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Abstract: Models describing the tunneling of electrons and holes through parabolic InxGa1−xN/GaN
quantum well/LED structures with respect to strain were developed. The transmission coefficient,
tunneling lifetime, and efficiency of LED structures were evaluated by solving the Schrödinger
equation. The effects of the mole fraction on the structure strain, resonant tunneling and tunneling
lifetime, and LH–HH splitting were characterized. The value of LH–HH splitting increased and
remained higher than the Fermi energy; therefore, only the HH band was dominant in terms of
the valence band properties. The results indicate that an increase in the mole fraction can lead to
efficiency droop.

Keywords: InGaN/GaN; quantum resonant tunneling; parabolic quantum well/LED; heavy hole;
light hole; multiple quantum wells; lifetime; internal quantum efficiency

1. Introduction

Since the early 1980s, superlattices with strained layers attracted a great deal of
attention. By using ternary strained layer superlattices, it is possible to modify important
material properties, such as the lattice constant, bandgap, and perpendicular transport [1].
Recent developments in optoelectronic and microelectronic device manufacturing have
led to GaN and InxGa1−xN/GaN becoming essential materials in the design of blue and
green light-emitting diodes (LEDs). There are several advantages of GaN, such as its wide
bandgap, high breakdown voltage, and excellent thermal and chemical resistance [2].

LED light emission efficiency has received significant attention for reducing electric
power dissipation and increasing light output. To achieve this, many studies have tried
to increase the carrier recombination rates and confine them within the active region.
III-Nitride semiconductor materials (AlN, GaN, and InN) have been used as a substrate
for light-emitting diodes (LEDs) [3,4]. Furthermore, in semiconductor systems, the phe-
nomenon of the resonant tunneling of electrons through potential barriers has received
much greater attention than the tunneling of holes in numerous theoretical and experimen-
tal investigations [5]. Due to their large effective mass and strong spin–orbit coupling, hole
systems are of great importance [6].

Researchers developed a theoretical model through the comparison of experimental
data, while simultaneously considering the tunneling and relaxation times of hole tunnel-
ing in a GaAs/AlGaAs double-quantum-well structure. In their study, they found that
tunneling time increased as relaxation time decreased [7]. An empirical tight-binding
model was used to calculate the transmission coefficient and current of the heavy hole
and light hole band through the single and double barrier of GaAs/AlGaAs structures at
different quantum barrier widths. They found that with a thicker quantum barrier, the peak
numbers of heavy holes was less when compared to the peak numbers of light holes [5].
Likewise, for stepped In0.2GaN0.8/GaN quantum well-LED structures, the researchers ex-
perimentally determined that the thin barrier structure enhanced the device’s performance
and decreased efficiency droop at high current density. This may be caused by poor hole
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tunneling through the thick barrier, causing electron leakage from the active region [8],
while a theoretical study for parabolic In0.2GaN0.8/GaN quantum well-LED structures
found that a thick barrier structure significantly increased efficiency [4].

According to a quantum tunneling theory, the electron energy increases with the
decrease in the barrier height; therefore, it leads to the gradual decay of the electron
wave. Conversely, the barrier height increases in the hole state, and the hole wave decays
sharply [9]. A theoretical study examining the effects of plane wavevectors on the trans-
mission coefficient of holes in GaMnAs/GaAlAs double-barrier structures was performed,
wherein the plane wavevector tended to cause band mixing. With a zero plane wavevector,
researchers found three peaks of transmission for HH→ HH and one peak of transmission
for LH→ LH, which means that, in the quantum well, there are three quasi-bound states in
the HH band and one quasi-bound state in the LH band. Moreover, the results demonstrate
band mixing at the nonzero plane wavevector, with HH→ LH and LH→ HH and with
HH → HH and LH → LH. Four resonant peaks appeared on all curves at the nonzero
plane wavevector, corresponding to the four quasi-bound states in the QW [10]. Band
mixing increases along with an increase in plane wavevector, quasi-bound state lifetime,
and barrier width [11].

