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Abstract: A one-dimensional (1D) coordination polymer [Cu2(bpba)(CH3COO)4] (1) and a two-
dimensional (2D) coordination polymer [Cu(bpba)2(H2O)(NO3)](NO3)·2H2O·MeOH (2) were synthe-
sized by the reaction between Cu(CH3COO)2·H2O/Cu(NO3)2·3H2O and bis(4-pyridyl)benzylamine
(bpba). The Cu(II) ions of 1 and 2 have distorted-square pyramidal coordination with a paddle-wheel
structure and an octahedral geometry, respectively. By coordinating the Cu(II) ions and bpba ligands,
1 and 2 formed zigzag 1D and puckered 2D coordination polymers, respectively. Polymer 1 exhibits
strong emissions at 355 and 466 nm, whereas polymer 2 exhibits strong emissions only at 464 nm. The
emissions are strongly dependent on the geometry of the Cu(II) ions linked by the bpba and anionic
ligands. Polymer 1 exhibits a very strong antiferromagnetic interaction within the paddle-wheel
dimer, whereas polymer 2 exhibits a very weak antiferromagnetic interaction through the bpba
linkers and/or space.

Keywords: crystal engineering; coordination polymer; Cu(II) ion; photoluminescence; structure;
magnetism

1. Introduction

Metal-organic coordination polymers have attracted considerable attention because of their
prominent functionalities, such as porosity, luminescence, and molecular magnetism [1–6].

These functional features are exploited by designing unique-network structures using
metal ions, organic ligands, and counter anions [7]. In other words, various network
structures can be constructed based on the choice and combination of components. For
example, the Cu(II) ion, as a metal linker, is a d9 system and has a Jahn–Teller distortion
effect [8]. These factors can influence the geometric structure and physical properties of
Cu(II) complexes. That is, the elongated axial bonds in the Cu(II) coordination compounds
can induce unique electronic effects, such as molecular catalysis and magnetism [9–11].

Acetate can form a paddle-wheel Cu(II) dimer unit [Cu2(CH3COO)4], which is a
good building block for molecule-based magnets and multidimensional coordination
polymers [12–15]. In dimeric units, strong magnetic interactions are operative within the
Cu2 species, and the units form interesting coordination networks because of the vacant
sites at the apical positions. Nitrate anions can generate more diverse structures owing to
their weaker coordination ability than that of acetate [16–18].

Moreover, polydentate pyridine-based ligands have been used as linkers in Cu(II)
coordination polymers [19,20]. These ligands can be connected to Cu(II) ions through
pyridine groups and induce photoluminescence properties owing to the pyridine moieties.
For example, Dang et al. reported a 2D layered-network structure including a tetra Cu(II)
quadrangular unit [CuII

4(L1)4], exhibiting luminescence at 331 and 400 nm, originating from
intra-ligand π–π*-charge transfer (L1 = N,N′-bis-(1-pyridin-4-yl-ethylidene)-hydrazine) [21].
Ding et al. reported a 2D Cu(II) coordination polymer {[Cu(µ2-L2)2(NCS)2] 0.5H2O}n with a
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bidentate bridging L2 ligand around the central Cu(II) ion (L2 = 3-(5-methyl-1,3,4-oxadiazol-
2-yl)pyridine) [22]. The Cu(II) polymer exhibited antiferromagnetic interactions between
the central Cu(II) ions without any luminescent emissions.

In this context, bidentate bis-(4-pyridyl) benzylamine (bpba) was used as a linker for
the self-assembly of Cu(II) metal ions to obtain supramolecular frameworks. Thus, here,
Cu(II) coordination polymers, [Cu2(bpba)(CH3COO)4] (1) and [Cu(bpba)2(H2O)(NO3)](NO3)
2H2O·MeOH] (2), are synthesized using bpba and their corresponding acetate and nitrate
anions and characterized by elemental analyses, infrared (IR) spectroscopy, UV/vis spec-
troscopy, and single-crystal X-ray diffraction. Unexpectedly, the geometry adopted by the
Cu(II) ion in 1 is a paddle-wheel dimeric unit, wherein the local geometry induces the
formation of a zigzag 1D-chain structure. The photoluminescence properties of 1 and 2 are
investigated, demonstrating their dependence on the counter-anions and bridging ligands.
The magnetic properties of 1 and 2 are investigated and are dependent on the geometric
structures around the Cu(II) ions.

