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Abstract: The uniaxial tensile loading tests of coarse-grained D6A steel (CG, d = 20 µm) and fine-
grained D6A steel (FG, d = 1.5 µm) were performed using a material testing machine and rotating
disk Hopkinson tension bar, respectively. The stress–strain curves of two steels at different strain
rates (0.001~1500 s−1) were obtained. Results show that grain refinement effectively improves the
strength of FG steel, which is achieved by high-density of grain boundaries and cementite particles
hindering the movement of dislocations. In the strain rate range of the test, the strain rate sensitivity
of FG D6A steel decreases, which is considered to be the result of the athermal stress that independent
of the strain rate becomes the dominant part of the total stress. Combined with the experimental
data, the parameters of the Johnson–Cook (J–C) constitutive model were calibrated. The stress–strain
curves obtained by simulations are in good agreement with those from tests. These results may
provide an important experimental reference and theoretical basis for the application of FG D6A steel
in various fields.

Keywords: fine-grained D6A steel; fine grain strengthening; strain rate sensitivity; Johnson–Cook
constitutive model; finite element simulation

1. Introduction

The production, use and performance improvement of steel materials are important to
develop industrialization. For thousands of years, steel has been widely used in various
engineering fields such as civil engineering, chemical engineering, aerospace and weaponry,
and has profoundly affected the quality of human life. In recent years, aerospace materials
continue to evolve, new materials represented by graphene, carbon fiber and rare earth
elements are favored by researchers, but they still cannot surpass high-property steel in
terms of material strength, impact toughness and production cost. In the future, ultra-
high-strength steel will still be an indispensable material for load-bearing components
such as aircraft landing gear, wing spars, and engine crankshafts. In order to meet the
rapid development needs of the aviation industry, it is necessary to deeply explore the
strengthening mechanism and application prospects of advanced steel materials.

Due to the lightweight and safety requirements of aircraft design, materials with high
strength and toughness will be the first choice for airframe components. Ultra-fine-grained
(UFG) steel has both ultra-high strength, good toughness [1] and low production cost,
which has great application potential in the aviation industry. At present, scholars in
China and abroad have carried out extensive research on the preparation process and
mechanical properties of UFG steel. Pang [2] investigated the strengthening mechanism
of low-temperature annealed UFG steel, and believed that grain refinement was the most
effective method to simultaneously improve the strength, plasticity and impact toughness
of the material. The strengthening of the experimental steel was not only the result of
the interaction between dislocations, but also the interaction of grain boundaries and
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dislocations. Park [3] found that when the grains are refined to less than a few microns,
the strength can be effectively improved. However, the material almost loses the work
hardening ability, and its yield ratio is close to 1. Liu et al. [4] studied the effects of strain
rate and temperature on the dynamic mechanical behavior of UFG IF steel. They found
that UFG IF steel has low strain rate sensitivity and strong temperature sensitivity within
a certain temperature range (−70 ◦C–100 ◦C). To sum up, the mechanical behavior of
UFG steel is closely related to the microstructure (e.g., grain size) and loading conditions
(e.g., strain rate, temperature).

Aircraft often face high-speed impact during landing, so it is of great significance to
study the dynamic mechanical properties of structural component materials. At present,
establishing a macroscopic phenomenological constitutive model or modifying the existing
phenomenological model is the main method to describe the mechanical behavior of
UFG materials. Khan [5] modified the Johnson–Cook (J–C) to describe the flow stress of
nanometallic materials by introducing the Hall-Petch relationship between yield stress and
grain size. Zheng et al. [6] introduced the grain size effect on the basis of the J–C model, and
then superimposed it with the Armstrong-Frederick nonlinear hardening law. Finally, they
proposed a mixed hardening model for UFG materials, which can simultaneously reflect
the nonlinear hardening, grain size effect, strain hardening effect and strain rate effect of the
material. Based on the modified hyperbolic sine Arrhenius equation, Wang [7] established a
constitutive model capable of simulating high temperature micro-compression deformation
of UFG pure aluminum. Therefore, building a constitutive model capable of describing
large plastic deformation is the basic to promote the practical application of advanced
steel materials.

