Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Procedure
3. Results and Discussion
3.1. Solvent Screening of SAS Processing of Allopurinol
3.2. Effect of Operating Parameters
3.3. Dissolution Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hu, J.; Johnston, K.P.; Williams, R.O. Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int. J. Pharm. 2004, 271, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Johnston, K.P.; Williams, R.O. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev. Ind. Pharm. 2004, 30, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.B.; Kim, D.H.; Lee, S.E.; Pyo, Y.C.; Park, J.S. Improvement of the dissolution rate and bioavailability of fenofibrate by the supercritical anti-solvent process. Int. J. Pharm. 2019, 564, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gong, L.; Zhang, J.; Wu, Z.; Deng, H.; Deng, S. Development of nimesulide amorphous solid dispersions via supercritical anti-solvent process for dissolution enhancement. Eur. J. Pharm. Sci. 2020, 152, 105457. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Q.; Huang, Y.; Guan, G.; Jiang, Y. Tailoring the particle microstructures of gefitinib by supercritical CO2 anti-solvent process. J. CO2 Util. 2017, 20, 43–51. [Google Scholar] [CrossRef]
- Wu, W.Y.; Su, C.S. Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process. J. Cryst. Growth 2017, 460, 59–66. [Google Scholar] [CrossRef]
- Yasuji, T.; Takeuchi, H.; Kawashima, Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv. Drug Deliv. Rev. 2008, 60, 388–398. [Google Scholar] [CrossRef]
- Hussain, A.; Rytting, J.H. Prodrug approach to enhancement of rate of dissolution of allopurinol. J. Pharm. Sci. 1974, 63, 798–799. [Google Scholar] [CrossRef]
- Samy, A.M.; Marzouk, M.A.; Ammar, A.A.; Ahmed, M.K. Enhancement of the dissolution profile of allopurinol by a solid dispersion technique. Drug Discov. Ther. 2010, 4, 77–84. [Google Scholar]
- Samy, E.M.; Hassan, M.A.; Tous, S.S.; Rhodes, C.T. Improvement of availability of allopurinol from pharmaceutical dosage forms I–suppositories. Eur. J. Pharm. Biopharm. 2000, 49, 119–127. [Google Scholar] [CrossRef]
- Changdeo, J.S.; Vinod, M.; Shankar, K.B.; Rajaram, C.A. Physicochemical characterization and solubility enhancement studies of allopurinol solid dispersions. Braz. J. Pharm. Sci. 2011, 47, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.L.; Yao, J.; Wu, C.; Deng, J.H.; Mo, Y.H.; Lu, T.B.; Chen, J.M. Solubility and permeability improvement of allopurinol by cocrystallization. Cryst. Growth Des. 2020, 20, 5160–5168. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Chen, G.; Xu, R.; Zhao, H. Solubility modeling and solvent effects of allopurinol in 15 neat solvents. J. Chem. Eng. Data 2018, 63, 3551–3558. [Google Scholar] [CrossRef]
- Lee, T.; Kuo, C.S.; Chen, Y.H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 10, 72–92. [Google Scholar]
- Chinnarasu, C.; Montes, A.; Fernandez-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; DeLa Ossa, E.J.M.; Pattabhi, S. Natural antioxidant fine particles recovery from eucalyptus globulus leaves using supercritical carbon dioxide assisted processes. J. Supercrit. Fluids 2015, 101, 161–169. [Google Scholar] [CrossRef]
- Rajasingam, R.; Lioe, L.; Pham, Q.T.; Lucien, F.P. Solubility of carbon dioxide in dimethylsulfoxide and n-methyl-2-pyrrolidone at elevated pressure. J. Supercrit. Fluids 2004, 31, 227–234. [Google Scholar] [CrossRef]
