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Abstract: Tailoring martensite transformation is critical for improving the mechanical properties of
advanced steels. To provide preliminary guidance for the control of martensite transformation be-
haviour using external fields by computational simulation method, the phase-field method was used
to calculate the morphology evolution, kinetics, and variant selection of the martensite transformation
under different loading modes and magnetic field intensities. The incubation, transformation, and
stable stages of the three variants based on the Bain strain group were investigated using different
kinetic curves. These results clearly indicate that both uniaxial tension and compression can greatly
promote the formation of martensite during the transformation stage and cause an obvious preferred
variant selection. In contrast, the different variants have relatively balanced forms under shearing
conditions. In addition, the magnetic field is a gentler way to form a state with balanced variants
than other techniques such as shearing. Additionally, all these simulation results are consistent
with classical martensitic transformation theory and thermodynamic mechanism, which proves the
rationality of this research. The aim of the present study was to provide qualitative guidance for the
selection of external fields for microstructural improvement in advanced steels.

Keywords: external field; phase field; phase transformation; simulation; transformation-induced
plasticity

1. Introduction

The transformation-induced plasticity (TRIP) effect is the core mechanism for ob-
taining a good combination of strength and ductility [1–6] in materials such as advanced
high-strength automotive steel [7–9] and cryogenic steels [10,11]. Therefore, to tailor
martensite characteristics using special pretreatment during steel preparation or evalu-
ate the performance of steels in different service environments, a deep understanding of
martensite transformation behaviour under external fields, such as different stress–strain
and electromagnetic fields, is of critical importance.

The effect of external fields on martensite transformation behaviour is a long-standing
topic, which has a rich foundation in previous research, especially the effect of the stress–
strain field [12–16]. Various studies have shown that many different factors of the loading
process affect martensite transformation behaviour, including the stress value, loading
temperature, strain rate, and loading mode. Different loading modes not only cause
substantially different martensite transformation kinetics, but also affect the mechanism
of nucleation, phase transformation sequence, and even variant selection [17–20]. First,
many studies on kinetics have shown that deformation in the tension test leads to a higher
amount of martensite transformation compared to that of the compression test [16,20].
In addition, most of these studies explain this phenomenon as due to the difference in
nucleation rates. Tension and rolling can provide more active slip systems, leading to a
higher number of shear band intersections for martensite nucleation [16]. In addition to
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nucleation, Hyunmin Kim et al. [13] investigated the tension–compression asymmetry of
martensitic transformation behaviour by conducting dynamic tensile and compressive
tests in 2015. Their investigation clearly shows that the γ→α’ transformation sequence
is inhibited by dynamic compressive loading because of the required additional molar
volume expansion; similarly, the γ→ε→α’ transformation sequence is probably promoted
by tensile loading. In addition, the effect of the deformation mode on variant selection
has also been analysed in several studies, but a more systematic approach is required for
firm conclusions [12,14]. Except for the stress–strain field, the effect of the electromagnetic
field on martensite transformation has been commonly studied using experimental meth-
ods to demonstrate its potential for tailoring martensite characteristics [21–23]. Recently,
Yuan et al. [21] systematically analysed the effects of both magnetic fields and austen-
ite grain sizes on martensitic transformation, including the martensite start temperature,
kinetics, nucleation, transformation sequence, and variant selection.

