magnesium
alloys have attracted more and more attention. Due to their high specific strength and
stiffness, superb castability and outstanding recyclability, magnesium (Mg) alloys have
been widely used in aerospace, automotive and electronic industries [1–3]. The mechanical
properties of Mg alloys are affected by the concentration of alloying elements. In addition,
the properties of Mg alloys are further improved by employing relevant heat treatment or
other engineering processes [4]. Existing resources lack the ability to predict the proper-
ties from a given chemical composition and processing parameters. Prediction ability is
essential in optimizing or tailoring Mg alloys and for fully utilizing an alloy’s potential.

The ZE41 magnesium alloy is one of the most popular of the Mg-Zn-RE (rare earth)-Zr
based alloys and has been widely used for aircraft gearboxes and generator housings on
military helicopters [5–7]. Over the past few decades, many researchers have endeavored
to study the strengthening mechanism, heat treatment technology and microstructure
evolution of Mg-Zn-RE-Zr alloys [8–10]. The relationship between process parameters
and mechanical properties for Mg-Zn-RE-Zr alloys has only been studied empirically. It
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is difficult to use a single mathematical model to describe the relationship between heat
treatment parameters and mechanical properties of Mg-Zn-RE-Zr alloys.

In recent years, artificial neural networks (ANNs) have become powerful and flexible
modeling tools that can lead to significant improvements in materials science for modeling
complex problems and exploring the correlations between processes and properties [11–14].
They are particularly suitable to treat phenomena that have multiple inputs and have
complex nonlinear relationships between input and output values. Yang employed the
ANN model with a back-propagation (BP) algorithm to explore the correlations between
heat treatment processes and mechanical properties of A357 alloy [15]. Conduit developed
an ANN to enable the prediction of an individual material’s properties both as a function
of the composition and heat treatment routine [16]. Furthermore, Malinov established an
ANN model to analyze and predict the correlation between heat treatment parameters and
mechanical properties in titanium alloys [17,18].

In addition, multiple regression analysis was applied to build the input–output rela-
tionship in many casting processes [19,20]. Multiple regression analysis generates curves
that fit the discrete data obtained from experiments to allow estimates at intermediate
points. Chen applied a nonlinear mathematical model to quantitatively analyze the effects
of heat treatment on the Vickers hardness of an Al-Si-Mg alloy, obtaining the optimum
heat treatment process by using the sequential approximation optimization method [21].
However, models for predicting mechanical properties of Mg-Zn-RE-Zr alloys have rarely
been reported.

In this work, an ANN model and a multiple regression model were developed to
predict the mechanical properties of heat-treated Mg-Zn-RE-Zr-Ca-Sr alloys. Figure 1
illustrates the flow diagram of the methodology used in this study. Firstly, a systematic
experimental investigation of the effects of alloying elements and ageing treatment on the
mechanical properties of Mg-Zn-RE-Zr-Ca-Sr alloys was carried out. Secondly, based on
the experimental data, an ANN model and a regression model were developed to predict
the mechanical properties of experimental alloys as a function of alloying elements and
ageing process parameters. Finally, both the models were validated by the experiments.
This work aims to provide a new strategy for the development of Mg alloys.
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Figure 1. The flow chart of this study.

2. Experiments and Methods
2.1. Experimental Procedure

This study was conducted on the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr (x = 0, 0.2 wt.%;
y = 0, 0.1, 0.2, 0.4 wt.%) alloys due to their advantages such as excellent fluidity, good
heat resistance and low wall thickness effect. The casting ingots were produced by Mg,
Zn, Ce-rich mischmetal (50 wt.% Ce, 28 wt.% La, 16 wt.% Nd, 4% wt.% Pr and 2 wt.%
impurity), Mg-30Zr, Mg-20Ca and Mg-20Sr in an electric resistance furnace under an argon
atmosphere at 730 ◦C. Then, the samples were subjected to different heat treatments. The
chemical compositions of the as-cast alloys were measured by the X-ray fluorescence (XRF)
method and the results are presented in Table 1. Experiments were designed according
to the underage, peak age and overage conditions. Therefore, the ageing temperature
was set at 300 ◦C, 325 ◦C and 350 ◦C, and the ageing time ranged from 0 h to 32 h. After
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ageing treatment, Vickers hardness tests were performed with a 1 kg load. Ten indentations
per sample were analyzed to improve precision. The average value was reported as the
microhardness (HV). Table A1 in Appendix A, which is attached to the end of this article,
summarizes the experimental results.