- Chen, H.H.; Su, C.S.; Liu, J.J.; Sheu, M.T. Solid-state property modification and dissolution rate enhancement of tolfenamic acid by supercritical antisolvent process. J. Supercrit. Fluids 2015, 101, 17–23. [Google Scholar] [CrossRef]
- Wu, H.T.; Lin, H.M.; Lee, M.J. Ultra-fine particles formation of c.i. pigment green 36 in different phase regions via a supercritical anti-solvent process. Dye. Pigment. 2007, 75, 328–334. [Google Scholar] [CrossRef]
- Su, C.S.; Lo, W.S.; Lien, L.H. Micronization of fluticasone propionate using supercritical antisolvent (SAS) process. Chem. Eng. Technol. 2011, 34, 535–541. [Google Scholar] [CrossRef]
- Chen, Y.M.; Tang, M.; Chen, Y.P. Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology. Chem. Eng. J. 2010, 165, 358–364. [Google Scholar] [CrossRef]
- Pereira, V.J.; Matos, R.L.; Cardoso, S.G.; Soares, R.O.; Santana, G.L.; Costa, G.M.N.; De Melo, S.V. A new approach to select solvents and operating conditions for supercritical antisolvent precipitation processes by using solubility parameter and group contribution methods. J. Supercrit. Fluids 2013, 81, 128–146. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.J.; Yeo, S.D. Crystallization of silibinin from organic solutions using supercritial and aqueous anti solvents. J. Supercrit. Fluids 2014, 85, 102–109. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, W.S.; Lim, J.S. Recrystallization of adefovir dipivoxil particles using the aerosol solvent extraction system process. Ind. Eng. Chem. Res. 2014, 53, 1663–1671. [Google Scholar] [CrossRef]
- Tomoda, K.; Asahiyama, M.; Ohtsuki, E.; Nakajima, T.; Terada, H.; Kanebako, M.; Inagi, T.; Makino, K. Preparation, and properties of carrageenan microspheres containing allopurinol and local anesthetic agents for the treatment of oral mucositis. Colloids Surf. B Biointerfaces 2009, 71, 27–35. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
Formula | CAS No. | Mw | Molecular Structure |
---|---|---|---|
C5H4N4O | 315-30-0 | 136.11 |
Exp. no. | T (°C) | P (bar) | C (mg/mL) | FCO2 (L/min) | F (mL/min) | Nozzle (μm) | Recovery (%) | Crystal Habit | Mean Size (μm) |
---|---|---|---|---|---|---|---|---|---|
Ori. | - | - | - | - | - | - | - | Rod-like | 15.3 |
1 | 35 | 100 | 15 | 4 | 0.25 | 100 | 96.3 | Rod-like | 1.41 |
2 | 45 | 100 | 15 | 4 | 0.25 | 100 | 55.9 | Irregular | 2.41 |
3 | 55 | 100 | 15 | 4 | 0.25 | 100 | No particle formation | ||
4 | 35 | 80 | 15 | 4 | 0.25 | 100 | 84.9 | Rod-like | 1.35 |
5 | 35 | 100 | 8 | 4 | 0.25 | 100 | 86.8 | Needle-like | 2.68 |
6 | 35 | 100 | 11 | 4 | 0.25 | 100 | 97.3 | Needle-like | 1.71 |
7 | 35 | 100 | 15 | 2 | 0.25 | 100 | 95.3 | Needle-like | 1.99 |
8 | 35 | 100 | 15 | 4 | 0.50 | 100 | 73.8 | Rod-like | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khudaida, S.H.; Wang, W.-K.; Wu, W.-Y.; Su, C.-S. Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol. Crystals 2022, 12, 922. https://doi.org/10.3390/cryst12070922
Khudaida SH, Wang W-K, Wu W-Y, Su C-S. Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol. Crystals. 2022; 12(7):922. https://doi.org/10.3390/cryst12070922
Chicago/Turabian StyleKhudaida, Salal Hasan, Wei-Kai Wang, Wei-Yi Wu, and Chie-Shaan Su. 2022. "Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol" Crystals 12, no. 7: 922. https://doi.org/10.3390/cryst12070922
APA StyleKhudaida, S. H., Wang, W. -K., Wu, W. -Y., & Su, C. -S. (2022). Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol. Crystals, 12(7), 922. https://doi.org/10.3390/cryst12070922