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Abstract: In order to improve the weldability and bearing capacity of AZ91 magnesium alloy welded
joints, magnetic field and active flux were added in the TIG welding process. In the welding process,
the magnetic field and welding parameters were unchanged, and the coating amount of active
flux was adjusted. The formability, mechanical properties, and microstructure of the welded joints
under different coating amounts of activated flux were analyzed, and the crystallization nucleation
characteristics of molten pool were discussed. The experimental results reveal that the combined
effect of the magnetic field and activated flux has a significant effect on increasing the penetration
and promoting mechanical properties. When the coating amount of activated flux is 3 mg/cm2, the
highest penetration of the welded joint is obtained, which is 141% of that without activated flux.
Meanwhile, the mechanical properties reach the maximum, which is a tensile strength of 292 MPa,
elongation of 11.2%, and weld zone hardness of 75.6 HV (0.5 Kgf). The combined effect of TiO2 flux
and magnetic field does not change the phase composition and the grain orientation of a weld metal
but can affect the grain size. The average grain size of a weld metal under an activated flux coating
amount of 3 mg/cm2 is 18.2% smaller than that under an activated flux coating amount of 1 mg/cm2.

Keywords: TiO2-activated flux; longitudinal alternating magnetic field; AZ91 magnesium alloy;
microstructure and properties

1. Introduction

Magnesium alloys are widely used in aerospace, automobile industry, and 3C prod-
ucts because of their advantages, such as low density, high specific strength, excellent
damping capacity, and easy recovery [1,2]. Due to the characteristics of magnesium alloys,
such as low melting point, low viscosity, and high chemical activity, many defects can
form easily during the welding process, including slag, cracks, and porosities. In order
to ensure the welding quality, lots of welding technologies for magnesium alloys have
been studied, including tungsten inert gas (TIG) arc welding [3–5], metal inert gas (MIG)
arc welding [6,7], friction stir welding (FSW) [8,9], resistance spot welding (RSW) [10,11],
laser beam welding (LBW) [12,13], etc. Commonly used technologies were TIG and MIG
welding. TIG welding has become the main technology used for welding magnesium
alloys due to the small deformation of welded joint, narrow heat-affected zone, and high
mechanical properties. However, because the arc is free and the current density of the arc is
limited by the diameter of tungsten electrode, the TIG welding itself has some limitations,
such as heat loss, small arc force, and low energy density. Therefore, the penetration of
single-pass welding is shallow, which makes the welding efficiency low. Aiming to solve
this problem, lots of pieces of research have been done. The activated tungsten insert
gas (A-TIG) welding process was developed by the Paton Electric Welding Institute in
the 1960s. In this process, activated flux was applied to the plate surface before welding,
and an increase in penetration was achieved. Due to a wide range of components, rich
sources, low prices, and good economic benefits of activated flux, lots of research on A-TIG
has been carried out and promote the development of A-TIG welding technology [14–18].
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The research on A-TIG welding has been carried out in China since the 1990s. Many
studies about magnesium alloys were accomplished. The initial research committed to
developing activated flux, which could increase the penetration obviously. The effect of
metal-activated fluxes, oxide-activated fluxes, chloride-activated fluxes, fluoride-activated
fluxes, and compound-activated fluxes on the weld penetration of magnesium alloy have
been reported [19–24]. The research results showed that oxide- and chloride-activated flux
could effectively increase weld penetration and make weld formation good. Although
the mechanism was not unified, it is generally believed that the action mechanism of
oxide-activated flux is mainly the interaction between activated flux and molten pool. The
mechanism of chloride-activated flux is mainly the interaction between activated flux and
arc. Although A-TIG welding has an obvious effect on increasing weld penetration and
welding efficiency, it has a limited effect on refining microstructure and improving the
performance of weld joints. Zhang et al. [19] found that the activated flux made grains
of weld metal coarsen as compared to that without activated flux. The same conclusion
was deduced by Shen et al. [25]. Qin et al. [26] reported the effect of welding current on
AZ61/ZK60 dissimilar magnesium alloy in TIG and A-TIG welding. It was found that the
grain size of the fusion zone of TIG and A-TIG welding could be refined and the tensile
strength increased under the optimal current. But the grain size of A-TIG welding was
not significantly different from that of TIG welding, and the tensile strength was lower
than that of TIG welding. So, it can be seen that the activated flux has a positive effect
on improving welding efficiency, but its effect on improving comprehensive mechanical
properties of the welded joint is limited.