Table 1. Chemical compositions of the as-cast alloys (wt.%).

Nominal Alloys
Actual Composition

Mg Zn RE Zr Ca Sr

1 Mg-4.2Zn-1.7RE-0.8Zr Bal. 4.11 1.62 0.70 - -
2 Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca Bal. 4.14 1.61 0.76 0.18 -
3 Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.1Sr Bal. 4.03 1.67 0.67 0.19 0.11
4 Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr Bal. 4.13 1.72 0.69 0.22 0.21
5 Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.4Sr Bal. 4.11 1.64 0.75 0.17 0.38

2.2. BP Neural Network Modeling

An ANN is a mathematical model consisting of many highly interconnected processing
elements organized into layers. The ANN keeps knowledge with connection weights [22].
Input–output pairs are presented to the ANN and the weights are adjusted to minimize
the error between the predicted outputs and actual values. A multilayered neural network
(MLP) is used to develop an ANN model which is used to predict the mechanical properties
of the heat-treated Mg-Zn-RE-Zr-Ca-Sr alloys. Since the back-propagation (BP) algorithm
is a representative method to reduce the errors created by the gradient descent method, it is
used to train the multilayer feed forward network. A BP network model is developed using
MATLAB R2018a®. The architecture of the BP neural network is presented in Figure 2,
which includes the input layer (four neurons), one hidden layer and the output layer (one
neuron). The input variables of the BP model contain the Ca content, Sr content, ageing
temperature and ageing time. The output variable is microhardness.
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It should provide a concise and precise The data for training, testing and validation
were generated from 77 groups of experiments, as discussed in Section 2.1, which are
shown in Table A1 in Appendix A. In order to avoid over fitting in the BP network training,
77 groups of data were randomly divided into three subsets: 70% training set, 15% test set
and 15% validation set. Then, both inputs and outputs were fed into the neural network
toolbox. The general procedure is described step by step as follows:

(1) In order to decrease the order-of-magnitude difference in the various dimensions, the
experimental dataset was normalized between −1 and 1 using the following formula:

XN = 2
(

X− Xmin
Xmax − Xmin

)
− 1 (1)
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where XN is the normalized value of a certain variable and X is the experimental value
for this variable. Furthermore, Xmin and Xmax are the minimum and the maximum in
the dataset for this variable, respectively.

(2) Table 2 shows the architecture and training parameters of the BP neural network. The
hyperbolic tangent ‘tan-sigmoid’ and linear transfer ‘Purelin’ functions were used
as activation transfer functions. The mathematical model of the BP neural network
is shown in Figure 3. Compared with the standard gradient descent algorithm, the
Levenberg–Marquardt (LM) algorithm possesses fast convergence and a small mean
square error [22]. As a result, the BP neural network was trained using the LM
algorithm. To evaluate the performance of the developed BP network model, the
correlation coefficient (R), the percentage of error and the mean squared error (MSE)
were quantified as follows:

R =
∑n

i=1
(
Ti − T

)(
Yi −Y

)√
∑n

i=1
(
Ti − T

)2
∑n

i=1
(
Yi −Y

)2
(2)

Percentage o f error (%) = 100
(

Ti −Yi
Ti

)
(3)

MSE =
1
n

n

∑
i=1

(Ti −Yi)
2 (4)

where Ti is the experimental value and Yi is the predicted value. Furthermore, T and
Y are the mean values of all the experimental and predicted results, respectively. n is
the total number of data pairs in this investigation. The convergence of MSE to 0.005
was established in 1000 epochs.

(3) The BP neural network was optimized by adjusting the number of hidden neurons.
The effect of the number of hidden neurons on output variables was also studied. The
number of hidden neurons was estimated according to the empirical equation:

M =
√

n + m + a (5)

where m and n are the number of neurons in the input layer and output layer, respec-
tively, and a is a constant ranging from 1 to 10 [23,24]. In order to obtain the optimal
architecture, ten different BP network models were tested.
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Table 2. The architecture and training parameters of the BP neural network.

