A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer
Abstract
:1. Introduction
2. The Heat and Mass Transfer Model of Dendritic Growth
3. The Total Undercooling Balance
3.1. Conductive Heat and Mass Transfer
3.2. Convective Heat and Mass Transfer
3.3. Sewing Together Undercooling Balances
4. Selection Criterion
4.1. Solvability Condition
4.2. Conductive Heat and Mass Transfer
4.3. Convective Heat and Mass Transfer
4.4. Sewing Together Selection Criteria
5. Behaviour of Sewed Functions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chernov, A.A. Modern Crystallography III: Crystal Growth; Springer: Berlin, Germany, 1984. [Google Scholar]
- Huang, S.-C.; Glicksman, M.E. Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth. Acta Metall. 1981, 29, 701–715. [Google Scholar] [CrossRef]
- Trivedi, R.; Kurz, W. Dendritic growth. Int. Mater. Rev. 1994, 39, 49–74. [Google Scholar] [CrossRef]
- Galenko, P.K.; Zhuravlev, V.A. Physics of Dendrites; World Scientific: Singapore, 1994. [Google Scholar]
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification; Trans Tech Publ.: Aedermannsdorf, Switzerland, 1989. [Google Scholar]
- Huppert, H.E. The fluid mechanics of solidification. J. Fluid Mech. 1990, 212, 209–240. [Google Scholar] [CrossRef] [Green Version]
- Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Pelcé, P. Dynamics of Curved Fronts; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
- Ben Amar, M.; Pelcé, P. Impurity effect on dendritic growth. Phys. Rev. A 1989, 39, 4263–4269. [Google Scholar] [CrossRef] [PubMed]
- Bouissou, P.; Pelcé, P. Effect of a forced flow on dendritic growth. Phys. Rev. A 1989, 40, 6637–6680. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.I. Pattern selection in two-dimensional dendritic growth. Adv. Phys. 1991, 40, 53–97. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow. EPL 2017, 119, 16001. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Dendrite growth under forced convection: Analysis methods and experimental tests. Physics-Uspekhi 2014, 57, 771–786. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. A review on the theory of stable dendritic growth. Phil. Trans. R. Soc. A 2021, 379, 20200325. [Google Scholar] [CrossRef]
- Becker, M.; Klein, S.; Kargl, F. Free dendritic tip growth velocities measured in Al-Ge. Phys. Rev. Mat. 2018, 2, 073405. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, H.; Galenko, P.K.; Holland-Moritz, D.; Kolbe, M.; Herlach, D.M.; Shuleshova, O. Non-equilibrium solidification in undercooled Ti45Al55 melts. J. Appl. Phys. 2008, 103, 073509. [Google Scholar] [CrossRef]
- Galenko, P.K.; Reuther, K.; Kazak, O.V.; Alexandrov, D.V.; Rettenmayr, M. Effect of convective transport on dendritic crystal growth from pure and alloy melts. Appl. Phys. Lett. 2017, 111, 031602. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K.; Toropova, L.V. Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection. Phil. Trans. R. Soc. A 2018, 376, 20170215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, H. Hydrodynamics; Dover Publications: New York, NY, USA, 1945. [Google Scholar]
- Kochin, N.E.; Kibel, I.A.; Roze, N.V. Theoretical Hydromechanics; Interscience: New York, NY, USA, 1964. [Google Scholar]
- Buyevich, Y.A.; Alexandrov, D.V.; Zakharov, S.V. Hydrodynamics. Examples and Problems; Begell House: New York, NY, USA, 2001. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. Dendritic growth in an inclined viscous flow. Part 1. Hydrodynamic solutions. AIP Conf. Proc. 2017, 1906, 200003. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. Dendritic growth in an inclined viscous flow. Part 2. Numerical examples. Aip Conf. Proc. 2017, 1906, 200004. [Google Scholar]