Hole–hole interaction effects at zero bias should be much stronger in quantum wire
systems due to the enhanced hole effective mass, which becomes stronger with increasing
temperature [6]. For nitride layers grown along the c-axis in a quantum well strain, the
heavy hole (HH) and light hole (LH) bands are very close, i.e., the strain is not as effective as
in GaAs- or InP-based lasers [12]. Here, the layered structures and the shapes of the multiple
quantum wells play an important role. According to a theoretical study, finite parabolic
quantum wells have a higher energy level than rectangular wells when comparing derived
exact analytical solutions [12]. The barrier and quantum well layers were deposited using
the molecular beam epitaxy (MBE) growth technique, whereby the barrier layer thickness
quadratically increased with distance, while the quantum well layer thickness gradually
decreased. A parabolic well is characterized by increased optical transitions, a greater
resonance width, equally spaced energy levels, and the highest radiative recombination rate
with uniform carrier distribution [13]. In addition, parabolic quantum wells have a strong
sense of the energy level positions based on the valence band offset and their ability to
confine potential [14]. Therefore, parabolic grading profile-MQW LEDs were found to have
higher efficiency than stepped-MQW LEDs [15]. The effects of the InGaN/GaN quantum
well LED structure shape on the hole transport in the active region have been studied. The
results show that graded InGaN/GaN multiple quantum well/LED structures enhance
hole transport in multiple quantum wells, even at low current density. Therefore, the
current–voltage curve has lower series resistance than for stepped quantum wells, leading
to a reduction in the efficiency droop of up to 70% at 20 A/cm2 [16]. In one experimental
study, the trapezoidal shape of InGaN/GaN multiple-quantum-well light-emitting diodes
led to an increase in efficiency by enhancing the overlap of the electron and heavy hole
wave functions at high current densities [17]. Similar results were reported in another
study that improved the spatial overlap of the electron and hole wavefunctions in graded
InGaN/GaN multiple-quantum-well LEDs [18]. In trapezoidal wells, however, there is a
significant decrease in the separation between the electron and hole wave functions [18,19].

Experimental and simulation studies of the InGaN/GaN MQW LED structure revealed
that the InGaN quantum well band becomes flat, and internal quantum efficiency (IQE)
increases due to relaxation of the compressive strain in the GaN epilayer [20]. On the
other hand, the relaxation of compressive stress in the GaN epilayers reduces piezoelectric
polarization, which in turn reduces the quantum-confined Stark effect (QCSE). Polarization-
induced QCSE limits the IQE of nitride LEDs [21]. Due to QCSE, the electron and hole
wave functions partially separate, resulting in a reduction in radiative recombination and
IQE [22]. Therefore, when reducing the QCSE, the light output power at a high current
density is increased, and the efficiency droop is diminished. Although the increasing degree
of relaxation leads to an increase in overlap of the electron and hole wave functions and
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the probability of radiative recombination [23], the IQE may decrease due to the sharp
decrease in hole concentration in the InGaN/GaN SQW and, therefore, a reduction in
electron–hole pairs [20]. The researchers in an experimental study suppressed the negative
impact of stress-induced QCSE via adopting a pre-well. Before growth of three pairs of
In0.01Ga0.99N/GaN MQWs, five pairs of In0.05Ga0.95N/GaN superlattices, called pre-wells,
were deposited on three pairs of superlattices [22].

Our study focused on investigating the influence of parabolic QW with respect to
strain, and the effects of the mole fraction on the quantum resonant tunneling of electrons,
heavy holes, and light holes through InxGaN1−x/GaN QW LED structures while theo-
retically determining their efficiency. A parabolic MQW LED structural model with an
active region is proposed. The analysis considers the effect of variable effective mass in
barrier and well layers. In addition, in this study, confluent hypergeometric functions
were applied as part of the transfer-matrix method (TMM) to obtain exact solutions to
the Schrödinger equation. The relationship between the transmission coefficient T (E) and
the electric field intensity of the structure was also investigated; the results were used to
calculate the current density versus voltage (J–V) characteristics of the resonant tunneling
diodes (RTDs) with a negative differential resistance (NDR). The relationship between
the transmission coefficient T (E) and the lifetime, with respect to the mole fraction of the
structure, was also investigated. The Shockley equation was used to calculate the current
density passing through the LED structure upon applying a voltage. The results of the
current were used in the ABC model to determine the efficiency of the LED structure, and
the results were compared with the experimental data [16].

2. Theoretical Model

Figure 1 shows the layered structures for the parabolic MQW LEDs employed in
this study. The active region of the parabolic QW LED consisted of the following layers:
GaN (1 nm), In 0→ 0.2 Ga1→ 0.8 N (1.75 nm), In 0.2 Ga 0.8 N (0.5 nm), In 0.2→ 0 Ga
0.8→ 1 N (1.75 nm), and GaN (1 nm). The potential energy of the parabolic MQW LED
structure was changed under bias voltage. After annealing, the In concentration profile
across InGaN/GaN as a function of the diffusion length (Ld) in the growth direction z is
given by Fick’s law as follows [24]:

C(z) =
1
2

C0

[
erf

(
W
2 − z

Ld

)
− erf

(
W
2 + z

Ld

)]
, (1)

where C0 is the initial In concentration, and W is the well width.
The potentials for electrons, heavy holes, and light holes are given by

Ur = Qr
[
Eg(z)− Sr⊥

]
± Sr‖, (2)

where r indicates the electron, heavy hole (HH), and light hole (LH); Qr is the band offset
splitting ratio, signs (+) and (−) indicate (HH) and (LH), respectively; and Sr⊥, and Sr‖
are the hydrostatic and shear strain, respectively [25].