Parameters BP Neural Network

Number of layers 3
Number of neurons on the layers Input: 4, Hidden: 4~12, Output: 4

Transfer functions Hidden layer: Tan-Sigmoid
Output layer: Purelin

Train method Levenberg–Marquardt (LM)
Initial weights and biases Randomly between −1 and 1

Target error value 0.0167
Learning rate Variable learning rate

2.3. Multiple Regression Modeling

The key to alloy prediction is knowing the relationships between chemical composition,
processing parameters and mechanical properties. Much of this information is mainly
divided into two categories: (1) relationships that are based on physical principles and
reflect the essence of the process and physical and chemical interactions among the factors,
and (2) relationships that are obtained by mathematical means that experimentally treat
obtained data and manipulate these data to obtain relationships between the independent
and dependent variables without emphasizing physical meanings. This method was
adopted in this study. The second-order polynomial regression model was employed to
build the multivariate regression model for microhardness. The input variables were coded
based on the minimum and maximum. The corresponding equation is as follows:

xi = 2
(

Xi − Xi0
∆Xi

)
(6)

where xi (i = 1, 2, 3, 4) is the coded input variable and Xi is the actual input variable. Xi0 is
the value of Xi at the center level and ∆Xi is the variation range in Xi. The input variables
and their levels are shown in Table 3.

Table 3. Input variables and their levels.

Levels
Input Variables

X1: Ca Content, wt.% X2: Sr Content, wt.% X3: Ageing Temperature, ◦C X4: Ageing Time, h

Low level (−1) 0 0 300 0.125
Center level (0) 0.1 0.2 325 15.9375
High level (1) 0.2 0.4 350 32

Variation range (∆Xi) 0.2 0.4 50 31.875

The second-order polynomial regression model describing HV is presented below:

HV(x) = b0 +
4

∑
i=1

bixi +
4

∑
i=1

4

∑
j=i+1

bijxixj +
4

∑
i=1

biix2
i (7)

where b0 is a constant, and bi, bii and bij (i, j = 1, 2, 3, 4) are the coefficients of the linear,
quadratic and cross product terms, respectively. In addition, the coefficients were calculated
using the least squares method, which is a trial-and-error process. The statistical accuracy
of regression models was determined using the coefficient of determination (R2) and the
Fisher’s criterion (F-test).

3. Results and Discussion
3.1. BP Neural Network Results

BP neural networks are developed based on trial and error by adjusting the number of
neurons in the hidden layer. Figure 4 shows the correlation coefficient (R) values obtained
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from the trained BP model for HV from different numbers of hidden neurons, suggesting
an analysis of the network response in the form of a linear regression between the network
outputs and corresponding targets for the dataset. The R values for all cases—training,
validation and test—are nearly the same for all runs. An R near 1 suggests that a regression
line fits the data well. Therefore, it is observed that the R value is above 0.95 for architecture
(4-8-1) which has a high level of accuracy for prediction. Figure 5 shows the training error
curve of the 4-8-1 BP neural network. It is found that the MSE decreases with an increasing
number of iterations. The training process lasts until the error goal is close to 0.005. Each
epoch is a step that passes through inputs, hidden layers and outputs in the training process
of the BP neural network.
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The comparisons between the experimental and the predicted results for the entire
dataset of 77 experiments are shown in Figure 6. The fitting line observed in Figure 6
indicates good agreement between the predicted and experimental values, and the adjust R
square is found to be above 0.95. This suggests that there is a reliable correlation between
alloying elements, ageing treatment parameters and microhardness of the Mg-4.2Zn-1.7RE-
0.8Zr-xCa-ySr alloy. The result presented here gives confidence that the 4-8-1 BP network
model can predict with sufficient accuracy.
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Figure 6. Analysis of the correlation coefficient between the experimental and predictive values.

Furthermore, the predictive ability of the 4-8-1 BP model is further tested by exper-
iments. Table 4 presents the experimental data gained from Vickers hardness tests and
corresponding BP results of simulating data. The average percentage error is less than
±3%, which means the BP model’s predicted results are close to the experimental results.
Figure 7 presents the experimental versus BP-predicted results for HV, which reveal that
the prediction of BP model is found to be in good agreement with the experimental data.
Therefore, the BP neural network can be used to predict mechanical properties of heat-
treated Mg-Zn-RE-Zr alloys processed within the inputs of Ca content, Sr content, ageing
temperature and ageing time.