It is well known that the welding process under the action of magnetic field has
attracted more and more attention, due to its advantages of its simple process, low cost, low
energy consumption, and grain refinement. As the obvious effect on refining microstructure
and improving mechanical properties, the longitudinal alternating magnetic field was
mostly applied in the welding process [27–33]. Previous studies [34–37] have shown that
the introduction of the magnetic field during welding can change the mass and heat transfer
process of liquid metal in the molten pool, which can refine grains and improve properties
of magnesium alloy welded joints.

Therefore, the application of a magnetic field to the magnesium alloy A-TIG welding
may play a complementary role, which not only can remain the higher weld penetration
but also can refine the grains and improve the performance of welded joints. This is of
great practical significance for the application of magnesium alloys. Thus, in the present
study, a longitudinal alternating magnetic field was applied in the A-TIG welding process
of magnesium alloy. The activated flux was selected as TiO2. During the test, the amount
of activated flux coating was variable. The formability, microstructure, phase composition,
grain orientation, and mechanical properties of welded joints were systematically investi-
gated to reveal the role of the magnetic field and activated flux playing in the magnesium
alloy welding.

2. Materials and Methods

Commercial hot-rolled AZ91 magnesium alloy plates with a dimension of 100 mm ×
100 mm × 5 mm were selected as the base metal. The chemical composition of the base
metal is given in Table 1.

Table 1. Chemical composition of the base metal (wt%).

Al Zn Mn Si Cu Fe Mg

8.3–9.7 0.35–1 0.15–0.5 <0.01 <0.03 <0.005 Balance

Before this experiment, orthogonal experiments were used to optimize the parameters,
including welding current, excitation current, and excitation frequency, and the optimized
value is 80 A, 1.5 A, 30 HZ, respectively. Thus, in the experiment, only the coating amount of
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activated flux was adjusted. Before welding, the surface of plates were polished to remove
the contaminants and oxide. TiO2-activated flux in powdered form was mixed with a carrier
solvent of ethanol to make a fine paste, and uniformly applied to the surface of plates
with a brush. The coating amount of activated flux was 1 mg/cm2, 2 mg/cm2, 3 mg/cm2,
4 mg/cm2, 5 mg/cm2, respectively. The coated plates were placed under room temperature
for 24 h until the moisture and alcohol was completely evaporated, and then welded by
WSE-50 inverter welding machine. The longitudinal magnetic field was generated by the
excitation coil placed on the welding torch, shown in Figure 1. Welding parameters are
as follows: welding speed is 300 mm/min, extension of tungsten is 2 mm, arc length is
2 mm~4 mm, Argon gas flow rate is 10–15 L/min. For comparison, the welded joints
were also prepared at the same welding parameters mentioned above without applying
magnetic field.
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Figure 1. Schematic diagram of welding device.

After welding, the specimens were cross-sectioned from the welded plates and fine
polished for microstructure and mechanical properties of welded joints. The weld pene-
tration and width were measured using body vision microscope. The microstructure was
observed by scanning electron microscopy (Hitachi S-3400, Hitachi microscopes, Tokyo,
Japan). XRD-700 was used to determine the phases formed in the weld metal. The grain
size and orientation of welded joints were characterized by EBSD (ZEISS G300, ZEISS,
Oberkochen, Germany). The length, width, and thickness directions of the specimens were
defined as the rolling direction (RD), transverse direction (TD), and normal direction (ND),
respectively, shown in Figure 2. The EBSD specimens were ground and polished first, and
then mechanically polished until the surfaces were bright and without visible scratches
under the optical microscope. Final electrolytic polishing was performed using the so-
lution mixed with 10% perchloric acid and 90% alcohol. The temperature of electrolyte
is controlled at −30 ◦C. The electrolytic voltage and time is 15 V and 120 s, respectively.
Microhardness was determined with THVS-5 Vickers hardness tester under a dwell time
of 15 s with a load of 500 g. The tensile tests were carried out using a universal testing
machine under a velocity of 3 mm/min.
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Figure 2. EBSD sampling diagram.

