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Abstract: We demonstrate the fabrication and complete characterization of vertical molecular tunnel-
ing junctions based on graphene heterostructures, which incorporate a control series of arylalkane
molecules acting as charge transport barriers. Raman spectroscopy and atomic force microscopy
were employed to identify the formation of the molecular monolayer via an electrophilic diazonium
reaction on a pre-patterned bottom graphene electrode. The top graphene electrode was transferred
to the deposited molecular layer to form a stable electrical connection without filamentary damage.
Then, we showed proof of intrinsic charge carrier transport through the arylalkane molecule in the
vertical tunneling junctions by carrying out multiprobe approaches combining complementary trans-
port characterization methods, which included length- and temperature-dependent charge transport
measurements and transition voltage spectroscopy. Interpretation of all the electrical characteriza-
tions was conducted on the basis of intact statistical analysis using a total of 294 fabricated devices.
Our results and analysis can provide an objective criterion to validate molecular electronic devices
fabricated with graphene electrodes and establish statistically representative junction properties.
Since many of the experimental test beds used to examine molecular junctions have generated large
variation in the measured data, such a statistical approach is advantageous to identify the meaningful
parameters with the data population and describe how the results can be used to characterize the
graphene-based molecular junctions.

Keywords: molecular junction; graphene electrode; charge tunneling; transition voltage spectroscopy

1. Introduction

Molecular electronics has the intention of creating a molecular junction device based
on an individual molecule or its ensemble, whose current (I)−voltage (V) characteristics
show the signatures of conventional electronic components or offer new electrical behav-
iors at the molecular level [1–3]. A variety of electronic functionalities demonstrated by
molecular junctions, such as a diode [4], transistor [5], memory [6], photo-switching [7],
and thermoelectric device [8], have been hitherto reported, which constitute a prospective
component for future nanoscale electronic systems, as well as offer an ideal platform to
explore new physical properties that occur in the charge transport through molecular sys-
tems. However, many challenges still have to be resolved for the technological applications
and full understanding of molecular charge transport. The ensemble molecular junction
(as opposed to a single-molecule junction) is typically built by sandwiching self-assembled
monolayers between two thin metallic films. Such vertical junction arrangement most
frequently involves the evaporative deposition of the top (second) metallic electrodes on
vulnerable molecular monolayers, which can give rise to conductive filament formation,
often leading to shorted circuit problems [9–12]. Comprehensive statistical studies on molec-
ular junctions fabricated by the direct vapor deposition of top metal atoms have shown
extremely low yields of working devices, frequently less than ~1% [12]. In this context,
various methods have been proposed to prevent filamentary paths or related damage to the
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ultrathin molecular layer, arising from the evaporated metal atoms. Many of these methods
take advantage of non-evaporative electrode systems using multilayer graphenes [13,14],
reduced graphene oxides [15], conducting polymers [16], non-Newtonian liquid metals [9],
or direct metal transfers [17]. Recently, the application of singe-layer graphenes (SLGs) to
an electrical contact material in the junctions has gained substantial interest because of their
outstanding mechanical, optical and electrical performance [8,18,19]. The SLG electrodes
provide the possibility of using unique quantum transport phenomena with the control of
Dirac points and high mobility [20]. They are also ultimately compatible with molecular
self-assembled monolayers via both a chemical linkage and noncovalent interaction [21,22],
offering a stable test bed to explore inherent molecular charge transport characteristics in
the junctions.

In the present study, we demonstrate the fabrication and full characterization of
vertical molecular tunneling junctions that incorporate a series of arylalkane monolayers
inserted between two SLG interlayer electrodes. Raman spectra of the graphene sheets,
deposited with aryl diazonium compounds and then modulated by the molecular doping
effect, indicated that the component molecules were successfully grafted onto SLGs. The
arylalkane monolayers can constitute prototypical molecular control series to corroborate
the valid junction formation, because the alkyl-based molecules with different lengths
have exhibited well-established charge transport pictures. The nearest molecular transport
orbital (HOMO or LUMO) remains far above or below the Fermi level (EF) of the electrode,
and, accordingly, coherent non-resonant tunneling can be reasonably expected as the
dominant conduction mechanism [23,24]. To investigate the transport behaviors of the
vertical molecular junctions in detail, we employed various kinds of characterization
techniques, including length- and temperature-dependent transport measurements and
transition voltage spectroscopy, which were performed with follow-up statistical analysis
for all the measured devices. Self-consistency for such multiprobe measurements validates
the observation of intrinsic molecular electronic properties in the junctions fabricated with
the graphene electrodes.

