Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Structural Morphology of Milled Powders
3.2. Evaluation of Density for the Hot Pressed Samples
3.3. Metallography Analysis
3.4. Hardness Measurement
3.5. Hot Compression Measurements
3.6. Corresponding Relationship between Mechanical and Microstructural Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Novelty, OH, USA, 1991; Volume 2.
- Badami, M.; Marino, F. Fatigue tests of un-HIP’ed γ-TiAl engine valves for motorcycles. Int. J. Fatigue 2006, 28, 722–732. [Google Scholar] [CrossRef]
- Choi, J.; Seok, C.S.; Park, S.; Kim, G. Effect of high-temperature degradation on microstructure evolution and mechanical properties of austenitic heat-resistant steel. J. Mater. Res. Technol. 2019, 8, 2011–2020. [Google Scholar] [CrossRef]
- Witek, L. Failure and thermo-mechanical stress analysis of the exhaust valve of diesel engine. Eng. Fail. Anal. 2016, 66, 154–165. [Google Scholar] [CrossRef]
- Zhang, Q.; Zuo, Z.; Liu, J. Failure analysis of a diesel engine cylinder head based on finite element method. Eng. Fail. Anal. 2013, 34, 51–58. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Pandey, A.; Mandloi, R. Failure analysis of internal combustion engine valves: A review. Int. J. Innov. Res. Sci. Eng. Technol. 2012, 1, 173–181. [Google Scholar]
- Hasan, M.R. Failure Investigation Report on Different Components of an Automotive Engine. Int. J. Mech. Eng. Appl. 2017, 5, 47–51. [Google Scholar]
- Yu, Z.; Xu, X. Failure analysis and metallurgical investigation of diesel engine exhaust valves. Eng. Fail. Anal. 2006, 13, 673–682. [Google Scholar] [CrossRef]
- Kum-Chul, O.; Sang-Woo, C.; Ji-Ho, K. A study of durability analysis methodology for engine valve considering head thermal deformation and dynamic behavior. In Proceedings of the SIMULIA Community Conference, Corp Providence, RI, USA, 19–22 May 2014. [Google Scholar]
- Ivasishin, O.M.; Anokhin, V.M.; Demidik, A.N.; Savvakin, D.G. Cost-effective blended elemental powder metallurgy of titanium alloys for transportation application. In Key Engineering Materials; Trans Tech Publications: Freienbach, Switzerland, 2000. [Google Scholar]
- Şap, E.; Usca, U.A.; Gupta, M.K.; Kuntoğlu, M. Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int. J. Adv. Manuf. Technol. 2021, 114, 379–396. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Czotscher, T.; Andersson, O.; Meyer, D. Machinability of powder metallurgy steels using PcBN inserts. Procedia CIRP 2014, 14, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kurita, H.; Miyazaki, T.; Kawasaki, A.; Lu, Y.; Silvain, J.F. Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Compos. Part A Appl. Sci. Manuf. 2015, 73, 125–131. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, N.; Carvalho, O.; Silva, F.S.; Miranda, G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017, 16, 81–89. [Google Scholar] [CrossRef]
- Garbacz, H.; Mizera, J.; Laskowski, Z.; Gierej, M. Microstructure and mechanical properties of a Pt–Rh alloy produced by powder metallurgy and subjected to plastic working. Powder Technol. 2011, 208, 488–490. [Google Scholar] [CrossRef]
- Moravcikova-Gouvea, L.; Moravcik, I.; Omasta, M.; Veselý, J.; Cizek, J.; Minárik, P.; Cupera, J.; Záděra, A.; Jan, V.; Dlouhy, I. High-strength Al0. 2Co1. 5CrFeNi1. 5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Mater. Charact. 2020, 159, 110046. [Google Scholar]
- Schaffer, G. Powder processed aluminium alloys. Mater. Forum 2004, 28, 65–74. [Google Scholar]
- Li, Y.; Ji, H.; Cai, Z.; Tang, X.; Li, Y.; Liu, J. Comparative study on constitutive models for 21-4N heat resistant steel during high temperature deformation. Materials 2019, 12, 893. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ji, H.; Li, W.; Li, Y.; Pei, W.; Liu, J. Hot deformation characteristics—Constitutive equation and processing maps—of 21-4N heat-resistant steel. Materials 2019, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Huang, X.; Ma, C.; Pei, W.; Liu, J.; Wang, B. Predicting the microstructure of a valve head during the hot forging of steel 21-4N. Metals 2018, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sun, H.; Zou, L.; Zhang, G.; Li, S.; Zhou, Z. Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation. Powder Technol. 2015, 272, 309–315. [Google Scholar] [CrossRef]