2. Materials and Methods
2.1. General Information

Reagent grade chemicals were used in the synthesis without further purification.
bpba was prepared according to a previously reported procedure [23]. IR spectra were
recorded on a Thermo Fisher scientific IR200 spectrophotometer (±1 cm−1) using a KBr
disk (Thermo Fisher Scientific, Seoul, Korea). UV/vis absorption spectra were recorded
using a SCINCO S-2100 spectrophotometer (Scinco, Seoul, Korea). To measure solid state
UV/Vis spectra, compounds 1 and 2 were grounded in a mortar with pestle. The powder
samples were made as round-shaped disks. Then, they were measured using reflectance
method. Elemental analyses were performed using a Fisons/Carlo Erba EA1108 instrument
(Thermo Fisher Scientific, Seoul, Korea). Thermogravimetric analysis (TGA) was performed
at a scan rate of 5 ◦C/min using a Seiko TG/DTA 320 & SSC 5200H disk station system.
The luminescence spectra were obtained using a SINCO FS-2 fluorescence spectrometer
(Scinco, Seoul, Korea). The magnetic susceptibilities were measured in an applied field
of 5000 Oe in the range of 5–300 K using a Quantum Design MPMS superconducting
quantum interference device (SQUID) magnetometer (Quantum Design, San Diego, CA,
USA). Diamagnetic corrections were made [314.98 (1) and 440.01 × 10−6 (2) emu/mol]
using Pascal’s constants.

2.2. Syntheses

Preparation of [Cu2(bpba)(CH3COO)4] (1): A CH3OH solution (5 mL) of Cu(CH3COO)2
·H2O (19 mg, 0.095 mmol) was added dropwise to a CH3OH solution (5 mL) of bpba (25 mg,
0.095 mmol) [23]. The resulting green solution was stirred at room temperature for 30 min.
After filtering, green crystals were obtained by the slow diffusion of diethyl ether into the
solution, collected by filtration, washed with CH3OH, and dried in air. Yield: 19 mg (63%).
Anal. Calcd. for C25H27Cu2N3O8: C, 48.07; H, 4.36; N, 6.73. Found: C, 47.68; H, 4.72; N,
6.42. IR (KBr): 3111, 3068, 3009, 2975, 2938, 2818, 1622, 1590, 1432, 1218, 1018 cm−1.

Preparation of [Cu(bpba)2(H2O)(NO3)](NO3)·2H2O·MeOH (2): A solution of Cu(NO3)2
·3H2O (17 mg, 0.061 mmol) in CH3OH/H2O (4:1 v/v, 5 mL) was added dropwise to a
solution of bis(4-pyridyl)benzylamine (32 mg, 0.122 mmol) in CH3OH (5 mL) [23]. The
resulting solution was allowed to stand at room temperature until blue crystals formed,
which were then filtered off, washed with CH3OH, and dried in air. Yield: 30 mg (55%).
Anal. Calcd. for C35H38CuN8O9: C, 54.01; H, 4.92; N, 14.40. Found: C, 54.18; H, 4.68; N,
14.16. IR (KBr): 3439, 3094, 3074, 3045, 3015, 2926, 1624, 1601, 1508, 1384, 1215, 816 cm−1.

