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Abstract: The recent development of water-stable metal–organic frameworks (MOFs) has significantly
broadened the application scope of this emerging type of porous material. Structure tuning of
hafnium MOFs is less studied compared with zirconium MOFs. In this work, we report the synthesis
of a mesoporous hafnium MOF, csq-MOF-1, through finely tuning the solvent mixture ratio. The
successful synthesis of csq-MOF-1 also relies on the linker flexibility as linker bending and a symmetry
decrease were observed in this framework as compared to its structural isomer NPF-300 (Hf). The
mesoporous feature and permanent porosity were determined by the N2 adsorption at 77 K. Such
a hierarchical pore feature is expected to enable a variety of applications through encapsulation of
large functional molecules. The synthetic strategy of utilizing a mixed solvent and flexible linker is
expected to inspire the development of new hafnium MOFs with diverse topological structures.

Keywords: metal–organic frameworks; hafnium; mixed solvent; csq topology; mesoporous MOF

1. Introduction

Metal–organic frameworks have attracted considerable attention in the past two
decades. [1,2] Their highly tunable pore size [3], ultrahigh surface area [4], and facile
functionalization of the pore surface [5,6] enable a variety of applications including in
catalysis [7,8], gas storage [9,10], separation [11–14], and luminescence sensing [15,16]. In
particular, the recent development of water-stable MOFs has further pushed this emerging
type of porous material to more fields involving water, such as proton conduction [17],
water purification [18,19], and water harvesting [20] from air. Among water-stable MOFs,
zirconium and hafnium with +4 charge exhibit excellent stability [21,22] and also highly tun-
able topology structures [23–28], which greatly benefit performance optimization through
delicate pore tuning.

The highly viable structure of Zr/Hf-MOFs can be attributed to the viable connections
of the clusters. For the classical Zr6O4(OH)4(COO−)12 cluster, the maximum connection is
twelve. Meanwhile, in MOF formation, the connection can be reduced to eight, six, and four,
depending on the symmetry matching as well as the synthetic conditions. For example,
diverse Zr-MOFs have been discovered with a tetracarboxyphenylporphyrin (TCPP) linker.
In 2012, Yaghi et al. reported two structures: MOF-525 [29] with a twelve-connected cluster,
and mesoporous MOF-545/PCN-222 [29,30] with an eight-connected cluster. The topology
was ftw for MOF-525 and csq for MOF-545/PCN-222.

To purposely synthesize new Zr-MOF structures, several strategies have been devel-
oped. Through kinetically controlled synthesis, Zr-TCPP MOF (PCN-223) with the shp-a
topology and a twelve-connected cluster was obtained. [31] In another case, Zr-TCPP
MOF (PCN-224) was formed with a six-connected Zr cluster through a linker elimination
strategy. [32] Interestingly, even with the same connection, different topologies can be
formed. For example, a tetracarboxylate linker and an eight-connected Zr cluster can form
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the scu, csq, and flu topologies, and a systematic study revealed that such a topology
difference is dependent upon the linker conformation. [33] Such a structure difference
could lead to a significant change in application performance, such as for catalysis [34]
and gas separation [35]. Therefore, it is of high significance to develop new structures and
novel strategies for phase control.

Hafnium MOFs usually form isostructures with Zr-MOFs and exhibit different chemi-
cal properties and superior application performance in some cases [36–38]. However, the
structural or topology tuning of Hf-MOFs has rarely been reported. In addition, although
the structure tuning of Zr-MOFs has been explored, the linker flexibility has not been
a consideration thus far. Herein, we report a mesoporous Hf-MOF, namely, csq-MOF-1,
using a flexible tetracarboxylate linker, as a structural isomer of NPF-300 (Hf) [39]. The
successful synthesis of csq-MOF-1 relies on a mixed solvent approach through a finely
tuned DMF/DEF (DMF: dimethyl formamide; DEF: diethyl formamide) mixture ratio.
The linker conformation of csq-MOF-1 is in a bending geometry, being different to that
of NPF-300 (Hf). The rigid framework csq-MOF-1 also exhibits permanent porosity as
revealed by N2 uptake. This simple mixed solvent approach represents a new strategy to
control Hf-MOF topology structures.