2. Experimental Details

Figure 1a illustrates a fabrication process for constructing a vertical molecular tunnel-
ing junction with two SLG interlayer electrodes. First, the bottom 50 nm-thick Au contact
lead with an adhesion layer of 5 nm-thick Ti was patterned on Si/SiO2 substrates using a
shadow mask and electron-gun evaporator at a deposition rate of ~0.2 Å/s (step 1). After
the treatment of O2 plasma to improve the surface wettability, chemical vapor deposition
(CVD)-grown SLGs (from Graphene Square, Pohang, Korea) on a Cu foil were transferred
to the substrates using a polymethyl methacrylate (PMMA)-mediated method [25]. Ther-
mal release tapes were attached to spin-coated PMMA films on the transferred graphene
sheet. The copper foil layers were removed with 20 g/L ammonium persulfate solution in
distilled water for 12 h. The remaining supporting tapes and PMMA films were eliminated
using warm acetone after the transfer process. Then, the bottom SLGs were patterned by
O2 plasma etching with a shadow mask (step 2). The arylalkane molecule of three different
lengths, indicated as C8, C10 and C12, respectively, according to the number of carbons
in the alkyl chain, was covalently grafted to the bottom SLGs (step 3). For molecular
self-assembly, the samples were immersed in 10 mM arylalkane diazonium solution in
dimethylformamide (DMF) for over 12 h in a N2 glove box (less than O2 level of 10 ppm).
Before further progress, they were thoroughly cleansed using DMF and dried inside the
glove box. Thereafter, the top SLGs and the contact lead of 50 nm-thick Au were formed on
the monolayers (steps 4 and 5) by repeating the same process as described previously when
constructing the bottom electrodes. Finally, the residual graphene layers and molecules
outside the active area of the junctions were removed using O2 plasma treatment with a
shadow mask to prevent the formation of a direct conducing pathway between the top and
bottom electrodes (step 6). Figure 1b shows an optical image of the fabricated device, where
the junction area, highlighted with a red dashed line, was estimated to be 250 × 250 µm2.
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The graphene layers in pristine condition and with arylalkane molecules were characterized
using Raman spectroscopy (NOST, FEX, Seongnam, Korea) and atomic force microscopy
(AFM) (Park Systems, XE7, Suwon, Korea). The electrical characterization was carried out
using parameter analyzers (Keithley, 4200A-SCS, Solon, OH, USA) and cryogenic probe
stations (Lake Shore Cryotronics, Model TTPX, Westerville, OH, USA).
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Figure 1. (a) Illustration of the fabrication process (step 1 to step 6) of the vertically stacked
graphene/arylalkane/graphene device. (b) Optical image of a complete device. Red dashed square
denotes the area of an active junction, which was estimated to be 250 × 250 µm2. (c) Schematic of the
device structure in a cross-sectional view. The component molecule in the junction is C8.

3. Results and Discussion

The arylalkane molecules were self-assembled on the patterned bottom SLGs by a
dediazonization process of sp2 hybridization carbon networks, which can form a robust
covalent C−C bond between the molecules and graphene basal planes [21,22]. contrary,
the top end of the molecular monolayers was contacted with the top SLGs by means of
van der Waals interactions. Figure 1c illustrates the schematic of the complete device
structure in a cross-sectional view. The arrangement based on vertically stacked graphene
heterostructures showed excellent stability for high-yield devices (>80%) and successive
electrical measurements. By performing a line profile analysis of the AFM topographical
images (Figure S1 in the Supplementary Materials), the heights of a pristine and C10-
grafted graphene layer transferred to the SiO2 surface were measured as 0.5 nm and 2.5 nm,
respectively. The height difference of ~2 nm reasonably confirmed the monolayer formation
on SLGs, as compared to the molecular length estimated from ChemDraw (CambridgeSoft,
Cambridge, MA, USA).

Raman spectroscopy has been extensively used as an analytical technique for the
non-destructive investigation of SLGs and their derivatives decorated with the organic
molecules [26,27]. We measured the Raman spectra of the pristine and arylalkane-grafted
graphenes transferred on the substrates, as shown in Figure 2, which were obtained at
10 different spots with a 532 nm laser. The assigned peak position and intensity in each
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spectrum were determined by Lorentzian function. The spectrum of the pristine graphene
sheet entirely concurred with previously reported results [26], where two prominent peaks
of G band (1582 cm−1) and 2D band (2675 cm−1) appeared. The omission of D band
(1350 cm−1), typically induced by disorder or defects in the graphene basal plane [27],
implied that the CVD graphene was of good quality. A large Raman intensity ratio between
2D and G bands (I2D/IG > 2.4) indicated that the transferred graphene film was a single
layer [28]. Noticeably, the Raman peak corresponding to D band appeared after the
attachment of the arylalkane molecules to SLGs. The D peak can be caused by increased
defects resulting from the formation of a covalent C–C sp3 bond between the molecules
and SLGs [22]. After molecular deposition, we also observed that the intensity ratio of
the 2D band against the G band (I2D/IG) decreased, and the position of the G peak was
downshifted (Figure S2 in the Supplementary Materials). It has been reported that such
a decrease in the ratio of I2D/IG results from a molecular doping effect and G peak’s
shift to lower frequency, namely, softening of the G band indicates electron donating on
graphene [29]. Collectively, our observation in the Raman spectra consistently showed the
signatures of molecular layer formation on SLGs.
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Figure 2. Raman spectra of pristine and arylalkane (C8, C10 and C12)-grafted graphenes transferred
to SiO2 surface.