2.3. X-ray Crystallography

Crystals of 1 and 2 were mounted on a CryoLoop® with Paratone® oil. The intensity
data for the structures were collected using a Bruker APEX CCD-based diffractometer
(Korea Basic Science Institute, Chonju Branch) and Mo-Kα radiation (λ = 0.71073 Å, graphite
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monochromator) (Bruker Korea, Seoul, Korea) at 200(2) K. The raw data were processed
to obtain structure factors using the Bruker SAINT program and corrected for Lorentz
and polarization effects [24]. The intensity data for 1 and 2 were corrected for absorption
using the SADABS program with multi-scan data (Tmin/Tmax = 0.837 for 1 and 0.835 for
2) [25]. The crystal structures were solved using direct methods [26] and refined by full-
matrix least-squares refinement using the SHELXL-2018 computer program (Bruker Korea,
Seoul, Korea) [27]. The positions of all non-hydrogen atoms were refined using anisotropic
displacement factors. The benzyl group of 1 was symmetrically disordered; the occupancy
of the benzyl groups was 0.5, which was refined. All hydrogen atoms were placed using a
riding model and their positions were constrained relative to their parent atoms using the
appropriate HFIX command in SHELXL-2018. The crystallographic data and results of the
refinements for 1 and 2 are summarized in Table 1.

Table 1. Summary of the crystallographic data for polymers 1 and 2.

Compound 1 2

Empirical formula C25H27Cu2N3O8 C35H40CuN8O10
Formula weight 624.58 796.29
Crystal system Monoclinic Monoclinic

Space group C2/c P21/c
a, Å 14.737(1) 17.917(1)
b, Å 7.569(1) 12.966(1)
c, Å 25.6870(14) 17.518(1)

α, deg 90 90
β, deg 97.3060(10) 113.399(2)
γ, deg 90 90
V, Å3 2842.0(3) 3735.0(6)

Z 4 4
dcalc, g cm−3 1.460 1.416

λ, Å 0.71073 0.71073
T, K 200(2) 200(2)

µ, mm−1 1.546 0.652
F(000) 1280 1660

Reflections collected/2θmax 9465/56.55 22,765/52.02
Independent reflections 3294 7321
Reflections with I > 2σ(I) 2048 4064

Goodness-of-fit on F2 1.073 0.958

Final R indices [I > 2σ(I)] a R1 = 0.0767
wR2 = 0.1660

R1 = 0.0628
wR2 = 0.1621

CCDC 2,183,299 2,183,300
a R1 = Σ||Fo| − |Fc||/Σ|Fo|, wR2 = [Σw(Fo

2 − Fc
2)2/Σw(Fo

2)2]1/2.

3. Results and Discussion
3.1. Synthesis and Characterization

1 was prepared by way of the reaction of Cu(CH3COO)2·H2O and the bpba ligand in
a methanol solution under aerobic conditions at room temperature and a 63% yield was
observed. Strong absorptions at 1590 (asymmetric stretching mode) and 1432 (symmetric
stretching mode) cm−1, owing to the acetate anions coordinated to the Cu(II) ion, were
observed in the IR spectrum of 1 in KBr [28,29]. The signals for the C–H bonds of the bpba
ligand were detected at 3111–2818 cm−1. Furthermore, the pyridine peak (VC = N) of the
bpba ligand was observed at 1622 cm−1. This is blue-shifted due to the coordination to
Cu(II) ion, compared to that of bpba ligand (1604 cm−1). A distinct absorption band in the
range of 230–440 nm, with maxima at 262, 302 (sh), and 380 (sh) nm was observed in the
UV/vis spectrum of 1 in the solid state, at room temperature. This UV/vis spectrum was
similar to that of the free bpba ligand, where the peaks were attributed to the n–π* and π–π*
transitions of the pyridine and benzene moieties [30]. That is, the peaks can be assigned as
n–π* (262 nm, benzyl), π–π* (302 nm, 4,4′-bipyridylamine), and n–π* transitions (380 nm,
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4,4′-bipyridylamine), respectively. The d–d transition band of the Cu(II) ion was observed
in the range of 550–970 nm, with a maximum at 752 nm (Figure 1) [31]. In 1, the copper(II)
ion is coordinated with four oxygen atoms from acetate ions in a square planar and one
pyridine nitrogen atom in an axial position and has a coordination environment of CuO4N.
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Figure 1. UV-Vis spectra of 1 (blue line) and 2 (red line) in the sold state.