2. Materials and Methods

All solvents and reagents were purchased from commercial sources and, unless otherwise
noted, used without further purification. The tetracarboxylic ligand linker 5′,5′ ′ ′ ′-(Buta-1,3-
diyne-1,4-diyl)bis(([1,1′:3′,1”-terphenyl]-4,4”-dicarboxylic acid)) was synthesized according
to our previous method in the NPF-300 synthesis [39]. PXRD data were recorded with a
PANalytical Empyrean diffractometer (Almelo, The Netherlands) with a PIXcel 3D detector.
The copper target X-ray tube was set to 45 kV and 40 mA. Gas adsorption isotherms were
collected using the surface area analyzer Micromeritics ASAP-2020 (Norcross, GA, USA). N2
gas adsorption isotherms were measured at 77 K using a liquid N2 bath.

The crystal sample was taken from the mother liquid, transferred to oil, and mounted
by a loop. Single-crystal X-ray diffraction data were collected using synchrotron radiation.
Indexing was performed using APEX2 (difference vector method). Data integration and re-
duction were performed using SaintPlus 6.0 (Bruker, WI, USA). Absorption correction was
performed using a multi-scan method implemented in SADABS. Space groups were deter-
mined using XPREP implemented in APEX2. The structure was solved using SHELXS-2014
(direct methods) and refined using SHELXL-2014 within Olex 2 (full-matrix least squares
on F2). Hf, C, and O atoms were refined with anisotropic displacement parameters, and H
atoms were placed in geometrically calculated positions and included in the refinement
process using a riding model with isotropic thermal parameters: Uiso(H) = 1.2Ueq(-CH).
The contribution of disordered solvent molecules was treated as diffuse using the SQUEEZE
procedure implemented in PLATON. [40] Crystal structure images were produced using
Diamond software by our collaborator at Sun Yat-Sen University.

To activate MOFs for N2 gas adsorption measurement, as-synthesized MOF samples
were exchanged with fresh DMF three times and heated in oven at 80 ◦C for 4 h. Then,
the samples were exchanged with fresh DMF 3 times and subsequently exchanged with
anhydrous acetone 6 times in 3 d to remove the DMF completely. The acetone-exchanged
samples were decanted and dried in a vacuum oven for 6 h. The dry samples were further
de-gassed with the surface area analyzer ASAP 2020 at 80 ◦C to remove trace amounts of
acetone trapped in the pore.

NPF-300-Hf synthesis: Here, 16 mg of HfCl4 and 200 mg of benzoic acid were mixed
in a mixed solvent (DMF/DEF = 0.8 mL:0.1 mL) in a glass vial and ultrasonically dissolved.
The clear solution was heated in an oven at 80 ◦C for 1 h. After cooling down to room
temperature, 4 mg of ligand was added to this solution, and the mixture was sonicated for
5 min to dissolve all of the ligand. The yellow solution was heated in an oven at 120 ◦C for
48 h. After cooling down to room temperature, light-yellow, block-shaped single crystals
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were obtained. As-synthesized NPF-300-Hf was activated by soaking in fresh DMF at 80 ◦C
for 4 h to remove the unreacted ligand and cluster.

csq-MOF-1 synthesis (single crystal): Here, 16 mg of HfCl4 and 200 mg of benzoic
acid were mixed in a mixed solvent (DMF/DEF = 0.1 mL:0.8 mL) in a glass vial and
ultrasonically dissolved. The clear solution was heated in an oven at 80 ◦C for 1 h. After
cooling down to room temperature, 4 mg of ligand was added to this solution, and the
mixture was sonicated for 5 min to dissolve all of the ligand. The yellow solution was
heated in an oven at 120 ◦C for 48 h. After cooling down to room temperature, light-yellow,
block-shaped single crystals were obtained. As-synthesized NPF-300-Hf was activated by
soaking in fresh DMF at 80 ◦C for 4 h to remove the unreacted ligand and cluster.

For the surface area measurement, the csq-MOF-1 sample was synthesized with 15 mg
of HfCl4, 5 mg of ligand, 100 mg of benzoic acid, and 0.1 mL of formic acid in a mixed solvent
(DMF/DEF = 0.2 mL:0.8 mL), as an optimized synthetic method with a higher yield.

3. Results and Discussion

As it is known that diverse structures of Zr/Hf MOFs can be formed with the same
linker, we explored the Hf-MOF structural diversity using a tetracarboxylate linker of NPF-
300 due to its flexibility. As discovered in our previous work of linker insertion in NPF-300,
the tetracarboxylate linker with a dialkynyl unit could form in-plane and out-of-plane
bending to accommodate secondary linkers of different lengths. We were interested in
exploring if such flexibility of the linker could affect the formation of diverse topological
structures. After extensive attempts under synthetic conditions, we discovered a new
structure using solvothermal conditions with a mixed solvent of DMF/DEF at 120 ◦C for
48 h. The effect of the solvent may be attributed to the different solubilities of precursors
or nucleates which alter the crystallization kinetics. The formation of csq-MOF-1 needs a
higher amount of DEF with a DMF/DEF ratio of 1:8, in comparison with the DMF/DEF
ratio of 8:1 for NPF-300 synthesis. Benzoic acid was used for both cases as a modulator.