Sr⊥ = −av
(
εxx + εyy + εzz

)
,

Sr‖ = −
b
2
(
εxx + εyy − εzz

)
,

εxx = εyy =
as − a0

a0
, and εzz = −2

C12

C11
εxx,

where av and b are Bir–Pikus deformation potentials for the valence band, as and a0 are
lattice constants of the substrate and layer materials, respectively, and C11 and C12 are
elastic stiffness constants [26].
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Figure 1. Schematic diagram of the InGaN/GaN parabolic QW LED structures under a uniform
applied electric field.

Eg(z) is the energy gap as a function of z, according to Vegard’s law.

Eg(z) = x Eg(InN) + (1− x)Eg(GaN)− β x(1− x), (3)

where β is the bandgap bowing parameter.
The time-independent Schrödinger equation in a one-dimensional form and, in the

z-direction for each layer of the parabolic MQW structure under a uniform applied electric
field, is as follows [4]:

− }2

2m∗
∂2ψ1(z)

dz2 − Eψ1(z) = 0 For 0 > z

− }2

2m∗
∂2ψ2(z)

dz2 +
(

V0(z)− e Va
2B+W z− E

)
ψ2(z) = 0 For z < B

− }2

2m∗
∂2ψ3(z)

dz2 +
(

V0(z)
( 2z

W
)2 − e Va

2B+W z− E
)

ψ3(z) = 0 For B ≤ z ≤ B + W

− }2

2m∗
∂2ψ4(z)

dz2 +
(

V0(z)− e Va
2B+W z− E

)
ψ4(z) = 0 For B + W < z

− }2

2m∗
∂2ψ5(z)

dz2 − (e Va + E) ψ5(z) = 0 For z > 2B + W


, (4)

where m∗, }, E, V0(z), and ψ(z) are the effective mass, reduced Planck’s constant, elec-
tron energy, potential energy, and wave function, respectively; e is the electron charge
(e = 1.602× 10−19C); Va is the applied bias voltage; and B and W are the quantum barrier
width and well width, respectively.

The conditions for the continuity of the wave function and its derivative at each
interface z = B and z = B + W are as follows:

ψi(z)|z=(zi)
= ψi+1(z)|z=(zi)

1
m∗i

dψi(z)
dz

∣∣∣
z=(zi)

= 1
m∗i+1

dψi+1(z)
dz

∣∣∣
z=(zi)

, (5)

where i is the layer of the parabolic MQW structure.
The variables ξ(z) = β

1
3

(
2

W z + α
β

)
are introduced,

where

α =
2m∗b

(
W
2

)2

}2 (−V0(z) + E), β =
2m∗b

(
W
2

)3 e Va
2 B+W

}2 ,

ζ(z) =
√

2$
1
4

2
W

z− σ
√

2$
3
4

, ε(z) =
γ

$
1
2
− σ2

4$
3
2

,
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γ =
2m∗w

(
W
2

)2

}2 E, σ =
2m∗w

(
W
2

)3 e Va
2 B+W

}2 ,

$ = −
2m∗w

(
W
2

)2

}2 V0(z).

The solutions of Equation (4) are a linear combination of independent complex expo-
nential functions and independent confluent hypergeometric functions [15,27–30].

The solutions are in the following form:

ψ1(z) = exp(jk1z) + R exp(−jk1z)

ψ2(z) = C+
2 Ai(ξξ(z)) + C−2 Bi(ξξ(z))

ψ3(z) = C+
3 M1(ζ(z)) + C−3 M2(ζ(z))

ψ4(z) = C+
4 Ai(ξξ(z)) + C−4 Bi(ξξ(z))

ψ5(z) = S exp(jk5z)


, (6)

where Ai and Bi are linear combinations of Airy functions [15,28].M1(ζ(z)) andM2(ζ(z))
are Weber functions [28], as shown below.