D6A steel is a low-alloy high-strength steel that has been widely used in solid rocket
casings, aircraft landing gear, warhead casings and other fields. Shen et al. [8–12] prepared
micron-scale fine-grained (FG) D6A steel by using hot rolling and annealing, and analyzed
the influence of grain size and nano-precipitation relative to the strength and toughness of
FG steel. Grain refinement strengthening, precipitation phase strengthening and texture
strengthening are the main mechanisms for the high strength of the investigated steels.
Currently, several studies have extensively investigated FG D6A steel, and most of them
focus on the preparation process and microstructure evolution. However, its mechanical
behavior at dynamic loading was rarely reported. The present study aims to provide
experimental and theoretical reference for the use of FG D6A steel in the aviation field.

2. Experimental Materials and Test Methods

The experiment material is D6A coarse-grained (CG) steel, which was produced by
Baosteel Group. The D6A steel was forged into a slab with 110 mm in length, 60 mm in
width, and 60 mm in thickness. First, in the process of hot rolling, the steel plate was
heated to 1100 ◦C for 3 h, and then hot-rolled to a thickness of 10 mm after six passes.
Then, the plate underwent two-phase warm rolling at 760 ◦C via two passes with ~25%
reduction in each pass, and annealing at 660 ◦C for 20 min after each pass. After hot rolling
and two-phase annealing, FG D6A steel samples were obtained. The nominal chemical
composition of the steel, measured by using chemical analysis, is listed in as Table 1. The
microstructure of FG D6A steel before deformation was characterized by scanning electron
microscope (SEM) after polishing and acid leaching. As shown in Figure 1, the investigated
steel is mainly composed of gray-black ferrite matrix (F) and white granular cementite
(Fe3C). During the hot rolling process, a large amount of spherical cementite precipitates
from the grain boundary and is evenly distributed on the ferrite matrix.

Table 1. Chemical composition of the D6A steel (mass fraction%).

C Si Mn Cr Mo Al Ni V Fe

0.43 0.17 0.73 1.05 1.01 0.02 0.61 0.09 Bal
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Figure 1. SEM images showing the microstructural characteristics of FG D6A steel.

Figure 2 shows the microstructure of FG steel obtained from electron backscatter
diffraction (EBSD) microscopy. At the same time, the EBSD observation data were sta-
tistically sorted by Origin software, and the columnar distribution of grain size was ob-
tained, as shown in Figure 3a,b. The grain size of CG and FG D6A steel was 20 µm and
1.5 µm, respectively.
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Figure 3. Grain size distributions of D6A steel: (a) CG D6A steel; (b) FG D6A steel.

Uniaxial tensile tests were carried out on the specimens at room temperature. Quasi-
static tensile experiment was performed on a material testing machine and dynamic tensile
test was carried out on a rotating disk Hopkinson bar. The steel was prepared into a
sheet specimen and connected with the loading device by gluing. Figure 4a,b show the
experimental device and specimen. Dynamic uniaxial tensile tests were conducted at
various strain rates (

.
ε) (400~1500 s−1) by using short metal rods with different sizes (8, 10

and 12 mm). For comparison, similar tensile experiments were performed on CG steel.
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Hopkinson bar; (b) steel specimens.

3. Experimental Results and Discussion

The experimental data were processed by the signal acquisition system embedded in
the equipment and transformed by Origin software to obtain the stress–strain curves of the
steel under different strain rates.

Figure 5a shows the representative stress–strain curves of the as-prepared CG steel,
which was tested at room temperatures of 25 ◦C at a strain rate (

.
ε) of 0.001 s−1, and the

experiment was repeatable. The quasi-static tensile yield strength of FG D6A steel is
approximately 980 MPa (curve turning point in the figure), which is significantly improved
compared with that of existing CG steel (390 Mpa [9]).
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Figure 5. Stress–strain curves of the investigated steel under different strain rates: (a) quasi−static
loading; (b) dynamic loading.

The dynamic tensile tests of the CG (
.
ε = 520, 880, 1660 s−1) and FG (

.
ε = 420, 860,

1540 s−1) D6A steel were carried out, and the obtained stress–strain curves are shown
in Figure 5b. It is worth noting that the first peak stress can be regarded as material
strength under dynamic loading (as indicated by the dots in the figure). In this experiment,
the dynamic strength of CG steel is about 800 MPa, whereas that of FG steel is over
1300 Mpa. The strength of the investigated steel at various strain rates are shown in Table 2.
In summary, grain refinement effectively improves the static and dynamic strength of
D6A steel.