2 was obtained by the reaction of Cu(NO3)2·3H2O and the bpba ligand in a methanol/
water solution under aerobic conditions at room temperature, and a 55% yield was observed.
Strong absorption of the coordinated nitrate anions at 1384 cm−1 (antisymmetric stretching
mode) was observed in the IR spectrum of 2 in KBr [32]. The signals for the C–H bonds of
the bpba ligand were detected at 3094–2926 cm−1. Likewise, the VC = N peak was displayed
at 1624 cm−1, which is also blue-shifted to that of the bpba ligand by the coordination of
Cu(II) ion. A distinct absorption band in the range of 215–430 nm, with maxima at 233,
265 (sh), and 338 (sh) was observed in the UV/vis spectrum of 2 in the solid state, at room
temperature. This UV/vis spectrum was similar to that of the free bpba ligand, where
the peaks were attributed to the n–π* and π–π* transitions of the pyridine and benzene
moieties [30]. That is, the peaks can be assigned as π–π* (233 nm, benzyl), n–π* (265 nm,
benzyl), and n–π*/π–π* transitions (338 nm, 4,4′ bipyridylamine), respectively. The d–d
transition band of the Cu(II) ion was observed in the range of 490–965 nm, with a maximum
at 575 nm (Figure 1) [31]. In 2, the Cu(II) ion is bonded with four nitrogen atoms from
pyridine moieties in a square planar and two oxygen atoms from water molecule and
nitrate ion in axial positions, which forms a CuN4O2 coordination environment. Thus, the
coordination environments can be attributed to the difference of d-d transition band.

The TGA trace of 1 showed no decomposition up to 162 ◦C. The 5.45% weight loss in
the range of 162–177 ◦C was attributed to the partial decomposition of the acetate group
(Figure 2). Starting at 194 ◦C and continuing to 291 ◦C, 1 rapidly decomposed. From
291 to 500 ◦C, no weight loss was observed in the polymer, and the weight of the residue
corresponded to that of Cu(II) oxide without any organic components [33,34]. The TGA
trace of 2 showed 7.7% weight loss at 85 ◦C, corresponding to the loss of all solvents (i.e.,
H2O and CH3OH) per unit formula (Figure 2). No chemical decomposition was observed
in 2 up to 228 ◦C; it rapidly decomposed above 228 ◦C. At approximately 400 ◦C, most
of the organic components disappeared, and only Cu(II) oxide remained. 1 decomposed
faster than 2, indicating that 2 was more thermally stable than 1.
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3.2. Description of the Crystal Structures

X-ray crystal structure of 1: 1 crystallizes in the monoclinic C2/c-space group; the
crystallographic data and results of the refinements are summarized in Table 1. An ORTEP
diagram of 1 is shown in Figure 3, and Table 2 lists the selected bond lengths and angles.
The asymmetric unit of 1 is composed of one Cu(II) ion, a half-bpba ligand, and two acetate
ions. The Cu(II) center is pentacoordinated as CuNO4 in a distorted square pyramidal
coordination sphere and is bonded to the four oxygen atoms of the four acetato ligands and
one nitrogen donor atom of one bpba ligand. The Cu1 ion is displaced from the equatorial
plane toward the nitrogen atom of bpba by 0.197(2) Å. The Cu1···Cu1’ distance in the
paddle-wheel geometry is 2.621(1) Å, corresponding to a weak cuprophilic interaction. This
distance falls within the range observed for other similar species [35]. Consequently, the
geometry of the paddle-wheel Cu2 unit can be described as a pseudo-octahedral species.
The average Cu–N and Cu–O bond distances are 2.175(5) and 1.980(2) Å, respectively. These
values lie within the range for Cu–N or Cu–O single bonds calculated from the crystallo-
graphic data [36,37]. Owing to the Jahn–Teller distortion, the axial bonds are somewhat
longer than the equatorial bonds. The bond angle around Cu(II) is 88.2(2)–168.7(2). These
values fall within the range for normal square pyramidal Cu(II) compounds [38,39].
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Table 2. Selected bond distances (Å) and angles (◦) for polymers 1 and 2.