3. Results and Discussion
3.1. Formation of the Welded Joints

The formation of the A-TIG welded joints with and without magnetic field are shown
in Figure 3. It can be seen from Figure 3a that all penetration of the welded joints with
activated flux are higher than that without activated flux. This indicates that A-TIG
welding can significantly increase the weld penetration than traditional TIG welding, no
matter whether the magnetic field is applied or not. The weld penetration and width both
increase first and then decrease with the increase in activated flux coating amount, but the
activated flux coating amount corresponding to their maximum value is not consistent.
The introduction of a magnetic field does not change the above change law. For weld
penetration, the maximum weld penetration is obtained when the activated flux coating
amount is 3 mg/cm2, and the weld penetration with magnetic field is larger than that
without magnetic field. For weld width, the maximum weld width is obtained when the
activated flux coating amount is 2 mg/cm2, and the weld penetration without a magnetic
field is larger than that with a magnetic field. Whether with a magnetic field or without a
magnetic field, the forming factor of weld decreases gradually with an increase in activated
flux coating amount. However, under the condition of the magnetic field, the forming factor
fluctuates in the process of decreasing. This shows that although the applied magnetic field
does not change the action trend of the activated flux, it still has a significant influence
on the welding process. In order to further compare the weld forming status under TIG,
A-TIG and M+A-TIG, the corresponding data are summarized, as shown in Figure 3b. In
the state of A-TIG and M+A-TIG, the coating amount of activated flux is 3 mg/cm2. It is
obvious that the highest penetration and the smallest forming factor are obtained under
M+A-TIG; these are beneficial for improving welding efficiency.
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Figure 3. Formation of the joints with and without magnetic field. (a) Under different flux coating
amounts; (b) Under different process.
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3.2. Microstructure of Welded Joints

The weld metal with and without applied magnetic field at 3 mg/cm2 activated flux
coating amount are selected for microstructure and XRD analysis. The results are shown
in Figure 4. As shown in Figure 4a,b, both of the weld metal are composed of dark gray
primary phase and second phase distributed in gray-white grain boundary, the second
phase particles exhibit a diffuse distribution. It can be seen from Figure 5 that the phase
composition of weld metal does not change with or without applied magnetic field. It
contains α-Mg, Al12Mg17, MgO and TiO. The α-Mg is the matrix and Al12Mg17 is the
second phase, MgO and TiO are the inclusions. Normally, TiO should not be present in
magnesium alloys, but TiO was detected in the samples of XRD test. This can be ascribed
to the reaction between TiO2 flux and matrix Mg under the action of the high temperature
of the arc that generated MgO and TiO. These generated substances were involved in
the molten pool under the action of the arc and did not float out of molten pool in time
during the subsequent solidification and stayed in the weld metal. As seen from the XRD
diffraction pattern, the application of the magnetic field does not change the distribution of
diffraction peaks. For the matrix α-Mg, the strongest diffraction peaks are both obtained
on the (101) crystal plane, which indicates that the application of the magnetic field shows
no influence on the crystal orientation at the same coating amount but has an obvious
enhancement effect on the diffraction peak of (002) crystal plane.
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(a) SEM image of applying no magnetic field; (b) SEM image of exerting magnetic field.
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The phase composition of weld metal with and without magnetic field shows no
difference, so only the weld metal with the magnetic field is selected for EDS analysis to
identify the element distribution. Four sites located at ‘A’, ‘B’, ‘C’, ‘D’ in Figure 4b (as
marked by red arrow) were analyzed. The site A is the area containing a primary crystal,
site B is the gray-white area of a grain boundary, site C is the gray-black area of a grain
boundary, and site D is the area containing a white, bright substance. The results are shown
in Figure 5. It can be observed that two chemical elements (Mg, Al) are contained in site
A and site C, and four chemical elements (Mg, Al, Zn/Ti) are contained in site B and site
D. According to the binary alloy phase diagram of Mg-Al, the eutectic reaction of Mg-Al
occurs at 437 ◦C, forming α-Mg and β/γ phases. In equilibrium, the solubility of Al in
Mg is 11.5 wt% at high temperature and 1.5 wt% at room temperature. Since the welding
process is a kind of rapid heating and cooling, the solidification process of a molten pool
metal is non-equilibrium solidification crystallization; its composition deviates from the
equilibrium composition. As shown in Figure 6a, site A consists of 97.77 wt% Mg and
2.23 wt% Al, suggesting that it is α-Mg. Site B is composed of 94.73 wt% Mg, 4.67 wt%
Al and 0.6 wt% Zn; it is considered as a mixture of α-Mg and Mg17Al12 (with a higher
solid solution of Zn). It is inferred that site C is a mixture of α-Mg and Mg17Al12 judging
from the chemical contents. Site D contains Mg, Al, and Ti elements; according to the XRD
results shown in Figure 6c, it can be concluded that it is corresponding to α-Mg and TiO.
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3.3. Change of Grain Size and Orientation of Weld Metal with and without Magnetic Field

The EBSD maps and grain size in weld metal with and without magnetic field at
3 mg/cm2 activated flux coating amount are shown in Figure 7b,c,e,f. The same test was
carried on base metal (BM) for comparison, the results are shown in Figure 7a,d.
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Figure 7. EBSD maps and grain size. (a,d) BM; (b,e) weld metal without magnetic field at 3 mg/cm2;
(c,f) weld metal with magnetic field at 3 mg/cm2.

