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Abstract: We studied the spectral-luminescent properties of (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 and
(ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystals grown by directional melt crystallization in a cold skull.
Analysis of the absorption spectra of the crystals suggested the presence of Pr3+ and Pr4+ ions.
Measurement of the relative intensities of the luminescence bands corresponding to the 3P0 →
3H4,5, 3P0 → 3F2,3,4, 3P1 → 3H5 and 1D2 → 3H4 optical transitions of the Pr3+ ions, and analysis of
luminescence extinction kinetics for the 3P0 and 1D2 levels of the Pr3+ ions, suggests the presence of
cross-relaxation (1D2 → 1G4)→ (3H4 → 3F4) of the Pr3+ ions in the ZrO2-Y2O3-Pr2O3 crystals.

Keywords: zirconia solid solutions; praseodymium ions; absorption spectrum; luminescence
spectrum; cross-relaxation process

1. Introduction

Visible-wavelength solid-state lasers are intensively being developed nowadays. The
interest in these lasers stems from their wide range of potential applications in various
fields of science and engineering, medicine, agricultural technologies, etc. [1–6].

The trivalent praseodymium ion (Pr3+) is the most widely used rare-earth ion for
visible-wavelength laser generation because the structure of its energy levels provides the
possibility of laser transitions in the entire visible spectral region from blue (3P1 → 3H4) to
deep red (3P0 → 3F3).

Fluoride crystals are the most widely used matrix materials for solid-state visible-
wavelength lasers because of the low frequency of their phonon spectrum (E = 400 cm−1)
which significantly reduces the rate of multiphonon non-radiative energy relaxation from
the excited rare-earth ion levels in these crystals. For example, LiYF4 crystals with a phonon
spectrum frequency of ~460 cm−1 [7] are widely used. The spectral-luminescent and laser
properties of Pr3+ ion-doped fluoride crystals have been studied before [8–20].

Oxides exhibit higher stability and mechanical strength in comparison with fluoride
materials. Moreover, oxide crystals exhibit higher phonon spectrum frequencies and hence
have a higher probability of non-radiative transitions. The spectral-luminescent and laser
properties of some Pr3+ ion-doped oxide crystals have also been studied before [21–25].

Zirconia-based solid solution single crystals were obtained for the first time with the
development of refractory materials technologies in the 1970s. As-crystallized cubic ZrO2
undergoes a number of polymorphic transformations upon cooling. At 2340 K, there is a
cubic–tetragonal transition, and at 1170 K a monoclinic modification forms. To stabilize the
cubic phase of zirconia, one can introduce appropriate oxides during synthesis, such as
Y2O3 and rare-earth (RE) oxides, as well as CaO and MgO. Many studies have dealt with
the polymorphic transformations and conditions required for the stabilization of the cubic
and tetragonal phases of zirconia [26–30].
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Single crystals of stabilized zirconia have a number of unique physical properties.
They are optically homogeneous, have a high hardness (8.5–9 Moos), and a wide spectral
transmittance region (250–7500 nm). Initially, cubic single crystals of zirconia solid solutions
doped with rare-earth ions were considered as active media for lamp-pumped rare-earth
lasers but did not find wide application due to their low thermal conductivity. Laser diode
pumping changed the requirements of the thermomechanical parameters of laser crystals,
and this revived interest in zirconia single crystals. The phonon spectrum frequency
of zirconia solid solutions is ~610 cm−1 [31–33], which is intermediate between that for
Y3Al5O12 crystals (~865 cm−1) [7] and that for fluoride crystals (400 cm−1). It should be
noted that the crystalline structure of ZrO2-based solid solutions is disordered; therefore,
their absorption and luminescence spectra are broadened quite inhomogeneously. Thus,
these materials can be used for the fabrication of tunable and short-pulse laser generators.