1 2

Cu1–N1 2.175(5) Cu1–N1 2.045(4)
Cu1–O1 1.990(4) Cu1–N4 2.009(4)
Cu1–O2 1.963(4) Cu1–N3′ 2.023(4)
Cu1–O3 1.975(4) Cu1–N6′ ′ 2.045(4)
Cu1–O4 1.993(4) Cu1–O1 2.367(3)

Cu1–Cu1′ 2.621(2) Cu1–O2 2.644(4)
N1–Cu1–O1 95.83(19) N1–Cu1–O1 89.00(13)
N1–Cu1–O2 95.68(19) N4–Cu1–O1 94.67(13)
N1–Cu1–O3 94.92(18) N3′–Cu1–O1 92.21(13)
N1–Cu1–O4 96.39(18) N6′ ′–Cu1–O1 91.29(13)
O1–Cu1–O2 168.4(2) N1–Cu1–N4 176.27(15)
O1–Cu1–O3 90.4(2) N1–Cu1–N3′ 90.22(15)
O1–Cu1–O4 88.2(2) N1–Cu1–N6′ ′ 89.81(15)
O2–Cu1–O3 89.69(18) N4–Cu1–N3′ 90.33(15)
O2–Cu1–O4 89.50(18) N4–Cu1–N 89.42(15)
O3–Cu1–O4 168.68(19) N3′–Cu1–N6′ ′ 176.50(15)

Symmetric transformations used to generate equivalent atoms: (′) −x, −y, −z + 1 for polymer 1 and (′) x,
−y − 1/2, z − 1/2; (′ ′) x, −y + 1/2, z + 1/2 for polymer 2.

In 1, the two pyridine groups of the bpba ligand are twisted at an angle of 54.4(2)◦,
which is related to N2. The two pyridyl nitrogen atoms of the bpba ligand are coordinated
to two different Cu(II) ions. Therefore, the Cu(II) atoms and bpba ligands are linked
alternatively to afford a 1D zigzag structure along the c-axis (Figure 4) [40]. That is, the
1D chain exhibits a linear structure with a zigzag pitch of 25.860 Å along the axis. The
nearest Cu···Cu separation between the 1D chains is 6.446(2) Å, and the nearest Cu···Cu
separation within the 1D chain is 10.691(2) Å. Between the 1D chains, herringbone-stacking
interactions are formed between the benzyl group of bpba and the pyridine group of bpba
belonging to adjacent 1D chains, giving rise to a 2D network (Figure 4). The distance
between the centroids is 4.820 Å, and the dihedral angle between the benzyl and pyridine
groups of bpba is 86.2(3).
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X-ray crystal structure of 2: Compound 2 crystallizes in the monoclinic P21/c space
group; the crystallographic data and the results of the refinements are summarized in
Table 1. An ORTEP diagram of 2 is shown in Figure 5, and Table 2 lists the selected bond
lengths and angles. The asymmetric unit of 2 is composed of one Cu(II) ion, two bpba
ligands, two nitrate ions, three water molecules, and one methanol molecule. The Cu(II)
cation is hexacoordinated as CuN4O2 in a distorted octahedral structure and is bonded to
the four pyridyl nitrogen atoms of the four bpba ligands, one water oxygen atom, and one
oxygen atom of one nitrate anion. The average Cu–N and Cu–O bond distances are 2.031(2)
and 2.467(2) Å, respectively. The bond angles around Cu(II) are 89.0(1)–176.5(1). These
values are within the range for normal octahedral Cu(II) compounds [37,40]. In 2, each
pyridine group in the two bpba ligands in the structure is twisted, with angles of 58.0(2)
and 72.8(2)◦, related to N2 and N5, respectively. The two pyridyl nitrogen atoms of the
bpba ligand are coordinated to two different Cu(II) ions. Each Cu(II) ion is coordinated
to four different bpba ligands. Therefore, the Cu(II) atoms and bpba ligands are linked
alternatively to afford a 2D grid structure. This 2D layer is packed along the a axis, with an
interlayer distance of 8.22 Å. Because each Cu(II) ion is bonded to four bpba ligands, and
each bpba binds to two Cu(II) ions, the stoichiometry of the polymer complex corresponds
to Cu2+/bpba = 1:2, which generates 2D layers extending along the b + c plane (Figure 6).
The 2D layer is composed of rings that include 40 atoms from four Cu(II) ions and four
bpba ligands. The nearest Cu···Cu separation between the 2D layers is 10.961(2) Å, and the
nearest Cu···Cu separation within the 2D layer is 10.755(2) Å.

