Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation
Abstract
:1. Introduction
2. The Simulation Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.; Min, K.K.; Yu, J.; Kwon, D.; Park, B.G. Lamination method for improved polarization-leakage current relation in HfO2-based metal/ferroelectric/insulator/semiconductor structure. Semicond. Sci. Technol. 2022, 37, 045001. [Google Scholar] [CrossRef]
- Liao, C.Y.; Hsiang, K.Y.; Hsieh, F.C.; Chiang, S.H.; Chang, S.H.; Liu, J.H.; Lou, C.F.; Lin, C.Y.; Chen, T.C.; Chang, C.S.; et al. Multibit ferroelectric fet based on nonidentical double HfZrO2 for high-density nonvolatile memory. IEEE Electron. Device Lett. 2021, 42, 617–620. [Google Scholar] [CrossRef]
- Park, H.W.; Lee, J.G.; Hwang, C.S. Review of ferroelectric field-effect transistors for three-dimensional storage applications. Nano Select. 2021, 2, 1187–1207. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Breyer, E.T.; Dünkel, S.; Beyer, S.; Mikolajick, T.; Slesazeck, S. Ferroelectric field-effect transistors based on HfO2: A review. Nanotechnology 2021, 32, 502002. [Google Scholar] [CrossRef]
- Liu, Y.; Huey, B.D.; Ziatdinov, M.A.; Kalinin, S.V. Physical discovery in representation learning via conditioning on prior knowledge: Applications for ferroelectric domain dynamics. arXiv 2022, arXiv:2203.03122. [Google Scholar] [CrossRef]
- Jindal, S.; Manhas, S.K.; Balatti, S.; Kumar, A.; Pakala, M. Scaling behavior of ferroelectric FET with reduction in number of domains in ferroelectric layer. Jpn. J. Appl. Phys. 2022, 61, SC1030. [Google Scholar] [CrossRef]
- Kim, K.E.; Jang, B.K.; Heo, Y.; Hong Lee, J.; Jeong, M.; Lee, J.Y.; Seidel, J.; Yang, C.H. Electric control of straight stripe conductive mixed-phase nanostructures in La-doped BiFeO. NPG Asia Mater. 2014, 6, e81. [Google Scholar] [CrossRef] [Green Version]
- Arpan, B.; Anna, N.M.; Maxim, Z.; Eugene, A.E.; Sergei, V.K. Ferroelectrics everywhere: Ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 2021, 130, 044101. [Google Scholar] [CrossRef]
- Schroeder, U.; Park, M.H.; Mikolajick, T.; Hwang, C.S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 1–17. [Google Scholar] [CrossRef]
- Thouless, D. Topological Quantum Numbers in Nonrelativistic Physics. Int. J. Mod. Phys. B. 1997, 11, 3319–3327. [Google Scholar] [CrossRef]
- Makarov, D.; Volkov, O.M.; Kákay, A.; Pylypovskyi, O.V.; Budinská, B.; Dobrovolskiy, O.V. New dimension in magnetism and superconductivity: 3D and curvilinear nanoarchitectures. Adv. Mater. 2022, 34, 2101758. [Google Scholar] [CrossRef] [PubMed]
- Narang, P.; Garcia, C.A.; Felser, C. The topology of electronic band structures. Nat. Mater. 2021, 20, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yuan, S.; Hou, Z.; Tang, Y.; Zhang, J.; Wang, T.; Li, K.; Zhao, W.; Liu, X.; Chen, L.; et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 2021, 33, 2000857. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Williams, J.R.; Cha, J.J. Topological nanomaterials. Nat. Rev. Mater. 2019, 4, 479–496. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Tian, G.; Li, P.; Zhao, L.; Zhang, F.; Yao, J.; Fan, H.; Liu, J.M. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 2017, 3, e1700919. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.L.; Zhu, Y.L.; Ma, X.L.; Borisevich, A.Y.; Morozovska, A.N.; Eliseev, E.A.; Wang, Y.J.; Xu, Y.B.; Zhang, Z.D.; Pennycook, S.J. Observation of a periodic array of fluxclosure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547–551. [Google Scholar] [CrossRef]
- Biswas, A.K.; Ahmad, H.; Atulasimha, J.; Bandyopadhyay, S. Experimental demonstration of complete 180° reversal of magnetization in isolated Co nanomagnets on a PMN-PT substrate with voltage generated strain. Nano Lett. 2017, 17, 3478–3484. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Cantoni, M.; Kruchkov, A.; Rajeswari, J.; Magrez, A.; Carbone, F.; Rønnow, H.M. In situ electric field skyrmion creation in magnetoelectric Cu2OSeO3. Nano Lett. 2018, 18, 5167–5171. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Chen, D.; Fan, H.; Li, P.; Fan, Z.; Qin, M.; Liu, J.M. Observation of exotic domain structures in ferroelectric nanodot arrays fabricated via a universal nanopatterning approach. ACS Appl. Mat. Inter. 2017, 9, 37219–37226. [Google Scholar] [CrossRef]