The results of semiconductor-pumped laser generation experiments for ZrO2-Y2O3
crystals doped with Nd3+, Tm3+, Ho3+, Er3+, and Yb3+ ions have been reported previ-
ously [28–30,34–37]. However, there are no literary data on the properties of lasers based
on ZrO2-Y2O3 crystals doped with Pr3+ ions. To assess potential application domains
of ZrO2-Y2O3-Pr2O3 crystals as active media of solid-state lasers, one should carry out
detailed studies of the spectral-luminescent properties of these materials. Such experiments
have not yet been conducted. Therefore, the aim of this study was to assess the spectral-
luminescent properties of Pr3+ ion-doped ZrO2-Y2O3 crystals for evaluating their potential
as active media for visible-wavelength lasers.

2. Materials and Methods

For the tests, ZrO2-Y2O3 solid solution crystals with different Pr3+ ion concentrations
were grown by directional melt crystallization in a cold skull with direct inductive heating
on a Kristall-407 (Russia) plant at a 5 mm/h growth rate [28–30]. The as-grown crystals
were transparent and had a light-green color, the intensity of which increased with the
praseodymium oxide concentration. The length and cross-section of the crystals were 30–40
and 10–20 mm, respectively. Photographs of the as-grown crystals are shown in Figure 1.
For elemental analysis and spectral-luminescent measurements, plane-parallel wafers were
cut out from the beginning and the end sections of the crystals and polished.
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Figure 1. Photographs of as-grown crystals: (a) (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007; (b) 
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Figure 1. Photographs of as-grown crystals: (a) (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 ;
(b) (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003.
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The (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 and (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 solid solution
crystals had a cubic structure, as confirmed by the Raman scattering data for the crystals. By
way of example, Figure 2 shows the Raman spectrum of the ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007
crystal. The Raman spectrum was recorded with a Renishaw InVia (UK) spectrometer, excitation
wavelength 532 nm.
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Figure 2. Raman spectrum of (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystal.

The elemental composition of the crystals was determined using energy dispersion
spectroscopy (EDS) with a microanalysis attachment to a Quanta TM 3D 200i electron
microscope (FEI Company, Oregon, USA). Elemental analysis data are shown in Table 1.

Table 1. Elemental analysis data for test crystals.

Specimen * ZrO2, mol.% Y2O3, mol.% Pr2O3, mol.%

a (1) 80.74 ± 0.52 18.71 ± 0.43 0.55 ± 0.10
(2) 80.35 ± 0.54 18.87 ± 0.43 0.78 ± 0.13

b
(1) 80.65 ± 0.53 19.12 ± 0.44 0.23 ± 0.15
(2) 79.86 ± 0.52 19.81 ± 0.45 0.33 ± 0.13

* (1) For wafer cut out from crystal beginning section; (2) for wafer cut out from crystal end section.

The Pr3+ ion absorption spectra of the beginning and the end of the test crystals were
recorded in a double-beam scheme with a Lambda 950 spectrophotometer (Perkin Elmer,
USA) at room temperature.

T = 300 K luminescence spectra were recorded with an FHR 1000 spectrophotometer
(Horiba, Japan). The luminescence spectra were excited from the 3P2 level to the underlying
levels of the Pr3+ ions by a diode solid-state laser, MGL-N-457nm-1W (λexc. = 457 nm) (CNI
Laser, China). The radiation receiver was a Hamamatsu R928B photoelectron multiplier
(Hamamatsu Photonics, Japan).

Extinction kinetic curves of luminescence from the 3P0 and 1D2 levels of the Pr3+ ions
in the ZrO2-Y2O3-Pr2O3 crystals were recorded with a Rohde & Schwarz RTM3004 high-
resolution digital oscilloscope (Rohde & Schwarz, Germany). The recording wavelengths
were 504 and 612 nm, with luminescence excitation by a Al2O3:Ti crystal LX 329 laser
(SOLAR Laser Systems, Belarus Republic) with a 450 nm wavelength, a 15 ns pulse duration,
and a 10 Hz pulse rate.

3. Results and Discussion

Elemental analysis data (Table 1) suggest an increase in the praseodymium oxide
content along the crystal. The difference in the Pr2O3 concentrations at the beginning and
the end of the crystal is caused by the fact that the Pr3+ ions have a relatively large radius
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in comparison with that of the Zr4+ ions and are therefore displaced toward the end of the
growing crystals.