Two benzyl groups of two bpba ligands in the asymmetric unit of 2 (Figure 6) are
involved in offset-stacking and herringbone ππ–π interactions with benzyl and pyridine
groups belonging to other Cu(II) ions [41]. For example, one benzyl group with C15 shows
offset-stacking interactions with different benzyl groups with C15 (−x, −y − 1, −z + 1)
(interplanar separation: 3.473(9)–3.489(9) Å, centroid···centroid 4.621 Å) and herringbone
π–π interaction with different pyridine groups with N3 (−x, −y − 1, −z + 1) (dihedral
angle 88.4(2)◦; centroid···centroid 5.017 Å). The other benzyl group with C32 displays a
herringbone interaction with different pyridine groups with N4 (−x + 1, y − 1/2, −z + 1/2)
(dihedral angle 43.4(2)◦; centroid···centroid 4.922 Å). Furthermore, two strong hydrogen
bonding interactions are observed between the oxygen of the coordinated water molecule,
the oxygen atom of the free nitrate ion, and the oxygen atom of the methanol molecule
(O1···O6(NO3

−): 2.830 Å, O1···O8(MeOH): 2.736 Å).
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3.3. Photoluminescence Properties of 1 and 2

Photoluminescence spectra of 1 and 2 in the solid state were obtained under aerobic
conditions at room temperature. Upon excitation at 300 nm, strong emission bands with
maxima at 355 and 466 nm were observed for 1 and one band was observed at 464 nm for
2 (Figure 7). Unexpectedly, we could observe strong photoluminescence emissions in 1
and 2, even though the polymers have a strong quencher of Cu(II) ion [42,43]. The bpba
ligand exhibited emission bands at 346 and 448 nm upon excitation at 300 nm, which were
attributed to the π→ π* or π→ n transitions of the benzene and pyridine groups [44,45].
For the bpba ligand, the intensity of the benzene group was higher than that of the pyridine
group in the solid state. Compared to the emission peaks of bpba, those of 1 were red-shifted
by approximately 9 and 18 nm, respectively. In this case, the longer-wavelength emission
was more significant than the shorter-wavelength emission. This behavior was opposite to
that of the bpba ligand. Remarkably, 2 exhibited only one emission band at 464 nm. The
shorter-wavelength emission at approximately 350 nm disappeared owing to the geometry
and anion. The emission of 2 at approximately 464 nm was red-shifted by approximately
16 nm for the bpba ligand. The long-wavelength emission at approximately 464 in 2 became
significantly more intense, accompanied by band broadening compared to that of 1, because
of the vibration of the methanol and water molecules. Generally, the photoluminescence
of the coordination polymers depends on the type of metal ion [46–50]. Interestingly,
different behaviors related to quenching of the emissions in 1 and 2 were observed in the
solid state. In contrast to 2, the coordination polymer [(bpba)Zn(CH3COO)2]n showed
a strong emission band at 361 nm without any emission at approximately 460 nm [44].
Therefore, this difference could potentially be utilized to control and select the emission
wavelengths for optical materials. In the case of 1 and 2 as well as silver(I) coordination
polymers [Ag(bpba)(CF3SO3)]·CH3CN and [Ag2(bpba)2(NO3)2]·CH3CN·H2O [23], the
emission shifts to bpba ligand were relatively small in 1 and 2, indicating that the Cu(II)
ion was comparatively a weak interaction (i.e., π back donation) with bpba compared to
the silver(I) ion.
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3.4. Magnetic Properties of 1 and 2

