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Abstract: Zirconium alloys are subjected to a fast neutron flux in nuclear reactors, inducing the
creation of a large number of point defects, both vacancy and self-interstitial. These point defects
then diffuse and can be trapped by their different sinks or can cluster to form larger defects, such
as vacancy and interstitial clusters. In this work, the trapping capability of small-vacancy clusters
(two/three vacancies, V,/V3) in the a-Zr doped with alloying elements (Sn, Fe, Cr, and Nb) has been
investigated by first-principle calculations. Calculation results show that for the supercells of a-Zr
containing 142-zirconium atoms with the two-vacancy cluster, alloying elements of Sn and Nb in the
second vacant site (V2) and Cr in the first vacant site (V1) are more easily trapped by two vacancies,
respectively. However, the two sites are both captured more easily by two vacancies for Fe in the
supercells of a-Zr containing 142-zirconium atoms inside due to the similar value of the Fermi level.
For the supercells of a#-Zr containing 141-zirconium atoms with the three-vacancy cluster, the alloying
element of Sn in the third vacant site (V’3), Fe in the first vacant site (V’'1), and Cr and Nb in the
second vacant site (V’2) are more easily trapped by three vacancies, respectively.
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1. Introduction

Zirconium alloys are widely used in nuclear power reactors in view of their special
properties such as good corrosion resistance, adequate mechanical properties, and a low
capture cross section for thermal neutrons [1-3]. A large number of point defects in zirco-
nium alloys under a fast neutron flux are created, such as vacancies and self-interstitials.
These point defects can then evolve to small defect clusters, which significantly influence
the in-pile performance of zirconium alloys [4-6]. Alternatively, the stability of small-
vacancy clusters in zirconium has been investigated using first-principle calculations [7].
The addition of alloying elements is useful to modify the comprehensive mechanical prop-
erties of zirconium alloys. However, the understanding of the alloying elements’ effect
on the small defect clusters in the zirconium alloys induced by neutron irradiation is still
insufficient. The stacking fault energies (SFEs) can be predicted by using first-principle
calculations based on density functional theory (DFT), which may increase the under-
standing of responsibility for doped solutes for the deformation modes [8-11]. Therefore,
first-principle calculations are capable of predicting the structure stability. Previous works
show the structural and electronic properties of one-vacancy and vacancy clusters in the
a-Zr [12]. However, the trap capability of small-vacancy clusters doped with alloying
elements (Sn, Fe, Cr, and Nb) in the a-Zr has rarely been reported, especially for theoretical
investigations.

Crystals 2022, 12, 997. https:/ /doi.org/10.3390/ cryst12070997

https://www.mdpi.com/journal/crystals


https://doi.org/10.3390/cryst12070997
https://doi.org/10.3390/cryst12070997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-7925-0445
https://doi.org/10.3390/cryst12070997
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12070997?type=check_update&version=1

Crystals 2022, 12, 997

20f7

In order to deeply recognize the effect of doped alloying elements on the trapping ca-
pability of small-vacancy clusters in zirconium, it is essential to understand the preliminary
formation and evolution of vacancy-alloying element complexes in the zirconium alloys
under irradiation conditions. First-principle calculations can provide reliable structural
and thermodynamic properties of defects in materials, therefore, in the present work, the
trapping capability of small-vacancy clusters (two/three vacancies) in the a-Zr doped
with alloying elements are considered here by calculating these electronic properties using
first-principle calculations based on DFT.

2. Methodology

The calculations were performed using the Vienna Ab initio Simulation Package
(VASP) [13]. The interaction between ions and valence electrons is described by Projector-
Augmented Wave (PAW) [14,15]. The generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof (PBE) form is used to handle the electron exchange correla-
tions [16]. The plane-wave cut-off energy was set as 400 eV. The first order Methfessel-Paxton
with smearing of 0.2 eV was used for the structural relaxation until the total energy changes
were within 10~¢ eV. Meanwhile, the spin polarization of dope atom herein was not taken
into consideration during geometric optimization. The structural optimization was per-
formed by relaxing the atomic positions as well as the shape and volume of the supercell.
Then, the total energy was calculated using the linear tetrahedron method with Blochl cor-
rection [17]. The Brillouin zone was sampled using a Monkhorst-Pack mesh of k-points [18]
as follows: 4 x 5 x 1 for Zry4p—V1—X1 and Zr141 —V;—X; supercells, where V,, stands for
the number of vacancies, X; is a type of alloying element considered here, such as Sn, Fe,
Cr, or Nb. The electron configurations of each of the elements are as follows: Zr (4d?5s2),
Sn (5525p2), Fe (3d®4s2), Cr (3d%4s!), and Nb (4d*5s1).