Table 4. Experimental data and BP predicted results.

No. Ca Content,
wt.%

Sr Content,
wt.%

Ageing
Temperature, ◦C

Ageing
Time, h Experimental HV Predicted HV Percentage

of Error, %

1 0 0 300 0.25 57.8 57.08 1.17
2 0 0 300 4 66.6 67.79 −1.72
3 0 0 300 24 65.2 63.82 2.16
4 0 0 325 0.125 54.9 55.59 −1.29
5 0 0 325 12 66.1 67.97 −2.88
6 0 0 325 24 64.5 63.08 2.14
7 0 0 350 0.5 60.3 59.43 1.36
8 0 0 350 6 63.2 64.24 −1.62
9 0 0 350 16 62.9 64.75 −2.95

10 0.2 0 325 1 62.6 62.89 −0.55
11 0.2 0 325 6 67.8 66.98 1.21
12 0.2 0 325 12 74.3 75.19 −1.27
13 0.2 0 325 24 64.9 64.70 0.31
14 0.2 0.1 325 0.5 63.2 63.27 −0.18
15 0.2 0.1 325 6 65.9 66.05 −0.22
16 0.2 0.1 325 14 69.0 68.96 0.01
17 0.2 0.1 325 24 64.7 64.52 0.28
18 0.2 0.2 325 0.125 61.6 63.37 −2.87
19 0.2 0.2 325 2 66.0 65.86 0.21
20 0.2 0.2 325 8 69.9 68.40 2.15
21 0.2 0.2 325 16 70.9 69.01 2.66
22 0.2 0.2 325 32 64.8 63.14 2.56
23 0.2 0.4 325 2 64.9 65.58 −1.04
24 0.2 0.4 325 10 71.5 70.00 2.07
25 0.2 0.4 325 20 67.4 68.07 −1.00
26 0.2 0.4 325 32 64.2 64.61 −0.64
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3.2. Regression Model Results

HV is expressed as a polynomial function of the input variables in coded form. The re-
gression model is derived from the experimental results, as shown in the following formula:

HV = 65.174 + 0.304x1 + 0.626x2 − 1.409x3 − 0.167x4 − 0.497x1 × x4 − 0.418x3 × x4 − 1.837x2
3 − 6.139x2

4 (8)

where xi (i = 1, 2, 3, 4) is the coded input variable. In addition, the coefficients of the terms
suggest the effect of input variables on the HV. The coefficient of determination (R2) is used
to test the fit of the regression model. In this study, the value of R2 is 0.754, indicating that
75.4% of the variability in the HV can be explained by the regression model. Furthermore,
significance tests are conducted to examine the effect and contributions of input variables
and the interaction terms on the response HV. If the calculated F ratio exceeds the critical
F1−α,k−1,n−k value with degrees of freedom (k − 1) and (n − k), the terms are significant at
the α level of significance (α = 0.05, k is the number of terms and n is the number of the
experimental dataset). The calculated F value is 11.689, which is greater than the critical
F0.95,8.68 value with degrees of freedom 8 and 68, meaning that the model is statistically
significant at the 0.05 level of significance. Therefore, from Equation (8), we can see that
the regression model is capable of making accurate predictions. The developed model
quantifies the effects of alloying elements and the ageing process on microhardness.

3.3. Model Validation

Table 5 shows the comparison between the model predictions and experimental results,
indicating that the predicted results obtained by the BP model and the regression model are
well in accordance with the experimental results. As a result, the BP neural network and
the regression model are able to make accurate predictions of the mechanical properties of
heat-treated Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr alloys.

Table 5. The comparison between the developed models and experimental results.

Inputs The Response HV

Ca Content,
wt.%

Sr Content,
wt.%

Ageing
Temperature, ◦C Ageing Time, h Regression

Model BP Model Experimental
Result

0.2 0.4 312.5 16 70.35 67.49 68.91
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4. Conclusions

Mg-4.2Zn-1.7RE-0.8Zr alloys with different levels of Ca and Sr content, ageing tem-
peratures and ageing times were successfully fabricated. The influential variables and
responses were systematically investigated. The conclusions are as follows:

(1) The ANN model was established using the BP algorithm. The architecture (4-8-1) was
in good agreement with that of the experimental values with a correlation coefficient
above 0.95.