Based on qualitative experimental results, simulation methods were also built for fur-
ther quantitative guidance and predicting martensite transformation behaviour, especially
kinetics and variant selection [24–32]. With the exception of various classical constitu-
tive models such as the Olson–Cohen model [29,30], various studies on this topic have
focused on the phase-field method because of its advantage in describing morphology evo-
lution [27,28,31,32]. In 2000, Artemev et al. [27] simulated the effect of stress on martensite
transformation using a phase-field model based on the strain energy functional. Although
this preliminary attempt only focused on a single crystal system without considering
the self-coordination effect during the transformation, their study provides an example
of the quantitative analysis of martensite morphology evolution and variant selection
using simulation. Subsequently, Malik et al. [28] explored this topic for polycrystalline
iron-based alloys by coupling the micro-elastic and plastic deformation theories. A more
functional phase-field model was built to further analyse the effect of the deformation
mode, including uniaxial tensile, compressive, shear loading, and hydrostatic stresses.
Recently, various further research has focused on the topic of martensite transformation
simulation using the phase-field method and has reported exciting progress [33–35]. In
Ahluwalia et al.’s work [33], both elastic and plastic effects were considered in a phase-field
framework, and this helped to simulate the evolution of all the 24 transformation variants
in high-carbon steel. In Basak et al.’s work [34], martensitic transformation induced by the
matrix–precipitate interface was calculated using a thermodynamically consistent multi-
phase phase-field method. It can greatly help to tailor the cyclic martensitic transformations
in shape memory and elastocaloric alloys. Additionally, in Kundin et al.’s work [35], an
improved 3D microelastic-plastic phase-field model, which could be used to simulate a
butterfly-type martensitic transformation in a Fe–30 wt % Ni alloy, was successfully estab-
lished. All these recent works prove that the phase-field method is a vigorous method in
the field of martensite transformation simulation. However, few studies have modelled the
effect of the magnetic field on martensite transformation, and the phase-field models for the
different loading modes mentioned above artificially set the initial nucleation conditions,
which could partly affect the generality of the models.

In this study, a phase-field model was built to analyse the effect of different loading
modes and magnetic fields on martensite transformation behaviour, including both kinetics
and variant selection. This study provides a preliminary attempt to build models that guide
the tailoring of martensite characteristics using different external fields.

2. Computational Scheme

In this research, the phase-field model was coded using the FORTRAN language and
solved using Fourier transformation. The simulation was performed on a 128 × 128 × 1 mesh
after simulation space optimisation. The framework of the phase-field simulation in this



Crystals 2022, 12, 829 3 of 11

research is shown in Figure 1. The evolution equation for the martensitic transformation
based on the three Bain strain groups in this study is expressed as Equation (1).

∂ηi(r, t)
∂t

= −∑3
i=1 Lij·

(
δGch
δηj

+
δGel
δηj

+
δGgrad

δηj

)
, (1)

where Gch, Gel , and Ggrad are the chemical Gibbs free, elastic, and interface energies,
respectively, and Lij represents the kinetic coefficient, which is considered isotropic.
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where B is the interpolation function coefficient. 
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The bulk energy difference between austenite and martensite represents the driving
force. The Landau-type free energy equation was employed to describe the energy evolution
of the martensitic transformation, which is a function of the relevant physical variables and
temperature [36,37]:

Gch = A2

(
3

∑
i=1

η2
i (ηi − 1)2

)
+ A42∑

i 6=j
η2

i η2
j + A62 ∑

i 6=j=k
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i η2
j η2

k +
T − T0

T0
Q · H({ηi}), (2)

where ηi, ηj, and ηk are the phase-field variables; A2, A42, and A62 are the Landau coeffi-
cients; T0 is the temperature at which the Gibbs free energies between the austenite and
transformed martensite are equal; and H({ηi}) is the interpolation function:

H({ηi}) = B

(
3

∑
i=1

(
3η2

i − 2η3
i

))
, (3)

where B is the interpolation function coefficient.
According to Khachaturyan’s micro-elastic theory [27], the elastic strain energy gener-

ated during the phase transformation is expressed by Equation (4).

Gel =
1
2

Cijkl ·
(

εα
ij + δεel

ij − ε0
ij

)
·
(

εα
kl + δεel

kl − ε0
kl

)
, (4)

where Cijkl is a fourth-order elastic modulus tensor, εα
ij and εα

kl are the strains applied by

the external field to the system, δεel
ij and δεel

kl are the inhomogeneous elastic strain tensors,

and ε0
ij and ε0

kl are the intrinsic strain tensors.
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The interface between variants of martensite produce interfacial energy, owing to the
irregular arrangement of the structures. The interface energy is expressed by Equation (5).

