Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase
Abstract
:1. Introduction
2. Dynamic Model of the Parachute Deployment Phase
2.1. Overview of Parachute Ejecting Tractor Rocket
2.2. Model Description
2.3. Establishment of Suspension Line
2.4. Establishment of Canopy
2.5. The Tractor Rocket Thrust Test
3. Experimental Validation
3.1. Experiment Design
3.2. Comparison between Simulation and Experiment
4. Parameter Analysis of Parachute Deployment
4.1. Influence of Parachute Weight
4.2. Influence of Temperature
5. Conclusions
- (1)
- The elastic modulus of the high-strength polyethylene suspension line was 748.7 MPa. The brocade silk canopy weft modulus was 7.29 MPa, and the warp modulus was 10.75 MPa. The elastic models of weaved composite material could be proved by a tensile test, and the results could be used for parachute dynamic simulation.
- (2)
- The simulation results agree with the experimental results; the time and displacement error was 13.97% and 4.62%, which verify the accuracy of the dynamic model. This provides a new idea and method for the design and simulation of parachute deployment process.
- (3)
- With the parachute weight increase, the maximum snatch force on the extraction line and the sling decreased, as the snatch force on the suspension lines increased. The increase in parachute weight reduced the deployment effect, which is not conducive to the recovery of an unmanned aerial vehicle.
- (4)
- With the temperature increase, the deployment time became shorter, and the deployment length changed only slightly. The maximum snatch force on the extraction line, sling, and suspension lines increased. Different launch temperatures have little influence on the parachute deployment process, ensuring the successful recovery of unmanned aerial vehicle under various conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, C.; Huang, X. Energy-efficiency maximization for fixed-wing UAV-enabled relay network with circular trajectory. Chin. J. Aeronaut. 2021. [Google Scholar] [CrossRef]
- Levin, J.M.; Nahon, M.; Paranjape, A.A. Real-time motion planning with a fixed-wing UAV using an agile maneuver space. Auton. Robot. 2019, 43, 2111–2130. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, D.; Mao, H.; Shen, B.; Li, M. Wind-induced response of rice under the action of the downwash flow field of a multi-rotor UAV. Biosyst. Eng. 2021, 203, 60–69. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, Q.; Wu, W. Accurate Modeling and Control for Parawing Unmanned Aerial Vehicle. Acta Aeronaut. Et Astronaut. Sin. 2019, 40, 122593. [Google Scholar]
- Zhu, Z.Q.; Wang, X.L.; Wu, Z.C.; Chen, Z.M. Aerodynamic characteristics of small/micro unmanned aerial vehicles and their shape design. Acta Aeronaut. Et Astronaut. Sin. 2006, 27, 353–364. [Google Scholar]
- Wang, X.; Liu, Z.; Cong, Y.; Li, J.; Chen, H. Miniature fixed-wing UAV swarms: Review and outlook. Acta Aeronaut. Et Astronaut. Sin. 2020, 41, 023732. [Google Scholar]
- Arrabito, G.R.; Ho, G.; Lambert, A.; Rutley, M.; Keillor, J.; Chiu, A.; Hou, M. Human Factors Issues for Controlling Uninhabited Aerial Vehicles; Defense Research and Development Canada: Toronto, ON, Canada, 2010. [Google Scholar]
- White, F.M.; Wolf, D.F. A theory of three-dimensional parachute dynamic stability. J. Aircr. 1968, 5, 86–92. [Google Scholar] [CrossRef]
- Zhen, Z. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles. Acta Autom. Sin. 2019, 45, 669–681. [Google Scholar]
- Gajjar, B.I.; Zalewski, J. A07: On-ship landing and takeoff of Unmanned Aerial Vehicles (UAV’S). IFAC Proc. Vol. 2004, 37, 42–46. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Zhou, Z.; Wang, R. Establishment and Simulation of Twelve-Degree-of-Freedom Model for UAV Parachute Recovery System. J. Northwest. Polytech. Univ. 2020, 38, 68–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, H.; Wang, B.; Liu, Y. Transition process adaptive switch control of a hybrid-wing vertical takeoff and landing UAV. J. Harbin Eng. Univ. 2020, 41, 1675–1682. [Google Scholar]
- Wu, H.; Wang, Z.; Zhou, Z.; Wang, R. Dynamics modeling and Simulation of UAV parachute recovery based on Kane equation. J. Beijing Univ. Aeronaut. Astronaut. 2019, 45, 1256. [Google Scholar]
- Zhang, Q.B.; Peng, Y.; Chen, W.K.; Qin, Z.Z. A Mass Spring Damper Model Parachute Deployment. J. Ballist. 2003, 1, 31–36. [Google Scholar]
- Koklu, U.; Morkavuk, S.; Featherston, C.; Haddad, M.; Sanders, D.; Aamir, M.; Giasin, K. The effect of cryogenic machining of S2 glass fibre composite on the hole form and dimensional tolerances. Int. J. Adv. Manuf. Technol. 2021, 115, 125–140. [Google Scholar] [CrossRef]