- Susila, P.; Sturm, D.; Heilmaier, M.; Murty, B.S.; Subramanya Sarma, V. Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing. J. Mater. Sci. 2010, 45, 4858–4865. [Google Scholar]
- Phaniraj, M.P.; Kim, D.I.; Shim, J.H.; Cho, Y.W. Microstructure development in mechanically alloyed yttria dispersed austenitic steels. Acta Mater. 2009, 57, 1856–1864. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Z.; Li, M.; He, P. Fabrication and characterization of ODS austenitic steels. J. Nucl. Mater. 2011, 417, 283–285. [Google Scholar] [CrossRef]
- Liu, D.H.; Yong, L.I.U.; Zhao, D.P.; Yan, W.; Fang, J.H.; Wen, Y.R.; Liu, Z.M. Effect of ball milling time on microstructures and mechanical properties of mechanically-alloyed iron-based materials. Trans. Nonferrous Met. Soc. China 2010, 20, 831–838. [Google Scholar] [CrossRef]
- Tehrani, F.; Golozar, M.A.; Abbasi, M.H.; Panjepour, M. Characterization of nanostructured high nitrogen Fe–18Cr–xMn–4Mo austenitic stainless steel prepared by mechanical alloying. Mater. Sci. Eng. A 2012, 534, 203–208. [Google Scholar] [CrossRef]
- Haghir, T.; Abbasi, M.H.; Golozar, M.A.; Panjepour, M. Investigation of α to γ transformation in the production of a nanostructured high-nitrogen austenitic stainless steel powder via mechanical alloying. Mater. Sci. Eng. A 2009, 507, 144–148. [Google Scholar] [CrossRef]
- Amini, R.; Hadianfard, M.J.; Salahinejad, E.; Marasi, M.; Sritharan, T. Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process. J. Mater. Sci. 2009, 44, 136–148. [Google Scholar] [CrossRef]
- Liu, D.; Xiong, Y.; Topping, T.D.; Zhou, Y.; Haines, C.; Paras, J.; Martin, D.; Kapoor, D.; Schoenung, J.M.; Lavernia, E.J. Spark plasma sintering of cryomilled nanocrystalline Al alloy-Part II: Influence of processing conditions on densification and properties. Metall. Mater. Trans. A 2012, 43, 340–350. [Google Scholar] [CrossRef]
- Solay Anand, S.; Mohan, B. Effect of particle size, compaction pressure on density and mechanical properties of elemental 6061Al alloy through powder metallurgical process. Int. J. Mater. Eng. Innov. 2012, 3, 259–268. [Google Scholar] [CrossRef]
- Kumar, N.; Arora, N.; Goel, S. Study on metallurgical and mechanical aspects of GMA welded nitronic steel under the influence of weld quenching. J. Manuf. Processes 2020, 56, 116–130. [Google Scholar] [CrossRef]
- Xu, X.; Yu, Z.; Wang, J. Influences of microstructure on service properties of 5Cr21Mn9Ni4N heat resistant alloy. Mater. Sci. Technol. 2007, 23, 903–909. [Google Scholar] [CrossRef]
- Weisser, M.A. Effect of Different Loading Conditions on the Accumulation of Residual Strain in a Creep Resistant 1% CrMoV Steel. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2013. [Google Scholar]
- Ganesan, D.; Sellamuthu, P.; Prashanth, K.G. Vacuum Hot Pressing of Oxide Dispersion Strengthened Ferritic Stainless Steels: Effect of Al Addition on the Microstructure and Properties. J. Manuf. Mater. Processing 2020, 4, 93. [Google Scholar] [CrossRef]
- Sato, K.; Saka, T.; Ohno, T.; Kageyama, K.; Sato, K.; Noda, T.; Okabe, M. Development of Low-Nickel Superalloys for Exhaust Valves; SAE Technical Paper; SAE: Warrendale, PA, USA, 1998. [Google Scholar]
- Kumar, N.; Arora, N. Effect of solution treatment on slurry erosive wear performance of martensitic and nitrogen strengthened austenitic stainless steel. Mater. Lett. 2021, 284, 128932. [Google Scholar] [CrossRef]
- Kunitskaya, I.; Spektor, Y.I.; Olshanetskii, V. Structural and kinetic features of dynamic recrystallization of alloyed austenite upon multipass hot deformation. Met. Sci. Heat Treat. 2012, 53, 498–502. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.; Zang, Y.; Ji, H.; Guan, B.; Li, Y.; Tang, X. Constitutive relationships of 21-4 N heat-resistant steel for the hot forging process. J. Mater. Res. Technol. 2020, 9, 13575–13593. [Google Scholar] [CrossRef]