- McPhee, M.G.; Maykut, G.A.; Morison, J.H. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland sea. J. Geophys. Res. 1987, 92, 7017–7031. [Google Scholar] [CrossRef]
- Notz, D.; McPhee, M.G.; Worster, M.G.; Maykut, G.A.; Schlünzen, K.H.; Eicken, H. Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res. 2003, 108, 3223. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Nizovtseva, I.G. Nonlinear dynamics of the false bottom during seawater freezing. Dokl. Earth Sci. 2008, 419, 359–362. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Nizovtseva, I.G. To the theory of underwater ice evolution, or nonlinear dynamics of ‘false bottoms’. Int. J. Heat Mass Trans. 2008, 51, 5204–5208. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Malygin, A.P. Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems. Int. J. Heat Mass Trans. 2011, 54, 1144–1149. [Google Scholar] [CrossRef]
- Tritton, D.J. Physical Fluid Dynamics; Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Feltham, D.L.; Worster, M.G.; Wettlaufer, J.S. The influence of ocean flow on newly forming sea ice. J. Geophys. Res. 2002, 107, 3009. [Google Scholar] [CrossRef] [Green Version]
- Owen, P.R.; Thomson, W.R. Heat transfer across rough surfaces. J. Fluid Mech. 1963, 15, 321–334. [Google Scholar] [CrossRef]
- Yaglom, A.M.; Kader, B.A. Heat and mass transfer between a rough wall and turbulent flow at high Reynolds and Peclet numbers. J. Fluid Mech. 1974, 62, 601–623. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Alexandrova, I.V.; Ivanov, A.A.; Malygin, A.P.; Starodumov, I.O.; Toropova, L.V. On the theory of the nonstationary spherical crystal growth in supercooled melts and supersaturated solutions. Russ. Metall. (Met.) 2019, 2019, 787–794. [Google Scholar] [CrossRef]
- Barbieri, A.; Langer, J.S. Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 1989, 39, 5314–5325. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. The shape of dendritic tips. Phil. Trans. R. Soc. A 2020, 378, 20190243. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Toropova, L.V.; Titova, E.A.; Kao, A.; Demange, G.; Galenko, P.K.; Rettenmayr, M. The shape of dendritic tips: A test of theory with computations and experiments. Phil. Trans. R. Soc. A 2021, 379, 20200326. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Korabel, N.; Currell, F.; Fedotov, S. Dynamics of intracellular clusters of nanoparticles. Cancer Nanotechnol. 2022, 13, 15. [Google Scholar] [CrossRef]
- Ben Amar, M. Theory of needle-crystal. Phys. D 1988, 31, 409–423. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.I. Two-dimensional dendritic growth at arbitrary Peclet number. J. Phys. France 1990, 51, 157–166. [Google Scholar] [CrossRef]
- Brener, E.A. Effects of surface energy and kinetics on the growth of needle-like dendrites. J. Cryst. Growth 1990, 99, 165–170. [Google Scholar] [CrossRef]
- Pelcé, P.; Bensimon, D. Theory of dendrite dynamics. Nucl. Phys. B 1987, 2, 259–270. [Google Scholar] [CrossRef]
- Titova, E.A.; Galenko, P.K.; Alexandrov, D.V. Method of evaluation for the non-stationary period of primary dendritic crystallization. J. Phys. Chem. Solids 2019, 134, 176–181. [Google Scholar] [CrossRef]
- Langer, J.S.; Hong, D.C. Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy. Phys. Rev. A 1986, 34, 1462–1471. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection. Phys. Rev. E 2013, 87, 062403. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Galenko, P.K. Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow. Phys. Chem. Chem. Phys. 2015, 17, 19149–19161. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Dendritic growth with the six-fold symmetry: Theoretical predictions and experimental verification. J. Phys. Chem. Solids 2017, 108, 98–103. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry. J. Phys. Condens. Matter 2018, 30, 105702. [Google Scholar] [CrossRef]