M1(ζ(z)) = 2
ε(z)−1

2 exp

(
− (ζ(z))2

4

) √
π

Γ
(

3−ε(z)
4

)F(− ε(z)− 1
4

,
1
2

,
1
2
(ζ(z))2

)

M2(ζ(z)) = −2
ε(z)−1

2 exp

(
− (ζ(z))2

4

) √
2π ζ(z)

Γ
(
− ε(z)−1

4

)F(3− ε(z)
4

,
3
2

,
1
2
(ζ(z))2

)

Γ(x) is the gamma function, and F
(

a, b, x
)

is the confluent hypergeometric function.

Lastly, j =
√
−1, k1 =

√
2m∗wE
}2 , and k5 =

√
2m∗w(E−Vw(z))

}2 ;
{

C+
2 , C+

3 , C+
4
}

and
{

C−2 , C−3 , C−4
}

are the amplitudes of the running waves, indicating the incident wave and reflected wave,
respectively [15,28]. In Regions 1 and 5, the amplitude of a plane wave traveling in the posi-
tive or negative z-direction is assumed to be S and R [29]; m∗w, m∗b , and Vw(z) are the effective
mass of the QW, effective mass of the quantum barrier, and QW potential, respectively.

The transmission coefficient can be calculated using the TMM [15]. Thus, the transmis-
sion coefficient for each of the five layers can be expressed as1

R

 =
4

∏
i=1

Mi

S

0

 =

T11 T12

T21 T22

S

0

. (7)

The fraction of incident particles transmitted by the barriers is given as follows [28]:

T (E) = 1− |T21|2

|T11|2
, (8)

where T11, T12, T21, and T22 are the matrix elements.
Substituting Equation (5) into Equation (6) yields a system of linear equations that can

be represented by the matrices Mi.
The current density J(E) through the resonant tunneling structure at a given bias

voltage can be calculated by applying the transmission coefficient as a function of energy
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T (E). The current density formula can be expressed using the Tsu–Esaki formula [31], as
follows:

J =
e m∗w kB θ

2 π2 }3

∫ ∞

0
T (E) Ln

 1 + exp
( E f−E

kB θ

)
1 + exp

( E f−E−e Va
kB θ

)
dE (9)

Then,

J = e m∗w
2 π2 }3

∫ E f
0

(
E f − E

)
T (E)dE, Va ≥ E f

J = e m∗w
2 π2 }3

[
Va
∫ E f−Va

0 T (E)dE +
∫ E f

E f−Va

(
E f − E

)
T (E)dE

]
Va < E f

 (10)

where E f is the Fermi level, kB is Boltzmann’s constant, and θ is the absolute temperature.
For the measured I–V characterization, the current of a diode I as a function of the

forward voltage can be calculated by applying the Shockley equation, as follows [32]:

I = Is

[
exp

(
e Va

kB θ

)
− 1
]

, (11)

where Is is the saturation current density, expressed as follows:

Is = e A n2
i

(
Dh

Lh ND
+

De

Le NA

)
,

where A is the diode area, D and L are the diffusion coefficient and diffusion length for the
electron and hole, and n2

i is the intrinsic concentration, expressed as follows:

n2
i = Nc Nv exp

(
−

Eg

kB θ

)
,

where Eg is the energy gap, and Nc and Nv are donors and acceptors, respectively.
The internal quantum efficiency (IQE) in InxGa1−xN/GaN can be calculated using the

ABC model, which can be written as follows [32,33]:

IQE =
B N2

A N + B N2 + C N3 , (12)

where A, B, C, and N represent the Shockley–Read–Hall nonradiative recombination,
bimolecular radiative recombination, Auger recombination, and carrier density, respectively.
The recombination rate for carriers in a single QW device is given by

dN
dt

=
η J
e d
− A N + B N2 + C N3, (13)

where η is the injection efficiency. Under the assumptions of steady state and η = 1,
Equation (13) can be simplified as

J
e d

= A N + B N2 + C N3. (14)

Equation (14) can be solved as a linear cubic equation with one variable, N, which has
two complex solutions and one real solution [4]. The IQE can be calculated by substituting
the real solution N into Equation (12).