(2) The regression model was adopted to model the mechanical properties of the heat-
treated experimental alloys. The adequacy of the models was tested by the coefficient
of determination and Fisher’s criterion. The nonlinear regression model was statisti-
cally adequate.

(3) Predicted results obtained by the BP model and the regression model are well in
accordance with experimental results, indicating developed models can reliably pre-
dict the mechanical properties of heat-treated Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr alloys.
Therefore, time-consuming experiments can be reduced and, hence, considerable
savings in terms of cost and time could be obtained by using the developed BP model
and the regression model.
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Appendix A

Table A1. The experimental results.

No.
Inputs Output

X1: Ca Content, wt.% X2: Sr Content, wt.% X3: Ageing Temperature, ◦C X4: Ageing Time, h Y: HV

1 0 0 300 0.125 54.9
2 0 0 300 0.5 61.1
3 0 0 300 1 64.2
4 0 0 300 2 65.9
5 0 0 300 6 66.5
6 0 0 300 8 66.2
7 0 0 300 10 67.6
8 0 0 300 12 66.6
9 0 0 300 16 65.1

10 0 0 300 20 65.2
11 0 0 300 32 65.5
12 0 0 325 0.25 58.4
13 0 0 325 0.5 61.7
14 0 0 325 1 63.1
15 0 0 325 2 64.7
16 0 0 325 4 66.7
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Table A1. Cont.

No.
Inputs Output

X1: Ca Content, wt.% X2: Sr Content, wt.% X3: Ageing Temperature, ◦C X4: Ageing Time, h Y: HV

17 0 0 325 6 68.4
18 0 0 325 8 68.7
19 0 0 325 10 69.2
20 0 0 325 14 65.8
21 0 0 325 16 65.9
22 0 0 325 20 65.5
23 0 0 325 28 62.7
24 0 0 325 32 64.4
25 0 0 350 0.125 54.9
26 0 0 350 0.25 57.4
27 0 0 350 1 62.8
28 0 0 350 2 64.0
29 0 0 350 4 62.6
30 0 0 350 8 64.3
31 0 0 350 10 63.3
32 0 0 350 12 62.6
33 0 0 350 20 62.9
34 0 0 350 24 62.1
35 0 0 350 32 61.7
36 0.2 0 325 0.125 59.1
37 0.2 0 325 0.5 61.2
38 0.2 0 325 2 64.5
39 0.2 0 325 4 66.2
40 0.2 0 325 8 67.5
41 0.2 0 325 10 72.8
42 0.2 0 325 14 68.5
43 0.2 0 325 16 66.1
44 0.2 0 325 20 65.4
45 0.2 0 325 28 64.4
46 0.2 0 325 32 63.5
47 0.2 0.1 325 0.125 61.0
48 0.2 0.1 325 1 64.0
49 0.2 0.1 325 2 65.5
50 0.2 0.1 325 4 65.4
51 0.2 0.1 325 8 68.3
52 0.2 0.1 325 10 72.8
53 0.2 0.1 325 12 75.5
54 0.2 0.1 325 16 65.1
55 0.2 0.1 325 20 65.1
56 0.2 0.1 325 28 64
57 0.2 0.1 325 32 63.8
58 0.2 0.2 325 0.5 64.3
59 0.2 0.2 325 1 65.0
60 0.2 0.2 325 4 66.3
61 0.2 0.2 325 6 67.5
62 0.2 0.2 325 10 72.3
63 0.2 0.2 325 12 77.1
64 0.2 0.2 325 14 72.9
65 0.2 0.2 325 20 66.3
66 0.2 0.2 325 24 65.6
67 0.2 0.2 325 28 65.1
68 0.2 0.4 325 0.13 61.5
69 0.2 0.4 325 0.5 64.2
70 0.2 0.4 325 1 65.4
71 0.2 0.4 325 4 65.3
72 0.2 0.4 325 6 66.9
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Table A1. Cont.

No.
Inputs Output

X1: Ca Content, wt.% X2: Sr Content, wt.% X3: Ageing Temperature, ◦C X4: Ageing Time, h Y: HV

73 0.2 0.4 325 8 68.2
74 0.2 0.4 325 12 73.7
75 0.2 0.4 325 14 70.4
76 0.2 0.4 325 16 69.8
77 0.2 0.4 325 24 66.4
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