Ggrad =
1
2 ∑3

p=1 βij(p)
∂ηp(r, t)

∂xi

∂ηp(r, t)
∂xj

, (5)

where βij is the interface gradient coefficient that is set as the isotropic interface property.
To simulate the magnetic field effect, another contribution term of the system free

energy related to the saturation magnetisation was added to Equation (1). This magnetic
energy, called Gmag, is expressed by Equation (6) [38]:

Gmag = −Vm∆Mµ0H, (6)

where Vm is the molar volume of austenite, µ0 is the vacuum permeability, H is the intensity
of the external magnetic field [39], and ∆M is the saturation magnetisation difference
between austenite and martensite; the saturation magnetisation value of the martensite
phase is much higher than that of the austenite phase; thus, MMAR

Sat is assumed to represent
∆M. The kinetic equations were solved in dimensionless units; thus, all the parameters
were normalised, and parameters related to the characteristic energy were normalised by
10−9 J/mol [36]. The values of the key parameters used in the simulations are listed in
Table 1 and Q* means the standard normalization value of Q.

Table 1. Values of the non-dimensional parameters in phase-field simulations.

Parameters Values Parameters Values

A2 0.1 Q* 0.35
A42 5.0 Vm 6.8× 10−6 m3/mol
A62 5.0 MMAR

Sat 1.18× 106 Am−1

T0 429 K µ0 4π × 10−7 N/A2

3. Results

This section is divided into subsections. A concise, precise description of the experi-
mental results, their interpretation, and the experimental conclusions that can be drawn
is provided.

3.1. Effect of the Loading Mode on Martensite Transformation Behaviour

The phase-field simulation starts with the austenite phase in a face-centred cubic (FCC)
crystal structure. Random martensitic nucleation initiates the phase transformation, and,
as a result, the parent phase with the FCC structure transforms into a new phase with a
body-centred cubic crystal (BCC) structure. In reality, the FCC coherent transformation
of the {111}γ plane leads to 24 different orientation variants. For simplicity, according to
the crystallographic orientation relationship between FCC and BCC structures, the BCC
structure is produced using three different deformations of the original FCC lattices. Thus,
these different deformations are associated with three particular variants of the Bain strain.
The three Bain variants are labelled by their deformation axes {xyz} [36,40].

In this study, different loading modes including uniaxial tension, uniaxial compression,
and shearing were simulated. Figure 2 shows a qualitative comparison of the variant
morphologies for the different loading modes. The white, blue, and pink phases represent
variants 1, 2, and 3, respectively, of martensite. The black phase is austenite. As shown
in Figure 2a, a multi-variant nucleation method was adopted in this simulation, and
nine martensite nuclei were randomly created in the simulation domain. After 40 time
steps, different variant selection trends are clearly shown in the different loading modes
(Figure 2b–d). In particular, for uniaxial compression (Figure 2c), single variant 2 dominates
compared to the others. Therefore, to perform an in-depth analysis of the variant selection
behaviour, the kinetic curves for the three variants for different loading modes are plotted
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in Figure 3. For all the different loading modes, the kinetic curves of variant 1 can be
divided into three stages: incubation, transformation, and stable. As shown in Figure 3a,
compression strain leads to a relatively shorter incubation stage than tension or shearing.
In addition, uniaxial compression loading causes the highest growth rate of variant 1 in
the transformation stage. In contrast, shearing significantly inhibits the rapid formation
or growth of variant 1. Similar to the growth rate, uniaxial compression loading leads to
the highest volume fraction of variant 1 after the final stable stage. However, tension and
shearing lead to almost the same final volume fraction of variant 1, although the tension
mode has a slightly higher growth rate than shearing.
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For further analysis, the relationship between the Bain strain group and austenite
crystal coordinate system should be considered. Based on this relationship, the free
strain of variant 1 has a negative strain along the x-axis. According to the theory of
maximum principal stress, the shear deformation applied in the XZ direction forms a
normal component stress along the x-axis direction. Therefore, the transformation of
variant 1 is inhibited by this normal component stress. For uniaxial tension along the
x-axis direction, the direction of the external stress is opposite to the strain direction of
deformation. The system also tends to inhibit the transformation of variant 1 to balance
the energies of the internal and external fields. For uniaxial compression along the
x-axis, the direction of the external stress is the same as that of the strain. Therefore, the
formation of variant 1 is promoted. Tsuchida et al. [41] explained these phenomena in
their study. For uniaxial tension, the deformation strain is parallel to the tensile direction.
Therefore, martensite grown in this direction has a lower nucleation barrier and is more
prone to break the nucleation barrier and transform. In this situation, the variants in
the other directions are inhibited. Similarly, for shearing and compression, the strain
direction can also affect the nucleation barrier of the martensitic transformation, thereby
affecting variant selection.