Table 2. Tensile mechanical properties of D6A steel at room temperature.

Temperature/◦C Grain Size Strain Rate/s−1 Strength/Mpa

25

FG

0.001 980
420 1245
860 1295
1540 1378

CG

0.017 390
520 838
880 800
1660 835

Similar to CG steel, the grains of FG steel still exhibit typical crystallographic charac-
teristics, and the microstructure profoundly affects the macroscopic mechanical behavior
of materials. High-density grain boundaries have a strong constraint on dislocation slip,
which is mainly caused by grain boundary obstacles and the orientation difference between
adjacent grains. Due to the disordered arrangement of atoms at grain boundaries, the shear
stress required for dislocation slip here increases suddenly. Furthermore, grains in different
orientations will restrict mutual deformation, which makes it difficult for slip to proceed
along the same crystal axis and eventually increases the critical shear stress of slip. Figure 6
shows that when the external force is not large enough to overcome the obstacle effect of
grain boundary, the intragranular dislocation cannot continue to slip through the grain
boundary to the adjacent crystal. With the accumulation of deformation, dislocations gather
at the grain boundary and tangle with each other to produce dislocation pile-up groups,
resulting in local stress concentration (shown in the red symbol), thereby improving the
macroscopic strength of the investigated steel.
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In addition, the deformation of FG steel can spread to more grains, so the stress
distribution is more uniform than that of CG steel. Therefore, it is difficult for micropores
and cracks to initiate and propagate, which ultimately increases the strength of the material.

Through microscopic observation, a large number of nano-scale cementite particles
are found to be uniformly dispersed on the FG D6A steel matrix, as shown in Figure 2.
The strength of the material is effectively improved by introducing nano-scale precipitates,
which have been widely used in metal materials. Essentially, precipitation strengthening is
achieved by generating small, high-hardness second-phase particles that hinder dislocation
motion. At the same time, the interaction between cementite and dislocations is also
enhanced, thereby strengthening the metal without greatly affecting the stiffness of the
material [13]. Dislocations cannot shear hard cementite particles. In this case, dislocations
will bypass particles through Orowan ring or cross-slip [14]. The strength increment is
closely related to the volume fractions and size of the precipitated phase.

Figure 7 shows that the extrusion deformation between grains provides more nucle-
ation sites for cementite, and the local temperature rise generated by plastic deformation
also accelerates the nucleation process. Fresh dislocations appear around the cementite,
and the dislocation density increases uninterruptedly. With the accumulation of plastic
deformation, the degree of dislocation pile-up deepens. External force causes the cementite
particles to move gradually and gather at the grain boundary. Moreover, cementite has
a pinning effect on the grain boundaries, which makes it difficult for the grain boundary
slip between grains to proceed and aggravates the stress concentration. Therefore, the
interaction of dislocations, cementite and high-density grain boundaries results in FG D6A
steel with ultra-high strength.
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Figure 8 presents the strength changes of CG/FG steel under static and dynamic
tensile loading. D6A steel exhibits remarkable strain rate effect. As the strain rate changes
from quasi-static to dynamic, the material strength increases significantly.
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The fracture of the sample was observed by SEM to analyze the microstructure evolu-
tion of the investigated steel in the high-speed tensile test. Figure 9 shows the SEM image
of the FG D6A steel after dynamic tensile deformation. The comparison shows that the
microstructures under different strain rates are basically the same and mainly ferrite and
cementite. However, with the increase in strain rate, the deformation of ferrite structure
becomes increasingly intense, resulting in the increase in the total number of grains and
grain boundary density, which enhances the hindrance of dislocation movement, and thus
improves the dynamic strength of FG D6A steel.
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Two parameters are generally used to describe the strain rate sensitivity of materi-
als [15], namely the strain rate sensitivity coefficient m and the flow stress increment ∆σ.
Here, the strain rate sensitivity coefficient can be calculated as follows [16]:

m =

(
∂ln σ

∂ln
.
ε

)
T
≈ ln(σ2−σ1)

ln
( .
ε2−

.
ε1
) (1)
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where
.
ε is the strain rate and σ can be taken as the yield strength corresponding to different

strain rates. In addition, the flow stress increment ∆σ can be expressed as follows:

∆σ = σd − σs (2)

where, σd and σs are dynamic and static yield strength, respectively.
As shown in Table 3, the steel exhibits obvious strain rate effect in this experiment.