Figure 3 shows the absorption spectra of the test ZrO2-Y2O3-Pr2O3 crystals for
(a) 350–700 and (b) 900–2500 nm ranges. The digits mark the absorption spectra of the
ZrO2-Y2O3-Pr2O3 specimens cut out from the crystal sections corresponding to (1) the
beginning of growth and (2) end of growth.
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The absorption spectra of the ZrO2-Y2O3-Pr2O3 crystals contain bands corresponding
to the 4f –4f intra-configurational optical transitions of the Pr3+ ions from the main state
3H4 to the 3P2, 3P1, 3P0, 1D2, 1G4, 3F2, 3, 4, and 3H6 excited multiplets. These bands are
broadened quite inhomogeneously due to the disordering of the crystal structure.

It is noteworthy that the absorption bands of the Pr3+ ions are resolved against the tail
of a wide band, which seems to originate from the presence of Pr4+ ions in the ZrO2-Y2O3-
Pr2O3 crystals. The presence of both trivalent and tetravalent praseodymium ions in the
ZrO2-Y2O3-Pr2O3 crystals has been reported before [28,29,38,39].

Analysis of the absorption spectra shown in Figure 3 revealed that the intensity of the
Pr3+ ion-related absorption bands increases as one moves toward the end of the crystal.

Comparing the absorption spectra of the Pr3+/Pr4+ ions in the ZrO2-Y2O3-Pr2O3 crys-
tals containing different concentrations of praseodymium ions was also of interest. Figure 4
shows the absorption spectra of the Pr3+/Pr4+ ions in the (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007
and (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystals recorded under similar conditions.
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Figure 4. Absorption spectra of Pr3+/Pr4+ ions in (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 and
(ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystals recorded in (a) 350–700 and (b) 900–2500 nm ranges.

Analysis of the absorption spectra shown in Figure 4 suggests that both the Pr3+ and
Pr4+ ion absorption band intensities for the (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystal are
higher than those of the respective bands for the (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystal.

The luminescence spectra for the 3P0 → 3H4,5, 3P0 → 3F2,3,4, 3P1 → 3H5, and 1D2
→ 3H4 optical transitions of the Pr3+ ions for different crystal ZrO2-Y2O3-Pr2O3 sections,
recorded with laser excitation at λexc. = 457 nm at T = 300 K, are shown in Figure 5. The
digits mark the luminescence spectra of the ZrO2-Y2O3-Pr2O3 specimens cut out from the
crystal sections corresponding to (1) beginning of growth and (2) end of growth.
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(b) (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003; (1) beginning of crystal and (2) end of crystal, λexc. = 457 nm,
T = 300 K.

The significant inhomogeneous broadening in the luminescence spectra of Pr3+ ions in
ZrO2-Y2O3-Pr2O3 is caused by the disordering of the crystal structure.

It can be seen from Figure 5 that the luminescence spectra of the Pr3+ ions taken
from different crystal sections exhibit a redistribution of the relative intensities of the
3P0 → 3H4 and 1D2 → 3H4 optical transition bands. In the luminescence spectrum taken
at the beginning of the (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystal, the relative intensity of
the 3P0 → 3H4 transition bands is comparable with that of the 1D2 → 3H4 transition bands.
However, in the luminescence spectrum taken at the end of the crystal, the intensity of the
1D2 → 3H4 transition bands decreases relative to that of the 3P0 → 3H4 transition bands.
For the (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystal with a lower praseodymium concentration,
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the relative intensity of the 3P0 → 3H4 transition bands is lower than that of the 1D2 → 3H4
transition bands. There is also a trend of decreasing intensity of the 1D2 → 3H4 transition
bands relative to that of the 3P0 → 3H4 transition bands in the luminescence spectrum
taken from the crystal section corresponding to the end of growth. The trend of decreasing
intensity of the 1D2 → 3H4 transition bands in comparison with that of the 3P0 → 3H4
transition bands is also observed in the luminescence spectra of the crystals with a higher
concentration of Pr3+ ions (Figure 6).
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This redistribution of the relative luminescence band intensities for the 3P0 → 3H4 and
1D2→ 3H4 optical transitions of the Pr3+ ions has been observed before for La1-xPrxGa0.5Sb1.5O6
and YPO4 particles and BaGd2(MoO4)4 crystals doped with Pr3+ ions [40–42].