The magnetic susceptibilities of 1 and 2 were measured on solid samples in an ap-
plied field of 5000 Oe between 5 and 300 K and plotted as χMT vs. T (Figure 8). For
1, the effective magnetic moment at 300 K was 2.06 µB/Cu2, which was significantly
lower than the value (2.83 µB/Cu2) expected for two independent S = 1/2 Cu(II) spins
(g = 2.0). The value of µeff(T) decreased gradually to 0.277 µB/Cu2 with a decrease in
the temperature to 5 K, indicating a strong antiferromagnetic interaction within the CuII-
(η2-OAc)4-CuII unit. Interestingly, the effective moment decreased gradually when the
temperature was raised to 80 K, and then decreased linearly when it was decreased to 5 K.
Considering the structure of 1, the magnetic data were fitted to the analytical expression
(the Bleaney–Bowers equation) for a coupled S = 1/2 (S1 = S2 = 1/2) dinuclear spin model
(H = −2J(Ŝ1·Ŝ2) + gβŜ · B) [51,52]. The best fit gave values of J = −172 cm−1, g = 2.27,
θ = −6.5 K, p = 0.027, and tip = 240 × 10−6 emu/mol (where p is the molar fraction of
non-coupled species; θ is the interdimer interaction; tip is the temperature-independent
paramagnetism). As expected, 1 exhibited strong antiferromagnetic coupling within the
dimeric unit and very weak antiferromagnetic interaction between the dimeric units within
the 1D chain and/or between the 1D chains. The J value (−172 cm−1) was smaller than
that of Cu2(CH3COO)4·2H2O (J = −290 cm−1) [53], attributed to the coordination of the
bpba ligand between the dimeric Cu units. Due to the coordination, the Cu–Cu bond
distance was altered (~0.02 Å), which might be influenced by the order of orbital over-
lap. Furthermore, the coupling constant of 1 was comparable to −166 and −175 cm−1

for [Cu2(histamine)2(C2O4)(ClO4)2] and [Cu2(mepirizole)2(C2O4)(ClO4)2], respectively,
although the bridging ligands were very different [54,55].

The effective magnetic moment of 2 at 300 K was 1.96 µB/Cu and remained almost con-
stant with a decrease in the temperature to 15 K (1.96 µB/Cu). This value of µeff(T) at 300 K
was slightly higher than the expected spin-only value of 1.73 µB/Cu and was attributed
to a small effective g value, i.e., geff = 2.26 (µeff = geff[S(S + 1)]1/2, S = total-spin angular
momentum quantum number). Below 15 K, µeff(T) decreased, reaching 1.91 µB/Cu at 5 K,
which could be attributed to the intermolecular interactions between the Cu(II) ions [56,57].
In the 2D framework of 2, the inter Cu distances through the 4, 4′-bipyridylamine unit
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of the bpba ligand were very long. Thus, the magnetic interactions between the Cu(II)
ions within the 2D framework were not efficient. From this perspective, the Cu(II)–Cu(II)
interactions in 2 were favorable through space rather than bonding. Additionally, above
5 K, χM

−1(T) can be fit to the Curie–Weiss expression χM = C/(T−θ) with θ = −0.40 K
(C = 0.469 emu K/mol) for 2 [51]. The Weiss constant indicates weak antiferromagnetic
interactions within and/or between the 2D coordination polymer networks of 2.
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4. Conclusions

Two novel bpba-based Cu(II) coordination polymers with unusual emission behaviors
and unique magnetic properties, depending on the geometric structure, were presented.
The Cu(II) ions of 1 and 2 formed a paddle-wheel structure with bridging acetates and
adopted octahedral geometry with four pyridine groups, one water molecule, and one
methanol molecule, respectively. By connecting Cu(II) ions and bpba ligands, 1 and 2
exhibited a zigzag 1D chain structure with paddle-wheel moieties and a puckered 2D
network structure with a distorted square shape, respectively. 1 and 2 displayed slightly
red-shifted emissions compared to those of the bpba ligand because of the presence of
Cu(II) and counter ions. Interestingly, 2 showed strong emission at 464 nm only, with no
emission at approximately 350 nm. 1 showed a strong antiferromagnetic interaction within
the paddle-wheel unit, whereas 2 displayed very weak antiferromagnetic coupling through
the bipyridine unit and/or space.
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