Pyrolyzed Bacterial Cellulose as the Backbone of the Cathode Catalyst-CoFe2O4 for the Li-O2 Battery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, X.; Liu, B.; Koudakan, P.A.; Pan, H.; Qian, Y.; Wang, G. Single-atom catalyst cathodes for lithium–oxygen batteries: A review. Nano Futures 2022, 6, 012002. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Lei, Y.; Lu, H.; Xu, J.; Wang, S.; Yan, M.; Xiao, F.; Xu, J. Highly rechargeable lithium oxygen batteries cathode based on boron and nitrogen co-doped holey graphene. Chem. Eng. J. 2022, 428, 131025. [Google Scholar] [CrossRef]
- Wang, L.; Deng, J.; Lou, Z.; Zhang, T. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J. Mater. Chem. A 2014, 2, 10022–10028. [Google Scholar] [CrossRef]
- Yan, W.; Cao, X.; Ke, K.; Tian, J.; Jin, C.; Yang, R. One-pot synthesis of monodispersed porous CoFe2O4 nanospheres on graphene as an efficient electrocatalyst for oxygen reduction and evolution reactions. RSC Adv. 2016, 6, 307–313. [Google Scholar] [CrossRef]
- Yang, S.T.; Wu, Z.; Xie, J.; Liao, R.; Zhang, X.; Yu, B.; Wu, R.; Liu, X.; Li, H.; Guo, Z. Fe3O4@SiO2 nanoparticles as high-performance Fenton-like catalyst in neutral environment. RSC Adv. 2016, 5, 5458–5463. [Google Scholar] [CrossRef]
- Xu, Y.; Bian, W.; Wu, J.; Tian, J.H.; Yang, R. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Electrochim. Acta 2015, 151, 276–283. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Jiang, L. Freestanding carbon aerogels produced from bacterial cellulose and its Ni/MnO2/Ni(OH)2 decoration for supercapacitor electrodes. J. Appl. Electrochem. 2018, 48, 495–507. [Google Scholar] [CrossRef]
- Wang, X.; Kong, D.; Zhang, Y.; Wang, B.; Li, X.; Qiu, T.; Song, Q.; Ning, J.; Song, Y.; Zhi, L. All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale 2016, 8, 9146–9150. [Google Scholar] [CrossRef]
- Liang, H.W.; Wu, Z.Y.; Chen, L.F.; Li, C.; Yu, S.H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376. [Google Scholar] [CrossRef]
- Wang, X.; Kong, D.; Wang, B.; Song, Y.; Zhi, L. Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Sci. China-Chem. 2016, 59, 713–718. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Long, P.; Han, J.; Cao, C.; Yao, F.; Feng, W. Amorphous red phosphorus incorporated with pyrolyzed bacterial cellulose as a free-standing anode for high-performance lithium ion batteries. RSC Adv. 2018, 8, 17325–17333. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.; He, X.; Tang, B.; Jin, Y.; Wang, J. Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O2 batteries. J. Energy Chem. 2016, 25, 131. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Z.; Liu, K.; Li, F.; Peng, Z.; Tang, Y.; Wang, H. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. J. Power Sources 2017, 343, 30–38. [Google Scholar] [CrossRef]
- Tashima, D.; Yoshitama, H.; Otsubo, M.; Maeno, S.; Nagasawa, Y. Evaluation of electric double layer capacitor using Ketjenblack as conductive nanofiller. Electrochim. Acta 2011, 56, 8941–8946. [Google Scholar] [CrossRef]
- Narsimulu, D.; Padmaraj, O.; Srinadhu, E.S.; Satyanarayana, N. Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. J. Mater. Sci. Mater. Electron. 2017, 28, 17208–17214. [Google Scholar] [CrossRef]
- Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P.G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390. [Google Scholar] [CrossRef]
- Mccloskey, B.D.; Bethune, D.S.; Shelby, R.M.; Girishkumar, G.; Luntz, A.C. Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Brant, W.R.; Younesi, R.; Dong, Y.; Edström, K.; Gustafsson, T.; Zhu, J. Towards an understanding of Li2O2 evolution in Li-O2 batteries: An in Operando synchrotron X-ray diffraction study. ChemSusChem 2017, 10, 1592–1599. [Google Scholar] [CrossRef]
- Guéguen, A.; Novák, P.; Berg, J. XPS Study of the Interface Evolution of Carbonaceous Electrodes for Li-O2 Batteries during the 1st Cycle. J. Electrochem. Soc. 2016, 163, A2545–A2550. [Google Scholar] [CrossRef]
- Gallant, B.M.; Kwabi, D.G.; Mitchell, R.R.; Zhou, J.; Thompson, C.V.; Shao-Horn, Y. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 2013, 6, 2518–2528. [Google Scholar] [CrossRef]
- Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study. Chem. Mater. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Hou, J.; Jie, X.; Graetz, J.; Ellis, M.W.; Uosaki, K. Electrochemistry of rechargeable lithium-air batteries. In Rechargeable Lithium Batteries; Woodhead Publishing: Cambridge, UK, 2015; pp. 149–181. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chi, Y.; Wu, P.; Liu, W. Pyrolyzed Bacterial Cellulose as the Backbone of the Cathode Catalyst-CoFe2O4 for the Li-O2 Battery. Crystals 2022, 12, 1165. https://doi.org/10.3390/cryst12081165
Wang X, Chi Y, Wu P, Liu W. Pyrolyzed Bacterial Cellulose as the Backbone of the Cathode Catalyst-CoFe2O4 for the Li-O2 Battery. Crystals. 2022; 12(8):1165. https://doi.org/10.3390/cryst12081165
Chicago/Turabian StyleWang, Xiangjun, Yongqing Chi, Peng Wu, and Wen Liu. 2022. "Pyrolyzed Bacterial Cellulose as the Backbone of the Cathode Catalyst-CoFe2O4 for the Li-O2 Battery" Crystals 12, no. 8: 1165. https://doi.org/10.3390/cryst12081165
APA StyleWang, X., Chi, Y., Wu, P., & Liu, W. (2022). Pyrolyzed Bacterial Cellulose as the Backbone of the Cathode Catalyst-CoFe2O4 for the Li-O2 Battery. Crystals, 12(8), 1165. https://doi.org/10.3390/cryst12081165