The redistribution of the relative luminescence band intensities for the 3P0→ 3H4 and
1D2 → 3H4 optical transitions of the Pr3+ ions was attributed by the authors [40–42] to the
presence of cross-relaxation of the Pr3+ ions (1D2→ 1G4)→ (3H4→ 3F4), as shown in Figure 7.
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The redistribution of the relative luminescence band intensities for the 3P0 → 3H4
and 1D2 → 3H4 optical transitions of the Pr3+ ions in the luminescence spectra of the
(ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals revealed in
this study is also attributable to the presence of non-radiative energy exchange between the
Pr3+ ions in the excited state 1D2 and the Pr3+ ions in the main state 3H4.

In order to confirm this assumption, extinction kinetic curves of luminescence
from the 3P0 and 1D2 levels of the Pr3+ ions in the (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and
(ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals were recorded. Figure 8 shows the 504 and 612 nm
luminescence extinction kinetic curves for these levels (excitation by second harmonic of an
Al2O3:Ti crystal laser, 450 nm wavelength, 15 ns pulse duration, 10 Hz pulse rate).
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Figure 8. Extinction kinetic curves of luminescence from the 3P0 and 1D2 levels of the Pr3+ ions in
(1) (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and (2) (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals, λexc. = 450 nm,
(a) λdet. = 504 nm, (b) λdet. = 612 nm.

It can be seen from Figure 8a that the 3P0 level luminescence extinction curves are
non-exponential both for the (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and the
(ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals. With an increase in the Pr3+ ion concentration in
the test crystals, the curve patterns change, but only slightly. Therefore, the non-exponential
pattern of the respective decomposition curves can be attributed either to the presence of
various optical centers of the Pr3+ ions differing in the 3P0 level lifetime or to the interaction
between the Pr3+ and the Pr4+ ions.

The 1D2 level luminescence extinction kinetic curves for the
(ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals (Figure 8b)
are also non-exponential. However, with an increase in the Pr3+ ion concentration in these
crystals, the decomposition of the 1D2 level becomes faster, confirming the earlier assump-
tion of the presence of non-radiative energy transfer between the Pr3+ ions (1D2 → 1G4)→
(3H4 → 3F4). The non-exponential pattern of the 1D2 level luminescence kinetics for the
(ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 crystals seems to originate from the non-radiative energy
transfer as per the schematic Pr3+ (1D2 → 1S0)→ (1D2 → 3H4).

The presence of non-radiative energy transfer between the Pr3+ ions (1D2 →
1G4) → (3H4 → 3F4) is confirmed by the pattern of the 3P0 and 1D2 level lumines-
cence extinction curves for the Pr3+ ions taken from the beginning and the end of the
(ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystals (Figure 9).
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Figure 9. Extinction kinetic curves of luminescence from 3P0 and 1D2 levels of Pr3+ ions for
(ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007 crystal, λexc. = 450 nm, T = 300 K: (a) λdet. = 504 nm, (b) λdet. = 612 nm;
(1) beginning of crystal and (2) end of crystal.

4. Summary

In this study, (ZrO2)0.802(Y2O3)0.195(Pr2O3)0.003 and (ZrO2)0.805(Y2O3)0.188(Pr2O3)0.007
solid solution single crystals were synthesized by directional melt crystallization in a
cold skull. The spectral-luminescent properties of praseodymium ions in these crys-
tals were studied in detail for the first time. Analysis of the absorption spectra of the
(ZrO2)0.803(Y2O3)0.190(Pr2O3)0.007 and (ZrO2)0.804(Y2O3)0.193(Pr2O3)0.003 crystals suggests
the presence of both Pr3+ and Pr4+ ions in the crystals. Analysis of the luminescence spectra
and the 3P0 and 1D2 level luminescence extinction curves for Pr3+ ions in the test crystals
revealed the presence of concentration quenching of the luminescence from the excited
state 1D2 in the Pr3+ ions due to cross-relaxation (1D2 → 1G4)→ (3H4 → 3F4).
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