The alkyl chains with different lengths constitute an important control series in molec-
ular junctions, because a coherent picture has been clearly established for the non-resonant
tunneling mechanism and length-dependent transport characteristics with the alkyl-based
molecules [2,12,23]. We performed electrical measurements on a total of 294 fabricated
devices (78 for C8, 105 for C10, and 111 C for 12), excluding open- or short-circuit failures
(38 devices). The current density (J)−voltage (V) data collected by measuring enough
devices provided the statistical picture of molecular electronic properties in the vertical
junctions. Figure 3a displays the current density histograms of C8, C10 and C12 junctions
measured at 2 V, which fitted well with the Gaussian curves. The intact statistics, without
any device selection, showed that the J values were log-normally distributed. The peak
positions of Gaussian curves in the histograms represented the most probable value of
the current density for each junction, manifesting distinct molecular length dependency.
We note that the log-normal distribution derives from the primary factor exponentially
affecting the current density. It would probably be the variation in the tunneling distance
that can be influenced by the detailed microscopic configurations, such as a molecular
binding site and conformation in the junctions [2]. Such a result was not monitored in
the graphene–graphene structure with the absence of component molecules, but rather its
histogram indicated Gaussian distribution at the linear scale (not shown here). Figure 3b
displays the statistically representative J−V curve on a log scale, which was generated
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by averaging the junctions within three sigma (3σ) regimes of the Gaussian distribution
in Figure 3a [30]. The error bar indicates standard deviation from the averaged J value.
The current density of the molecular junctions appeared to be much lower than that of
the direct graphene–graphene (Gr–Gr) contact (top data in Figure 3b). For the shortest
C8 junction, it was reduced by a factor of ~103 in A/m2 unit, denoting the formation of
a transport barrier sandwiched between two SLGs. In addition, Figure 3b shows that the
current density of the molecular junctions rapidly decreased as the number of carbons in
the alkyl chains increased, which accorded with the characteristic of tunneling [23].
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of Gaussian distribution. The error bars denote the standard deviation for averaging. (c) Plots of ln(J)
versus the number of carbons at different voltages. β is determined by the slopes of the linear fits.
(d) Plots of the β values from −1 V to 1 V. Error bars denote the uncertainty about the linear fits.

To investigate the length-dependent charge transport of the junctions in more detail,
we presented the semi-log plot of current density (−1 to +1 V) as a function of the molecular
length, as shown in Figure 3c. Within the simplified Simmons model for trapezoidal barrier
approximation, the molecular tunneling junction is typically described by J ∝ exp(−βd),
where β is the tunneling decay coefficient and d is the molecular length. β mathematically
scales with the square root of the barrier height and quantifies the decay of the tunneling
probability with increasing d [23], depending on the molecular structure. Furthermore,
the decay coefficient is reproducible across various experimental platforms [24], which
can accordingly provide a valuable benchmark for the formation of a valid molecular
junction. Figure 3c reveals an apparent exponential relationship existing between J and
d, corresponding to J ∝ exp(−βd), where the tunneling decay parameter was obtained
from the slopes of the linear fits in Figure 3c. As plotted in Figure 3d, the β values were
estimated to be 1.04 to 1.12 per carbon (equal to 0.83 to 0.89 Å−1). The error bar denotes
uncertainty about the linear fits. These β values were reasonably consistent with those



Crystals 2022, 12, 787 6 of 10

observed in conventional metal/alkyl-containing monolayer/metal junctions [16,23,24].
Despite still being within the range of uncertainty, a subtle reduction in β with increasing
voltage may be ascribed to a large electric field-induced barrier lowering in the tunneling
junctions [31]. It is also noteworthy that a few recent studies on the rough topographic
condition of the bottom electrodes have shown a significantly lower β value (~0.5 Å−1),
even for alkyl-based junctions [7,32]. In this context, we checked the surface roughness
of a graphene layer transferred on the oxidized Si substrate using AFM (Figure S3 in the
Supplementary Materials). The root mean square (r.m.s.) roughness was estimated to
be ∼0.14 nm. Such a smooth graphene surface would be desirable to obtain an accurate
β value.