3. Result and Discussion

In order to investigate the trap capability of small-vacancy clusters (two/three vacan-
cies) in the a-Zr doped with alloying elements considered here, two cases are listed. One is
a 142-atom supercell with two different vacant lattice sites for one vacancy and one alloying
element and the other is a 141-atom supercell with three different vacant lattice sites for
two vacancies and one alloying element, as shown in Figure 1.
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Figure 1. Supercells of pure a-Zr containing (a) 142-atom supercell with two different vacant lattice

sites for one vacancy and one alloying element, (b) 141-atom supercell with three different vacant
lattice sites for two vacancies and one alloying element.
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3.1. The Formation Energy for Vy, and Trapping Energy for V,—X
According to the ref. [19], the formation energy for V is given by:
El = Eutot — |Eui —nE(Z 1)
Vi defect without defect — 1 ( I‘)

where Egerect and Eyjignout defect are the energy of the system with and without the defect,
respectively. E(Zr) is the energy per atom of the Zr; these Zr atoms removed to build
vacancy clusters. n is the number of vacancies; here n =2 or 3.

Based on Formula (1), it can result that the formation energies for V; in pure a-Zr

supercell of 144 atomic sites with 142 zirconium atoms (Eg ) and V3 in pure a-Zr supercell
of 144 atomic sites with 141 zirconium atoms (Eé( ) are 3.90 and 6.23 eV, respectively. It can

result that the value of Eg is larger than E; because the number of bonds between Zr atoms
decrease or the surface (vacancy) area increases. It may confer that V; is easier to produce
than V3 during irradiation.

According to the ref. [20], the trapping energy of V,,—X is defined as:

t
EJ:KX = Ey, ,_x—Ey, —Enzrx + Ey ()

where Ey, | _x, Ev,, and Ey, are the total energies of V,_1-X, V};, and V', respectively. N
is the total number of Zr atoms for perfect one, # is the number of vacancies; here n =2 or 3.
Enz: x is the energy of the Zr supercell with alloying element X.

The V1 and V’2 sites are considered for the calculation of trapping energies of V,,—
X(n =2, 3) due to both the V1 and V2 sites in the V5, V2 and V'3 sites in V3 being equivalent,
respectively. Based on Formula (2), the trapping energies for V,—X (n = 2, 3), as listed in
Table 1. Table 1 illustrates the trapping energies for V,—X (n = 2, 3); one can see that the
order of trapping energies for the alloying element considered here is Fe > Sn > Cr > Nb.
The more negative the value of trapping energy the easier the solute atom can be trapped
in the small-vacancy clusters. It indicates thus that the sequence of the tapping capability
of two-vacancy clusters for the alloying elements considered here is Nb > Cr > Sn > Fe,
which is the same situation as the three-vacancy clusters. Alternatively, the influence
of the difference in atomic radius between alloying element herein and Zr atom on the
trapping energy has been discussed [21]. The larger the mismatch in atomic radius of the
target atom in host Zr atom, the lower the trapping energy of V,,—X values, except for Sn.
Based on the results of the formation energy for V,, and the trapping energy for V,—X, one
may confer that the vacancy mobility may be lower in the presence of Nb compared with
the other three elements considered here; this may be related to the binding energies of
small-vacancy clusters with these elements. Thus, it would be useful to know the effect of
different dopants on vacancy diffusion.

Table 1. The trapping energies for V,—X (in eV); here n =2 or 3.

V,—X Trapping Energies
V5-5n (Sn in the V1 or V2 site) —0.26
Vy,-Fe (Fe in the V1 or V2 site) —0.22
V,—Cr (Cr in the V1 or V2 site) —0.31
V,-Nb (Nb in the V1 or V2 site) —-0.37
V3-5n (Sn in the V'1 site) —0.40
V3-Fe (Fe in the V’1 site) —0.34
V3-Cr (Cr in the V'1 site) —0.45
V3-Nb (Nb in the V1 site) —0.56
V3-Sn (Sn in the V2 or V'3 site) —0.44
V3-Fe (Fe in the V'2 or V'3 site) —-0.39
V3—Cr (Cr in the V2 or V’3 site) —0.48

V3-Nb (NDb in the V’2 site or V'3 site) —0.63
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3.2. Atomic Structures and Charge Density Distribution

Figure 2 shows two atomic structures of supercells of a-Zr containing (a) a 142-atom
supercell with two different vacant lattice sites for one vacancy and one alloying element,
(b) a 141-atom supercell with three different vacant lattice sites for two vacancies and one
alloying element, respectively, where the differences of charge density caused by the solute
and vacancy are also visualized.