- Toropova, L.V. Shape functions for dendrite tips of SCN and Si. Eur. Phys. J. Spec. Top. 2022, 231, 1129–1133. [Google Scholar] [CrossRef]
- Toropova, L.V.; Alexandrov, D.V.; Rettenmayr, M.; Liu, D. Microstructure and morphology of Si crystals grown in pure Si and Al-Si melts. J. Condens. Matter Phys. 2022, 34, 094002. [Google Scholar] [CrossRef]
- Hyers, R.W.; Trapaga, G.; Abedian, B. Laminar-turbulent transition in an electromagnetically levitated droplet. Metall. Mater. Trans. B 2003, 34B, 29–36. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Selection criterion of stable mode of dendritic growth with n-fold symmetry at arbitrary Péclet numbers with a forced convection. In Proceedings of the IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics, Christchurch, New Zealand, 12–15 February 2019; pp. 203–215. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport. Acta Mater. 2017, 137, 64–70. [Google Scholar] [CrossRef]
- Reinartz, M.; Kolbe, M.; Herlach, D.M.; Rettenmayr, M.; Toropova, L.V.; Alexandrov, D.V.; Galenko, P.K. Study on anomalous rapid solidification of Al-35 at%Ni in microgravity. JOM 2022, 74, 2420–2427. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Dubovoi, G.Y.; Malygin, A.P.; Nizovtseva, I.G.; Toropova, L.V. Solidification of ternary systems with a nonlinear phase diagram. Russ. Metall. (Met.) 2017, 2017, 127–135. [Google Scholar] [CrossRef]
- Alexandrov, D.V. Nonlinear dynamics of polydisperse assemblages of particles evolving in metastable media. Eur. Phys. J. Spec. Top. 2020, 229, 383–404. [Google Scholar] [CrossRef]
- Alexandrova, I.V.; Alexandrov, D.V. Dynamics of particulate assemblages in metastable liquids: A test of theory with nucleation and growth kinetics. Phil. Trans. R. Soc. A 2020, 378, 20190245. [Google Scholar] [CrossRef] [Green Version]
- Toropova, L.V.; Alexandrov, D.V. Dynamical law of the phase interface motion in the presence of crystals nucleation. Sci. Rep. 2022, 12, 10997. [Google Scholar] [CrossRef]
Parameter | AlGe | TiAl | Units |
---|---|---|---|
Liquidus slope, | 10.4 | 10.72 | |
Hypercooling, | 353 | 272 | K |
Liquidus temperature, | 732 | 1748 | K |
Solute diffusion coefficient, | |||
Initial composition, | 24 | 55 | |
Capillary constant, | m | ||
Thermal diffusivity, | |||
Liquid density, | kg m | ||
Heat capacity, | 550 | 1237 | |
Thermal conductivity in the solid, | 29.22 | 29.22 | |
Friction velocity of flow, | 2 | ||
Segregation coefficient, | 0.11 | 0.86 | - |
Surface energy stiffness, | 0.026 | 0.030 | - |
Solvability constant, / | 0.09/0.09 | 0.02/0.15 | - |
Convective coefficient of heat, | 0 | 0.25 | - |
Convective coefficient of mass, | 2.88 | 1 | - |
Order of crystalline symmetry, n | 4 | 4 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toropova, L.V.; Galenko, P.K.; Alexandrov, D.V. A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer. Crystals 2022, 12, 965. https://doi.org/10.3390/cryst12070965
Toropova LV, Galenko PK, Alexandrov DV. A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer. Crystals. 2022; 12(7):965. https://doi.org/10.3390/cryst12070965
Chicago/Turabian StyleToropova, Liubov V., Peter K. Galenko, and Dmitri V. Alexandrov. 2022. "A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer" Crystals 12, no. 7: 965. https://doi.org/10.3390/cryst12070965
APA StyleToropova, L. V., Galenko, P. K., & Alexandrov, D. V. (2022). A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer. Crystals, 12(7), 965. https://doi.org/10.3390/cryst12070965