- Köklü, U.; Mayda, M.; Morkavuk, S.; Avcı, A.; Demir, O. Optimization and prediction of thrust force, vibration and delamination in drilling of functionally graded composite using Taguchi, ANOVA and ANN analysis. Mater. Res. Express 2019, 6, 085335. [Google Scholar] [CrossRef]
- McVey, D.F.; Wolf, D.F. Analysis of deployment and inflation of large ribbon parachutes. J. Aircr. 1974, 11, 96–103. [Google Scholar] [CrossRef]
- Shen, G.; Xia, Y.; Sun, H. A 6DOF mathematical model of parachute in Mars EDL. Adv. Space Res. 2015, 55, 1823–1831. [Google Scholar] [CrossRef]
- Ortega, E.; Flores, R. Aeroelastic analysis of parachute deceleration systems with empirical aerodynamics. J. Aerosp. Eng. 2020, 234, 729–741. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, L.; Liu, M.; Pang, H. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method. Chin. J. Aeronaut. 2020, 33, 1692–1702. [Google Scholar]
- Zhang, Q.; Feng, Z.; Ma, Y.; Ge, J.Q.; Cao, X.L.; Cao, Q.Y. Modeling and simulation of Mars EDL process. J. Astronaut. 2017, 38, 443–449. [Google Scholar]
- Wang, H.; Cheng, W. Research on Ejecting and Deploying Process of Parachute Considering Wake Flow Effects. Spacecr. Recovery Remote Sens. 2017, 38, 3–9. [Google Scholar]
- Chen, B.; Wang, Y.; Zhao, C.; Sun, Y.; Ning, L. Numerical visualization of drop and opening process for parachute-payload system adopting fluid-solid coupling simulation. J. Vis. 2022, 25, 229–246. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, Z.; Zhang, M.; Chen, Q. Multi-objective optimization of parachute triggering algorithm for Mars exploration. Adv. Space Res. 2020, 65, 1367–1374. [Google Scholar] [CrossRef]
- Yu, L. Aerodynamic Deceleration Technology, 1st ed.; Science Press: Beijing, China, 2018; pp. 190–191. [Google Scholar]
- Yu, Y.; Baoyin, H.; Li, J. Dynamic modeling and simulation of space flying net projectile deployment. J. Astronaut. 2010, 31, 1289–1296. [Google Scholar]
- Li, J.; Yu, Y.; Baoyin, H. Projecting Parameters Optimization for Space Web Systems. J. Astronaut. 2012, 33, 823–829. [Google Scholar]
- Liu, H.; Zhang, Q.; Yang, L.; Zhu, Y. Analysis of deployment dynamics of space tether-net system. J. Natl. Univ. Def. Technol. 2015, 37, 68–77. [Google Scholar]
- Liu, H.T.; Zhang, Q.B.; Yang, L.P.; Zhu, Y. The deployment dynamic characteristics analysis of space web system. J. Natl. Univ. Def. Technol. 2015, 37, 68–77. [Google Scholar]
- Barry, C.P.; Olson, B.G.; Bergeron, K.; Willis, D.J.; Sherwood, J.A. Modeling Tensile Tests of a Braided Parachute Suspension Line using a Mesomechanical Finite Element Model. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; p. 1312. [Google Scholar]
- Shi, W.H.; Chen, X.; Chen, Y.H.; Sheng, S.J. Dynamic Simulation and Test of Parachute Deployment. Sci. Technol. Eng. 2021, 21, 3379–3386. [Google Scholar]
- Zhu, L. Numerical Simulation Analysis on the Deformation and the Stress of Inflated Membrane Structure; Shanghai Jiao Tong University: Shanghai, China, 2014. [Google Scholar]
Parameter | Value |
---|---|
Nominal radius/m | 7.78 |
Nominal area/m2 | 190 |
Number of gore section | 40 |
Length of suspension lines/m | 14 |
Drag coefficient | 0.83 |
Length of extraction line/m | 1 |
Length of sling/m | 5 |
Parameter | Value |
---|---|
Diameter/mm | 40 |
Height/mm | 360 |
Weight/g | 806 |
Temperature/°C | +45 | +20 | −40 |
---|---|---|---|
Thrust peak/N | 3199.6 | 1991.0 | 1318.3 |
Average thrust/N | 1254.1 | 911.1 | 831.3 |
Peak time/s | 0.0234 | 0.0212 | 0.0198 |
Work time/s | 0.538 | 0.709 | 0.834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Yue, S.; Li, Z.; Xu, H.; Du, Z.; Gao, G.; Zheng, G.; Zhao, B. Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase. Crystals 2022, 12, 758. https://doi.org/10.3390/cryst12060758
Shi W, Yue S, Li Z, Xu H, Du Z, Gao G, Zheng G, Zhao B. Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase. Crystals. 2022; 12(6):758. https://doi.org/10.3390/cryst12060758
Chicago/Turabian StyleShi, Wenhui, Shuai Yue, Zhiqian Li, Hao Xu, Zhonghua Du, Guangfa Gao, Guang Zheng, and Beibei Zhao. 2022. "Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase" Crystals 12, no. 6: 758. https://doi.org/10.3390/cryst12060758
APA StyleShi, W., Yue, S., Li, Z., Xu, H., Du, Z., Gao, G., Zheng, G., & Zhao, B. (2022). Dynamic Simulation and Parameter Analysis of Weaved Composite Material for Unmanned Aerial Vehicle Parachute Recovery in Deployment Phase. Crystals, 12(6), 758. https://doi.org/10.3390/cryst12060758