Figure 3b shows the kinetic curves of variant 2. For variant 2, all loading modes
have nearly identical incubation stages. However, in the transformation stage, uniaxial
tension shows a relatively higher growth rate than shearing or compression. In addition,
the volume fraction of variant 2 for uniaxial tension is more stable than that for shearing
or compression. Because the stress–strain condition of uniaxial compression is beneficial
for the formation of variant 1, as mentioned above, the final volume fraction of variant
2 is only 1/5 that of variant 1 under uniaxial compression. Finally, Figure 3c shows the
kinetic curves for variant 3. Similarly to variant 2, all the different loading modes have
nearly the same incubation stages for variant 3. However, uniaxial tension loading causes
a significantly higher growth rate of variant 3 in the transformation stage. In addition,
the final volume fraction of variant 3 under uniaxial tension loading is the highest. The
mechanism of this phenomenon is similar to that of variant 1 under uniaxial compression
loading. For variant 3, under uniaxial tension loading, the direction of the external stress
is the same as that of the strain, and this direction can help variant 3 break the nucleation
barrier more easily. Therefore, variant 3 is preferred under uniaxial tension loading. In
summary, because either uniaxial tension or compression has principal stress in a single
direction, the preferred variant selection is formed in that direction. In contrast, for shearing
that has a relatively balanced stress distribution in different directions, the preferred variant
selection is insignificant.

In addition to the kinetic curves of every single variant, Figure 4 shows the kinetic
curves of the martensite transformation for different loading modes. With the same loading
stress, uniaxial tension and compression loading modes clearly lead to significantly higher
martensite transformation rates than shearing loading does. Martensite transformation can
cause volume expansion. The loading modes of uniaxial tension and compression can easily
provide free space for this type of volume expansion. In addition, the stress conditions for
uniaxial tension and compression benefit the formation of some variants, as previously
mentioned. Therefore, martensitic transformation is greatly promoted under uniaxial
tension and compression. However, regardless of the external stress conditions, all three
variants nucleate and grow further instead of being eliminated. During the transformation
process, the system balances the energy of the internal and external fields to promote or
inhibit the formation of relevant variants, but the promoted variants will not continue
to form without any restriction. Self-coordination exists between variants in the system,
which relaxes part of the elastic distortion energy. Therefore, other variants can be formed
to balance the elastic distortion energy.
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3.2. Effect of the Magnetic Field on Martensite Transformation Behaviour

In addition to the effect of the stress–strain field, the effect of the magnetic field on
martensite transformation behaviour was simulated. Figure 5 shows the variation in the
morphology evolution for different magnetic field intensities (0 T, 10 T, and 20 T). The
results clearly reflect the difference between the effects of stress–strain and magnetic fields.
For all different magnetic field intensity conditions, little preferred variant selection is
observed. The fraction and final morphology of the variants under different magnetic field
intensities are nearly the same. In addition, it should be noted that the time steps need
for reaching the final steady state under the magnetic field and external stress field are
different. In the case of the external stress field, when the time is 40 time steps (one time
step equal to 10 simulation times\a.u. in this research), the transformation process tends to
be stable, and the phase transformation is completed. However, in the calculation process
of applying a magnetic field, the phase transformation tends to be completed when the
time is 60 time steps. This will be further explained in the following kinetics results.
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tion of nucleation sites, (b) the final steady state for 0 T magnetic field, (c) the final steady state for
10 T magnetic field, and (d) the final steady state for 20 T magnetic field.