The csq-MOF-1 framework crystallizes in a hexagonal crystal system with the P 6/mmm
space group, as shown in Table 1. Each Hf6 cluster is coordinated with eight carboxylates
from different linkers and eight terminal H2O/OH− groups in the equatorial plane. The
overall formula of csq-MOF-1 is Hf6O4(OH)8(H2O)4L2. The structure has a csq topology,
being the same as PCN-222 [30] and NU-1000 [25]. In comparison with NPF-300 with
a single type of channel, csq-MOF-1 exhibits two types of channels with triangular and
hexagonal geometries, as shown in Figure 1. Such a structural feature is quite interesting
due to the intrinsic hierarchical pore structure. The phase purity of csq-MOF-1 was con-
firmed using PXRD, which showed excellent matching with the patterns simulated from
the single-crystal data (Figure 2).

Table 1. Crystal data and structure refinement for csq-MOF-1.

Identification Code csq-MOF-1

CCDC 2167258
Empirical formula C44H22Hf3O16

Formula weight 1342.08
Temperature/K 271 (2)
Crystal system hexagonal

Space group P 6/mmm
a/Å 40.2473 (12)
b/Å 40.2473 (12)
c/Å 20.4333 (11)
α/◦ 90
β/◦ 90
γ/◦ 120
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Table 1. Cont.

Identification Code csq-MOF-1

Volume/Å3 28,664 (2)
Z 6

ρcalc/g cm−3 0.466
µ/mm−1 0.395

F(000) 3780
Crystal size/mm3 0.5 × 0.1 × 0.1

Radiation Synchrotron (λ = 0.41325)
2θ range for data collection/◦ 0.672 to 14.069

Index ranges
−47 ≤ h ≤ 47,
−47 ≤ k ≤ 47,
−24 ≤ l ≤ 24

Reflections collected 588,792
Independent reflections 9026 [R(int) = 0.1355]

Data/restraints/parameters 9026/0/159
Goodness of fit on F2 1.496

Final R indexes [I ≥ 2σ (I)] R1 = 0.0810 wR2 = 0.2449
Final R indexes (all data) R1 = 0.0985, wR2 = 0.2589

Largest diff. peak/hole/e Å−3 1.345 and −1.915
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A close examination of csq-MOF-1 revealed that the ligand flexibility is quite important
in the structure formation. As shown in Figure 3a, the structure view along the b axis clearly
shows out-of-plane bending of the tetracarboxylate linker. In NPF-300, the linker is planar
with a C2h symmetry, while the out-of-plane bending of the linker causes its symmetry to
decrease to the Cs point group in the csq-MOF-1 structure. The linker bending also leads
to a decrease in the cluster distance along the c axis from 13.198 Å of NPF-300 to 12.618 Å
of csq-MOF-1. Such a difference in the cluster distance is potentially more favorable for
the insertion of a shorter linker. The hexagonal channel exhibits the largest dimension of
~32.238 Å, being much larger than that of NPF-300 (12.660 Å), as shown in Figure 3c,d.
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(c) channel of csq-MOF-1; (d) channel of NPF-300 (Hf). Hf: cyan polyhedron; C: light gray; O: red;
hydrogen atoms are omitted for clarity.

The mesoporous feature was further validated by the N2 adsorption isotherm at 77 K.
As shown in Figure 4a, a sudden increase in uptake was observed, which can be attributed
to the capillary condensation of the N2 gas in the mesopore. Based on the adsorption
isotherm, the surface area of csq-1 was determined as 1735 m2/g using the BET (Brunauer–
Emmett–Teller) method and 1986 m2/g using the Langmuir method. Further, the total
pore volume was determined as 1.1 cm3/g, and all these results demonstrate the high
permanent porosity of csq-MOF-1. The pore size distribution showed two major pore
sizes: micropores of ~15 Å, and mesopores of ~30 Å, being consistent with the hierarchical
pore feature determined from the single-crystal structure. Such a mesoporous Hf-MOF
is expected to be useful for the encapsulation of large guest molecules such as enzymes,
protein drugs, and metal nanoparticles for a broad scope of applications.
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