The independence of J−V characteristics on temperature variation is a well-known ver-
ification of charge tunneling, because it can eliminate many of the other thermally activated
transport mechanisms, for example, thermionic emission or hopping conduction [11,23].
The temperature-variable measurement (80 to 280 K) of J−V curves on C8 junctions is
shown in Figure 4a. Figure 4b displays corresponding Arrhenius plots and logarithmic
J versus inverse temperatures, transformed from the data in Figure 4a. No temperature
dependency of the J−V characteristics was clearly confirmed. This result demonstrates
that the charge transport occurred by tunneling via the molecular monolayer incorporated
into two SLGs. A coherent and clear picture of non-resonant tunneling has, so far, emerged
for alkyl-based molecular junctions, because the EF easily lies in the large HOMO−LUMO
gap (8~10 eV) of the very short molecule [2,24].
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Transition voltage spectroscopy (TVS) facilitates an evaluation of the difference (|ε0
− EF|) between the nearest molecular energy level (ε0) and EF [33,34], which refers to
the height of a transport barrier in the junctions, by estimating the transition voltage (Vt)
to produce an inflection point of the nonlinear Fowler—Nordheim (FN) plot, namely,
ln(J/V2) versus 1/V (see the Supplementary Materials for details). Since its first intro-
duction [33], TVS has become a prevailing analytical technique to study the energy level
alignment in molecular junctions, due to its simplicity and validity. Interpretation of the FN
curves based on the Landauer transport model showed that such inflection can take place
when ε0 (HOMO for this case) is quite close to a resonance position by the bias voltage
(Figure 5a) [35], where it seems to be in the Lorentzian shape broadened by the coupling
with electrodes [30]. Accordingly, a measurement of Vt offers experimental approximation
to |ε0− EF|. Figure 5b shows the representative TVS analysis of C8, C10 and C12 junctions.
The minimum point on the FN curves refers to Vt (as marked by arrows). A TVS histogram
of the inflection events was constructed from these minimum values (Figure 6a–c), in which
the Gaussian distribution showed no significant asymmetry for the bias polarity. This effect
was observed in the molecular junctions, which have comparable coupling strengths for
both molecule–electrode contacts [34], thus indicating that the graphene-based vertical
molecular junctions can provide good stability for the top physical contacts via van der
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Waals interactions [36]. A graphical summary of the TVS measurement on the arylalkane
junctions is shown in Figure 6d. It can be clearly observed that the average of Vt (point data
with error bar) fell within the standard deviation (dashed lines) of the values measured in
each junction. This result demonstrated that Vt was not dependent on the molecular length.
Similarly, a study of ultraviolet photoelectron spectroscopy using alkyl thiol monolayers
on the Au surface showed that the energy offset (|εHOMO − EF|) of HOMO and EF was
independent of the alkyl chain’s length [33]. The constancy of Vt in alkyl-based molecular
junctions with variable lengths exactly coincided with the Landauer transport model of
TVS, where it was invariant for constant |ε0 − EF| [37], whereas it decreased as the tun-
neling gap in a molecule-free vacuum junction increased, complying with the Simmons
model [38]. Consequently, the findings of the TVS analysis presented further evidence of
molecular barrier formation in the vertical tunneling junctions.
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4. Conclusions

In summary, we reported an alternative molecular device architecture using graphene
heterostructures. Our prototype devices were the SLG electrode-based molecular junctions
with arylalkane molecules acting as a vertical tunneling barrier. They, indeed, exhibited
intrinsic molecular charge transport characteristics with a working device yield of more
than 80% among all the fabricated devices. Such devices have considerable potential for a
versatile test platform in molecular electronics. We showed inherent molecular contribution
to the charge tunneling in the junctions by accomplishing various characterization tech-
niques: (1) intact statistical analysis, (2) J−V curves independent of temperature variation,
(3) accurate exponential decay of the current density with the length of alkyl chains, and
(4) the TVS analysis coincided with the Landauer transport model, which fully demon-
strated that arylalkane molecules acted as a controllable transport barrier in the vertical
junctions, by which one can constitute a valid molecular electronic device with SLG elec-
trodes. The intrinsic tunneling characteristics indicate that the integrity of the component
molecular layer as a tunnel barrier is preserved in the fabricated device, and the charge
transport is not dominated by defects and imperfections. As demonstrated by our find-
ings, the graphene contacts effectively protect the molecular layer from penetration of the
evaporated metal atoms and preserve its integrity in the junction, offering a reliable test
platform for molecular charge transport characterization. In addition, the application of
a back-gate electrode to the graphene-based molecular junctions, to actively control the
tunneling transport, suggests promising avenues for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12060787/s1, Figure S1: AFM topographical images and
line profile analyses; Figure S2: Intensity ratio and shift of Raman peak; Figure S3: Surface roughness;
Figure S4: Representative J−V curves of C10 and C12 junctions.
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