The strain rate sensitivity coefficient m of the original CG steel was about 0.822~0.976 at
room temperature, and the flow stress increment ∆σ was about 434 MPa. Compared with
the quasi-static yield strength, the dynamic strength more than doubled, and the stress
increment ratio reached 113.3%. The strain rate sensitivity coefficient m and flow stress
increment ∆σ of FG steel are 0.816~0.923 and 326 MPa, respectively. Although the strength
increment of FG steel under dynamic loading is slightly lower than that of the original CG
steel, the strength increase ratio is very small, only about 33.2%. Therefore, as the average
grain size decreases from 20 µm to 1.5 µm, the strain rate sensitivity of D6A steel shows a
weakening trend.

Table 3. Strain rate sensitivity index of D6A steel (0.001~1500 s−1).

Steel m ∆σ/MPa Stress Increment Ratio/%

CG 0.822~0.976 434 111.3
FG 0.816~0.923 326 33.2

The flow stress of UFG steel can be mainly divided into two parts [17]: thermal stress
and non-thermal stress. Thermal stress corresponds to the thermal activation movement,
which mainly overcomes the short-range barrier dependent on temperature and strain
rate. Non-thermal stress is related to the long-range obstacles that cannot be overcome
in the thermal activation process. The latter is almost independent of strain rate and
temperature but largely affected by grain size. Jia established the following mechanical
response function [18] in the study of UFG iron with BCC structure:

τ = τ0 + βd−1/2 + g(γ) + τ0

1 −
{

kT
∆Gk0

ln
( .

γk0
.
γ

)} 2
3

 (3)

The first three parts of the formula are the non-thermal stress dominated by initial lat-
tice resistance and grain boundary strengthening effect, where g(γ) is the strain hardening
coefficient. The last part named Peierls-Nabarro stress is related to the short-range barrier,
and it can be qualitatively judged that this stress component is related to the strain rate
but has no direct relationship with the grain size, that is, the strain rate-dependent stress
components have not changed greatly for different grain size steels. By contrast, when
the size of D6A steel decreases from 20 µm to 1.5 µm, the grain boundary area increases
greatly, and the non-thermal stress will occupy the main part of the flow stress. Therefore,
in the same strain rate range, the proportion of strain rate-related thermal stress reduces
gradually with the grain size refinement, and macroscopically, the strain rate sensitivity of
FG D6A steel is weaker than that of original CG steel.

Furthermore, compared with CG steel, the strain hardening ability of FG D6A de-
creases under dynamic loading, and plastic instability begins to occur after the stress reaches
the peak. This phenomenon deserves further study. Nevertheless, the stress softening
phenomenon of some UFG materials [15] did not appear in the D6A steel.

4. Johnson–Cook Constitutive Model and Parameter Fitting

Establishing the constitutive model that can describe the plastic deformation behavior
of materials is the premise of accurately simulating severe deformation processes such as
impact [19]. In order to promote the application of FG D6A steel in aviation and military
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fields, it is very important to find a constitutive model that can accurately describe its
dynamic deformation behavior. The J–C model has become the most widely used phe-
nomenological viscoplastic model for metallic materials due to its simple form and easy
promotion of engineering application. The J–C model well describes the relationship be-
tween flow stress and plastic strain, strain rate and temperature. Its classical mathematical
expression is as follows [20]:

σ =
(

A + Bεp
n)(1 + C ln

.
ε
∗)

(1 − T∗m) (4)

Therein, σ reflects flow stress; A, B and n are strain-related material parameters at
reference strain rates, where A is the yield strength. C is the coefficient describing the
strain rate strengthening effect, and m is the factor describing the thermal softening effect.
Here, εp is the equivalent plastic strain, and