Comparing four different atomic structures of the 142-atom supercell with two differ-
ent vacant lattice sites for one vacancy and one alloying element, as shown in Figure 2a,
one can find that all the atoms have kept their lattice sites for the 142-atom supercell with
two different vacant lattice sites, as shown in Figure 2a to Figure 2d, respectively. The
value of the isosurface for each charge density distribution figure is 0.035 e/bohr>. Thus,
based on the analysis of atomic structures and the charge density distribution for these
supercells, it seems the supercell of 142-Zr atoms with two different vacant lattice sites
for one vacancy and one alloying element are stable structures, as shown in Figure 2a
to Figure 2d, respectively. In terms of the supercell of 141-Zr atoms with three different
vacant lattice sites for two vacancies and one alloying element, it has a similar result to the
supercell of 142-Zr atoms with two different vacant lattice sites for one vacancy and one
alloying element, as shown in Figure 2e to Figure 2h, respectively. Furthermore, in order to
discern which atomic structure considered here is most stable for the supercell of 142-Zr
atoms with two different vacant sites for one vacancy and one alloying element and the
supercell of 141-Zr atoms with three different vacant lattice sites for two vacancies and one
alloying element, it should be made out by the total state density of these atomic structures,
as seen in Section 3.3.
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Figure 2. Cont.
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Figure 2. (a—d) Atomic structure and charge density distribution of 142-atom supercells, and

(e—h) 141-atom supercells with different sites for one vacancy, two vacancy, and one alloying element
Sn, Fe, Cr, or Nb. The figures were rendered with VESTA code [22].

3.3. Total Electronic Densities of States (TDOS)

Figure 3 shows a series of total electronic densities of states (TDOS) of a 142-atom
supercell with two different vacant lattice sites for one vacancy and one alloying element
and a 141-atom supercell with three different vacant lattice sites for two vacancies and
one alloying element as indicated before. Besides the supercell with different lattice sites
and vacancies, the character of the metallic band is always preserved. The TDOS levels in
the [-0.5, 0] eV below the Fermi level are slightly lowered, which implies a lowering of
the metallic cohesive strength for these Zr atoms. It means the less the value of the Fermi
level, the more stable the structure is. According to this rule, it can achieve the following
results. In one case of supercells of pure Zr containing 142-Zr atoms with one vacancy for
solute atoms such as alloying elements of Sn and Nb, solute elements of Sn and Nb in the
second site (V2) are more easily trapped by two vacancies. In one case of alloying element
Cr, solute atom Cr doped in the first site (V1) is more easily trapped by two vacancies.
However, two sites for solute atom Fe in supercells of a-Zr containing 142-Zr atoms are
more easily trapped by two vacancies due to the similar value of the Fermi levels. In
another case of supercells of a-Zr containing 141-Zr atoms with three vacancies, alloying
element of Sn in the third site (V3), solute atom Fe in the first site (V1), and solute atoms Cr
and Nb in the second site (V2) are more easily trapped by three vacancies, respectively.
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Figure 3. TDOSs of a different number of zirconium atom supercells with different sites for one
vacancy (a,b), or two vacancies (c,d), and one alloying element (Sn, Fe, Cr, or Nb); where the silver
line stands for the Fermi level.

4. Conclusions

The trapping capability of small-vacancy clusters in the a-Zr doped with alloying
elements considered here are investigated using first-principle calculations. Based on
the atomic structures, charge density distribution, and total electronic densities of states
(TDOS) of supercells of pure a-Zr containing bi-vacancies and tri-vacancies doped with
one alloying element considered here, it is found that alloying elements of Sn and Nb in
the second site and Cr in the first site are more easily trapped by two vacancies in the
supercells of a-Zr containing 142-Zr atoms, respectively. However, two sites for Fe are more
easily trapped by three vacancies in supercells of a-Zr containing 142-Zr atoms due to the
similar value of the Fermi levels. The alloying element of Sn in the third site, Fe in the first
site, and Cr and Nb in the second site are more easily trapped by three vacancies in the
supercells of a-Zr containing 141-Zr atoms, respectively. Thus, based on the calculation
results above, it may help to explore the kinetic evolution and formation mechanism of the
microstructure of vacancy-alloying element complexes under irradiation and the associated
macroscopic behavior.
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