Except for the morphological evolution, the magnetic field intensity mainly affects the
kinetics of the martensite transformation. Figure 6 shows the kinetic curves of the three
variants for different magnetic field intensities. Although the magnetic field intensity has
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little effect on the incubation stage, a higher magnetic field intensity leads to a faster growth
rate for all three variants. In addition, the degree of this influence shows little difference
among the different variants. Therefore, the final number of different variants is nearly the
same, indicating no obvious preferred variant selection.
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Figure 7 shows the kinetic curves of the martensite transformation for different mag-
netic field intensities. This result clearly indicates that the magnetic field can accelerate
isothermal martensitic transformation in stainless steel. With an increase in the magnetic
field intensity, the martensite transformation process gradually accelerates. Because the
effect of the magnetic field is based on the increase in nucleation activation energy, the
magnetic field intensity affects the kinetics, not the morphology or variant selection of
martensite, as expected. This viewpoint is also supported by previous experimental re-
search by Yuan et al. [21]. In addition, by comparing Figures 4 and 7, the effect of the
stress–strain field on martensite transformation kinetics is much more significant than that
of the magnetic field. In summary, the simulation results of this study show that different
external fields can affect martensite characteristics. Stress–strain fields, especially uniaxial
tension and compression conditions, can significantly accelerate martensite transformation;
however, they can cause obvious preferred variant selection. Instead, the magnetic field is a
gentler way to accelerate the martensite transformation without preferred variant selection.
These simulation results can provide guidance for tailoring martensite characteristics using
external fields.
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4. Discussion

All the simulation results of this study show that different external fields can affect
martensite characteristics. Stress–strain fields, especially uniaxial tension and compres-
sion conditions, can significantly accelerate martensite transformation; however, they can
cause obvious preferred variant selection. Instead, the magnetic field is a gentler way
to accelerate the martensite transformation without preferred variant selection. These
simulation results can provide qualitative guidance for tailoring martensite characteristics
using external fields.

It should be further noted that the simulation of the martensite transformation in this
research is based on the theory of three Bain strain groups. Only three variants form in this
simulation, which is different from the actual state of 24 variants. This hypothesis provides
both advantages and disadvantages for this research. Considering the advantages, the
theory of Bain strain groups is a basic and generic mechanism for the martensite transfor-
mation, so it can greatly improve the generality of this model. The regular conclusions
obtained from this simulation can be used for qualitative guidance on various alloy design.
However, as mentioned above, three variants are different from the actual experimental
results of 24 variants, which means that the results of this research are only qualitative
rules. It cannot be quantitatively consistent with the experimental results of a special alloy
system. So, if further improvement is needed for quantitative guidance on alloy design
for a special composition system, modification is needed to replace the theory of Bain
strain groups to the 24 variants with the Kurdjumov–Sachs orientational relationship as in
Ahluwalia et al.’s work [33].

5. Conclusions

A phase-field model was built to simulate the effect of different external fields on
martensite transformation behaviour, which can provide qualitative guidance for mi-
crostructure tailoring in advanced steels.

(1) Both stress–strain and magnetic fields can accelerate the martensite transformation
process and increase the volume fraction of martensite by introducing an additional
driving force.
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(2) Both uniaxial tension and compression conditions can significantly promote the
martensite transformation by significantly increasing the martensite growth rate.
However, an obviously preferred variant selection is also observed.

(3) If a relatively large amount of martensite with an unknown preferred variant selection
is needed, shearing is probably a better choice because this mode has a relatively
balanced stress distribution in different directions compared to those of uniaxial
tension and compression conditions.

(4) In addition, if the demand for martensite is relatively small, the magnetic field, which
has a relatively low phase transition rate, can be considered. This gentler method is
conducive to a more precise control of the martensite volume fraction.
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