.
ε
∗ is the dimensionless equivalent plastic strain

rate. T∗ represents dimensionless temperature. as the temperature rise caused by dynamic
loading is small, the thermal softening effect is not considered, so the value of m could be
equal to 0. Finally, the simplified J–C model equation is obtained as follows:

σ =
(

A + Bεp
n)(1 + C ln

.
ε
∗) (5)

The material mechanical properties under different processes are often quite different,
so it is necessary to determine the parameters combined with mechanical experiments.
When loading at the reference strain rate, the J–C model is further simplified to the Ludwik-
Hollomon formula [21]:

σ =
(

A + Bεp
n) (6)

According to the quasi-static loading stress–strain curve (Figure 5a), the yield strength
of FG D6A steel is approximately about 980 MPa, that is, A = 980. Logarithmic transforma-
tion of the above formula can be obtained:

ln(σ − A) = ln B + n ln εp (7)

Fit the curve of ln(σ − A) − ln εp. As shown in Figure 10a, its slope is n, and B is
obtained according to the intercept. Finally, the strain-related parameters can be calculated
as follows: B = 493, n = 0.625. After the aforementioned parameters are determined, select
the yield strength under different strain rates, and fit the curve. As shown in Figure 10b,
the slope is the strain rate hardening coefficient, and C = 0.026.
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In conclusion, the J–C model suitable for FG D6A steel at room temperature can be
obtained from the data, as follows:

σ =
(

980 + 493εp
0.625

)(
1 + 0.026 ln

.
ε
∗) (8)

A 3D specimen model is established, the size of which is consistent with the ex-
perimental specimen. The left end surface of the specimen is completely fixed, and the
right end surface is given velocity boundary conditions to simulate loading at different
strain rates. Hexahedral elements were selected for the mesh, and the mesh in the middle
was appropriately refined. Select the J–C model that was built in the software and input
the above-mentioned relevant parameters. Of note, the elastic modulus of FG D6A steel
is 210 GPa. Loading simulations at different strain rates were carried out in ABAQUS
software using explicit dynamic analysis type.

Figure 11a shows the nephogram of finite element tensile simulation results. As can
be observed, the specimen generates stress concentration in the middle. Calculate the
mechanical information of the middle part, plot the stress–strain curve and synchronously
compare with the experimental data, as shown in Figure 11b. The results indicate that the
stress value of the simulation results is basically consistent with the experimental data.
Several stress values under the same strain are selected from the experimental data and
the numerical simulation curve, and the comparison shows that the average error in the
hardening stage maintains within 15%. Therefore, the parameters accurately describe the
dynamic mechanical behavior of FG D6A steel at a certain range of strain rate in our tests.
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Figure 11. Finite element calculation results of tensile loading of FG D6A steel by using the J–C
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5. Conclusions

In this study, the quasi-static and dynamic mechanical properties of D6A steel were
investigated by using a material testing machine and rotating disk Hopkinson tension bar.
From the microscopic point of view, the influence of grain refinement on the macroscopic
mechanical properties of materials such as strength and work hardening ability was dis-
cussed, and the reasons for the decrease in strain rate sensitivity with the decrease in grain
size was analyzed simultaneously. The parameters of the classical J–C model were fitted
based on the experimental results. The relevant results can provide certain reference value
for promoting the practical application of FG D6A steel, as follows:

1. Grain refinement and cementite precipitation are the main reasons for the strength
improvement of FG D6A steel. High-density grain boundaries and hard precipitates
improve the strength of the material by hindering dislocation movement. In addition,
the investigated steel shows obvious strain rate effect, which is considered to be
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the result of grain crushing that further enhances the fine-grain strengthening effect
during dynamic loading.

2. Grain refinement reduces the strain rate sensitivity of the investigated steel. According
to the existing mechanical response model, the reason is that the non-thermal stress
related to grain size in the FG steel increases significantly and occupies the dominant
part of the total flow stress.

3. The J–C model suitable for FG D6A steel at room temperature was obtained as

follows: σ =
(
980 + 493εp

0.625)(1 + 0.026 ln
.
ε
∗). Combined with the finite element

calculation result, this model can effectively predict the dynamic mechanical behavior
of FG D6A steel.
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