- Schilling, A.; Byrne, D.; Catalan, G.; Webber, K.G.; Genenko, Y.A.; Wu, G.S.; Scott, J.F.; Gregg, J.M. Domains in Ferroelectric Nanodots. Nano Lett. 2009, 9, 3359–3364. [Google Scholar] [CrossRef]
- McGilly, L.J.; Schilling, A.; Gregg, J.M. Domain Bundle Boundaries in Single Crystal BaTiO3 Lamellae: Searching for Naturally Forming Dipole Flux-Closure/Quadrupole Chains. Nano Lett. 2010, 10, 4200–4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuaid, R.G.P.; McGilly, L.J.; Sharma, P.; Gruverman, A.; Gregg, J.M. Mesoscale Flux-Closure Domain Formation in Single-Crystal BaTiO3. Nat. Commun. 2011, 2, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tan, C.; Liu, C.; Gao, P.; Sun, Y.; Chen, P.; Li, M.; Liao, L.; Zhu, R.; Wang, J.; et al. Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure. Proc. Natl. Acad. Sci. USA 2020, 117, 18954–18961. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Xu, G.; Kamlah, M.; Zhang, T.Y. An isogeometric approach to flexoelectric effect in ferroelectric materials. Int. J. Solids Struct. 2019, 162, 198–210. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y. Stability of polarization vortices within two interacting ferroelectric nanoparticles. Phys. Lett. A 2011, 375, 1019–1022. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.B.; Zhong, X.L.; Wang, F.; Wang, L.J.; Zhou, Y.C. Effect of surface tension on electrocaloric effects in the ferroelectric nanomaterial with vortex domain structures. J. Appl. Phys. 2013, 114, 44301. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.B.; Zhong, X.L.; Wang, F.; Zeng, Y.K.; Zhou, Y.C. The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. Europhys. Lett. 2013, 102, 47004. [Google Scholar] [CrossRef]
- Lue, H.T.; Wu, C.J.; Tseng, T.Y. Device modeling of ferroelectric memory field-effect transistor (FeMFET). IEEE Trans. Electron. Devices 2002, 49, 1790–1798. [Google Scholar] [CrossRef]
- Ye, C.; Wang, J.B.; Li, B.; Zhong, X.L. Giant electrocaloric effect in a wide temperature range in PbTiO3 Nanoparticle with double-vortex domain structure. Sci. Rep. 2018, 8, 293. [Google Scholar] [CrossRef]
- Zheng, X.J.; Sun, J.; Zhang, J.J.; Tang, M.H.; Li, W. Evaluation of capacitance-voltage characteristic and memory window of metal-ferroelectric-insulator-silicon capacitors. Appl. Phys. Lett. 2008, 93, 213501. [Google Scholar] [CrossRef]
- Miller, S.L.; McWhorter, P.J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 1992, 72, 5999–6010. [Google Scholar] [CrossRef]
- Zheng, C.; Ting-Ao, T. A CV model of ferroelectric thin film capacitor. Ferroelectrics 1997, 197, 111–114. [Google Scholar] [CrossRef]
- Lue, H.T.; Wu, C.J.; Tseng, T.Y. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory. IEEE Trans. Sonics Ultrason. 2003, 50, 5–14. [Google Scholar] [CrossRef]
- Qin, Y.; Xiong, Y.; Tang, M.; Li, K.; Yan, S.; Zhang, W.; Yin, Y.; Chen, Y.; Li, Z.; Zhou, Y. Simulation of FeFET-Based Basic Logic Circuits and Current Sensing Amplifier. Integr. Ferroelectr. 2015, 167, 52–61. [Google Scholar] [CrossRef]
- Yan, S.C.; Lan, G.M.; Sun, C.J.; Chen, Y.H.; Wu, C.H.; Peng, H.K.; Lin, Y.H.; Wu, Y.H.; Wu, Y.C. High speed and large memory window ferroelectric HfZrO2FinFET for high-density nonvolatile memory. IEEE Electron. Device Lett. 2021, 42, 1307–1310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Tan, P.; Wang, F.; Li, B. Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation. Crystals 2022, 12, 786. https://doi.org/10.3390/cryst12060786
Huang J, Tan P, Wang F, Li B. Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation. Crystals. 2022; 12(6):786. https://doi.org/10.3390/cryst12060786
Chicago/Turabian StyleHuang, Jing, Pengfei Tan, Fang Wang, and Bo Li. 2022. "Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation" Crystals 12, no. 6: 786. https://doi.org/10.3390/cryst12060786
APA StyleHuang, J., Tan, P., Wang, F., & Li, B. (2022). Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation. Crystals, 12(6), 786. https://doi.org/10.3390/cryst12060786