As shown in Figure 7, the particles of BM are finer than that of weld metal with or
without magnetic field. The grain size in BM is 9.43 µm, while it is 16.98 µm and 15.55 µm
without and with magnetic field, respectively. It should be noted that the average grain size
of weld metal with magnetic field is smaller than that without magnetic field, which is due
to the combined effects of activated flux and magnetic field. For one thing, TiO2-activated
flux will change the surface tension gradient of molten pool from negative to positive [36].
This will change the flow direction of the liquid molten pool, and finally the flow mode of
the liquid molten pool will change from center to periphery to periphery to center. This
change of flow mode in a molten pool has a good effect on increasing weld penetration but
has no obvious effect on the microstructure of weld metal. Therefore, the grain size of weld
metal is slightly larger than that of base metal. For another, the applied magnetic field can
act on the arc to cause it rotate under the Lorentz force [37]. The rotating arc will drive the
molten pool to rotate accordingly, but it has a certain lag. Since the flow mode of molten
pool has been changed from the periphery to the center by TiO2-activated flux, the liquid
molten pool will move downward spirally under the combined action of the magnetic
field and TiO2-activated flux. This will make the scouring effect of liquid metal on the
crystallization front near the fusion line more obvious. The primary or secondary dendrite
arms of columnar crystals formed, due to a large temperature gradient in the initial stage
of crystallization, will be subject to a large shear force. When the shear force reaches a
certain level, the dendrite arms will be broken and dissolve into the moving molten pool,
part of which will be remelted to participate in the solidification and solute redistribution
of molten pool, part of which, unmelted, will be preserved in the form of a second phase
and exist as a heterogeneous nucleation source to play a role in refining grains. This is the
reason for the grain refinement of the weld metal with magnetic field and activated flux,
compared with that without magnetic field.

The pole figures of three samples corresponding to Figure 7a–c are shown in Figure 8.
The supply state of AZ91 magnesium alloy used in the test is rolled state, it would form
a basal texture with a (0001) plane parallel to the rolling plane. Therefore, as shown in
Figure 8a, the crystal in BM shows a tendency of preferential growth on the (0001) crystal
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plane. When the TiO2 activated flux acts alone or in conjunction with the magnetic field on
the welding process, It can be observed from Figure 8b,c that the pole density distributes
randomly, indicating that there is no crystal orientation behavior on the crystal planes.
These are mainly caused by the change in flow mode of the molten pool. Under the
combined action of two driving forces, the liquid metal will spiral downward (shown
in Figure 7), which makes the movement of the molten pool more violent and the solute
redistribution more uniform, thereby inhibiting the emergence of preferential growth behavior.
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3.4. Change of Grain Size and Orientation of Weld Metal with Magnetic Field at Different
Activated Flux Coating Amounts

In order to compare the grain growth mode and grain size change law of weld metal
under different activated flux amounts with magnetic field, EBSD is used to detect it,
and the results are shown in Figure 9. From the crystal orientation diagram and reverse
pole diagram, it can be found that the crystal orientation growth behavior of weld metal
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is not obvious under different amounts of activated flux. This is mainly because under
the combined action of external magnetic field and activated flux, the liquid molten pool
presents spiral downward rotation. The movement mode of molten pool will affect the
crystallization and nucleation characteristics of crystals during solidification. The composi-
tion gradient and temperature gradient of the crystal front are reduced, and the preferred
growth mode is inhibited. This will promote the formation of equiaxed crystals and reduce
the anisotropy of weld metal. Therefore, it has a good effect on improving the crack resis-
tance and comprehensive mechanical properties of a welded joint. Although the increase in
activated flux coating amounts has no obvious effect on the preferred growth behavior of
weld metal, it still has a great influence on the grain size. As can be seen from Figure 9b,d,f,
with the increase in activated flux amount, the grain size of weld metal first decreases
and then increases. When the amount of activated flux is 3 mg/cm2, the average grain
size of the weld metal reaches the minimum value of 15.55 µm. According to the basic
principle of metalology, the smaller the grain size of material, the larger the corresponding
grain boundary area. The increase in grain boundary area will increase the deformation
resistance of material in the process of deformation and then improve its bearing capacity.
Therefore, when the amount of activated flux is 3 mg/cm2, the grain boundary of weld
metal is the most, which is very beneficial to improve the mechanical properties of weld
metal. The correlation law can be confirmed in the subsequent mechanical property data.
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Figure 9. EBSD maps and grain size of weld metal with magnetic field. (a,b) 1 mg/cm2;
(c,d) 3 mg/cm2; (e,f) 5 mg/cm2.
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3.5. Mechanical Properties of Welded Joins