- Srinivasan, D.; Corderman, R.; Subramanian, P. Strengthening mechanisms (via hardness analysis) in nanocrystalline NiCr with nanoscaled Y2O3 and Al2O3 dispersoids. Mater. Sci. Eng. A 2006, 416, 211–218. [Google Scholar] [CrossRef]
- Broitman, E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribol. Lett. 2017, 65, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lacy, C.; Gensamer, M. The tensile properties of alloyed ferrites. Trans. AsM 1944, 32, 88–110. [Google Scholar]
- Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; De Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; et al. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe-9% Cr and Fe-14% Cr extruded bars. J. Nucl. Mater. 2017, 495, 6–19. [Google Scholar] [CrossRef]
- Rajasekhara, S.; Ferreira, P.J.; Karjalainen, L.P.; Kyröläinen, A. Hall–Petch behavior in ultra-fine-grained AISI 301LN stainless steel. Metall. Mater. Trans. A 2007, 38, 1202–1210. [Google Scholar] [CrossRef]
- Praud, M.; Mompiou, F.; Malaplate, J.; Caillard, D.; Garnier, J.; Steckmeyer, A.; Fournier, B. Study of the deformation mechanisms in a Fe–14% Cr ODS alloy. J. Nucl. Mater. 2012, 428, 90–97. [Google Scholar] [CrossRef]
- Hin, C.; Wirth, B.D. Formation of Y2O3 nanoclusters in nano-structured ferritic alloys: Modeling of precipitation kinetics and yield strength. J. Nucl. Mater. 2010, 402, 30–37. [Google Scholar] [CrossRef]
- Li, Q. Modeling the microstructure–mechanical property relationship for a 12Cr–2W–V–Mo–Ni power plant steel. Mater. Sci. Eng. A 2003, 361, 385–391. [Google Scholar] [CrossRef]
Alloy | Concentration of Elements in wt% | |||||
---|---|---|---|---|---|---|
Cr | Ni | Mn | C | Si | Fe | |
21-4N | 21 | 4 | 8.2 | 0.48 | 0.40 | Rest |
Elemental/Pre-Alloyed Mixtures | Balls and Vial | BPR | Milling Speed (rpm) | Milling Time (h) | References |
---|---|---|---|---|---|
304, 316 and 310 | Stainless Steel | 5:1 | 300 | 50 | [21] |
Fe, Cr, Ni and W | Tungsten Carbide | 10:1 | 300 | 25 | [22] |
Fe, Ni, Cr, Mo, Al and Mn | Stainless Steel | 30:1 | 500 | 16 | [23] |
Fe, Cr, Ni, W and Ti | Stainless Steel | 10:1 | 380 | 60 | [24] |
Fe, Cr, W, Fe-Ti and Fe-Y | Stainless Steel | 8:1 | 225 | 100 | [25] |
Fe, Cr, Mn and Mo | Stainless Steel | 25:1 | 300 | 60 | [26] |
Fe, Cr and Mn | Stainless Steel | 25:1 | 300 | 100 | [27] |
Fe, Cr and Mn | Stainless Steel | 10:1 | 400 | 144 | [28] |
Fe-Cr, Fe-Ni and Fe-Mn | Tungsten Carbide | 10:1 | 300 | 10 | Current study |
Location | Region | Concentration of Elements, wt% | ||||
---|---|---|---|---|---|---|
Cr | Ni | Mn | C | Fe | ||
Grain | 1 | 19.9 | 3.8 | 8.5 | 0.25 | Bal. |
2 | 19.2 | 3.6 | 8.3 | 0.30 | Bal. | |
3 | 18.7 | 4.1 | 8.7 | 0.27 | Bal. | |
Grain Boundary | 1 | 25.3 | 4.4 | 9.2 | 0.65 | Bal. |
2 | 26.4 | 4.25 | 9.1 | 0.70 | Bal. | |
3 | 24.2 | 4.3 | 8.9 | 0.68 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murali, A.P.; Ganesan, D.; Salunkhe, S.; Abouel Nasr, E.; Davim, J.P.; Hussein, H.M.A. Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route. Crystals 2022, 12, 923. https://doi.org/10.3390/cryst12070923
Murali AP, Ganesan D, Salunkhe S, Abouel Nasr E, Davim JP, Hussein HMA. Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route. Crystals. 2022; 12(7):923. https://doi.org/10.3390/cryst12070923
Chicago/Turabian StyleMurali, Arun Prasad, Dharmalingam Ganesan, Sachin Salunkhe, Emad Abouel Nasr, João Paulo Davim, and Hussein Mohamed Abdelmoneam Hussein. 2022. "Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route" Crystals 12, no. 7: 923. https://doi.org/10.3390/cryst12070923
APA StyleMurali, A. P., Ganesan, D., Salunkhe, S., Abouel Nasr, E., Davim, J. P., & Hussein, H. M. A. (2022). Characterization of Microstructure and High Temperature Compressive Strength of Austenitic Stainless Steel (21-4N) through Powder Metallurgy Route. Crystals, 12(7), 923. https://doi.org/10.3390/cryst12070923