Figure 10 shows the hardness of weld metal at different activated flux coating amounts
and BM. It can be seen that the hardness increases at first and then decreases with the
increase in activated flux coating amount and reaches the maximum at 3 mg/cm2 (75.6 HV,
78.9 HV, respectively). Applying with or without the magnetic field, the hardness of
the weld metal under each activated flux coating amount is higher than that of the BM.
The hardness variation is mainly related to the grain size and the size and distribution
of the second phase particulars. But as shown in Figure 7, the average grain size of the
weld metal applied with and without magnetic field at an activated flux coating amount
of 3 mg/cm2 (with the maximum hardness, respectively) is larger than that of the BM.
Therefore, their increased hardness can be attributed to the second phase enhancement of
Al12Mg17. As shown in Figure 5a,b, many fine Al12Mg17 particulars are precipitated at the
grain boundaries and diffusely distributed. Moreover, by comparing the two curves, it
can be found that the hardness of the weld metal under magnetic field is lower than that
without magnetic field, but the difference between the two is small. This phenomenon
is inconsistent with the change law of grain size in weld metal. Generally speaking, the
increase in hardness depends not only on the grain size but also on the number and
distribution of the second phase and the spacing of the secondary dendrite arms. In this
paper, the grain size is mainly measured because the number and distribution of the second
phase are almost the same. The secondary dendrite spacing is also the same. Under normal
circumstances, the smaller the grain size of the material, the better its macro mechanical
properties should be. This situation in this experiment is mainly due to the difference of
test points in the process of hardness testing.
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Figure 10. Hardness of weld metal and BM.

Figure 11 shows the tensile properties of welded joints and BM. As shown in Figure 11a,
the tensile strength of welded joins presents a positive correlation with the coating amount
of activated flux until it arrives to 3 mg/cm2, the tensile strength decreases afterwards.
The maximum value is obtained at 3 mg/cm2, which is 292 MPa, 14% higher than that
no magnetic field. This value is basically equivalent to the tensile strength of the BM.
As shown in Figure 11b, it can be seen that, with increase in activated flux amount, the
elongation shows an increasing trend up to their maximum (11.2% and 8.75%, with and
without magnetic field, respectively). The elongation shows a downward trend. The
overall increase in tensile strength and elongation manifests that the applied magnetic field
has a significant effect on improving the tensile properties of welded joints. On the one
hand, the applied magnetic field stirs the molten pool, which makes the movement of the
molten pool more violent, the solute distribution more uniform, and the crystal grains
effectively refined. The grain refinement implies that more grain boundaries are formed
and become the main resistance to dislocation movement during the plastic deformation.
Grain boundaries will be transformed into tearing edges during stretching. These tearing
edges can be found in the fracture morphology in Figure 12. From the fracture morphology,
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there is little difference in tensile fracture under different amounts of activated flux. The
number of dimples is relatively small, and small cleavage surfaces appear locally, indicating
that the plasticity of these welded joint is relatively poor. Moreover, the fine and scattered
second-phase particles pin the grain boundaries and improve the strength of welded joints.
On the other hand, after the introduction of magnetic field and activated flux, the texture of
weld metal disappears and its plastic deformation ability at room temperature is improved.
Under the action of grain refinement, second phase strengthening and weakening texture,
the welded joint with magnetic field shows better tensile properties under each coating
amount. When the activated flux coating amount is 3 mg/cm2, the tensile strength and
elongation of welded joints reach the performance level of the base material.
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4. Conclusions

The effect of the longitudinal alternating magnetic field and TiO2 flux on microstruc-
ture and mechanical properties of the AZ91 magnesium alloy welded joint was investigated.
The conclusions are as follows:

(1) When the coating amount of activated flux is 3 mg/cm2, the highest penetration of
the welded joint is obtained, which is 141% of that without activated flux. Meanwhile,
the mechanical properties reach the maximum, which is tensile strength of 292 MPa,
elongation of 11.2%, and weld zone hardness of 75.6 HV.

(2) The combined effect of TiO2 flux and magnetic field makes the liquid metal spiral
downward, which makes the movement of the molten pool more violent and the
solute redistribution more uniform, and it inhibits the emergence of preferential
growth behavior.

(3) The combined effect of TiO2 flux and magnetic field does not change the phase
composition and the grain orientation of the weld metal, but can affect the grain size.
The average grain size of weld metal under activated flux coating amount of 3 mg/cm2

is 18.2% smaller than that under an activated flux coating amount of 1 mg/cm2.
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