3. Results and Discussion

Figure 2 presents a schematic band diagram of the InGaN/GaN parabolic quantum
well with a diffusion length of 1.75 nm, showing the conduction band and the valence
band. The valence band is degenerated into heavy and light hole bands (HH and LH,
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respectively). Taking into account the type of strain, i.e., compressive strain, the HH band
is higher than the LH band in the InGaN quantum well, as the effective mass of HH is
1.68915 m0 > 0.193942 m0 (where m0 is the electron mass). In this case, the energy gap is
calculated by the energy difference between the bottom of the conduction band and the top
of the HH band. Compressively strained profiles of the InGaN/GaN parabolic quantum
well with various mole fractions (x0) are shown in Figures 3–5.
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In Figures 3 and 4, the barrier height V0 was fixed at (0.344, 0.51, and 0.67 eV) in the
conduction band, (0.25, 0.4, and 0.47 eV) in the valence band for HH, and (0.12, 0.17, and
0.22 eV) for LH at (x0 = 0.2, 0.3, and 0.4), respectively; the InGaN quantum well width was
3 nm, and the GaN barrier width was 1 nm, and 12 nm, both of which remained fixed in the
absence of applied voltage. The strain increased along with the mole fraction. As a result
of the increased strain, the conduction and HH bands were pushed upward in the same
direction, which led to a decrease in the energy gap. Accordingly, the energy gap values
decreased (1.76, 1.6, and 1.4 eV) with the increase in x0 = 0.2, 0.3, and 0.4, respectively.

Figure 5 shows that the LH band was pushed upward in the same direction as the
conduction and HH bands, with increased x0 and decreased strain. The energy splitting
of HH and LH bands was increased (129.7, 193.7, and 255.7 meV) with the increase in
x0 = 0.2, 0.3, and 0.4, respectively.
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Figures 6 and 7 show the logarithm of the transmission coefficient for the electrons and
HH as a function of energy for the double-barrier InxGa1−xN/GaN parabolic quantum well
structure with a barrier width = 1 nm, for various values of x0. The calculation for the barrier
height V0 was as indicated in Figures 3–5. The electric field extended across the structure at an
applied bias of 0.8 V. The transmission coefficient of the electrons in Figure 6 shows single
energy peaks at 0.071, 0.17, and 0.25 eV for various x0. In Figure 7, the transmission coefficient
of HH shows single energy peaks at 0.188, 0.079, and 0.221 eV for various x0. It is clear that
the energy of the electron transmission peak increases along with x0, whereas the energy of
the transmission peak of HH fluctuates. The energies presented in Figures 6 and 7 are in a
bound state, as they have lower values than the barrier height for various values of x0. The
transmission coefficient of the electron is close to unity at E = 0.85 eV for x0 = 0.2 and 0.3,
and at E = 1 eV for x0 = 0.4. Likewise, the transmission coefficient of HH only close to unity
at E = 0.31 and 0.44 eV for x0 = 0.3 and 0.4, respectively. The tunneling probability of the
electrons and HH incident from the GaN side of the InGaN/GaN interface can be determined
from these energies E. These observations indicate that with increasing x0, the transmission
peak of electrons and HH shifted to higher energies, except at x0 = 0.2, in the case of the latter.
Under an electric field, electrons and HH exhibit less oscillation and tend to be stable, due to
the slope of the barrier height, which explains why only one peak is present.

Figures 8 and 9 show the transmission coefficient of electrons and HH, respectively,
at barrier width = 12 nm for various values of x0. The peak number of the transmission
coefficient of the electrons and HH increase with increasing barrier widths. The transmission
coefficient of electrons in Figure 8 shows three energy peaks, while in Figure 9, the transmission
coefficient of HH has more than three energy peaks. At a barrier width of 12 nm, the energy
of the electrons and the HH transmission peaks behave similarly to the behavior of those at
1 nm with respect x0. The energies presented in Figures 8 and 9 are in an unbound state, as
they have higher values than the barrier height for various values of x0.
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Figure 9. Logarithm of the transmission coefficient for HH as a function of energy for the double-
barrier InxGa1−xN/GaN parabolic quantum well structure with various x0 at an applied bias of 0.8 V,
and barrier width 12 nm.

Figure 10 shows the logarithm of the transmission coefficient for LH as a function of
energy for various values of x0. No peaks are observed, indicating the absence of oscillation.
The transmission of LH shifts to higher energies with increased x0, mimicking the behavior
of the electron state. The transmission is lower for LH than HH. The LH–HH splitting
∆LH−H = 0.13, 0.19, and 0.255 eV increases along with x0, exceeding the Fermi energy
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(≈ 0.054); therefore, only the HH band is dominant in terms of the valence band properties,
with no crossing or anti-crossing of the LH and HH bands [6].
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Figure 11 shows peaks occurring with the increased barrier width at 12 nm for the
transmission of LH, and increasing with increased x0. The transmission is higher for LH at
a barrier width = 12 nm than for LH at 1 nm.
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According to the calculations in Figures 6–10, the tunneling lifetime (τ = }
ΓFWHM

)
of the electron state decreases with increasing x0 for electrons (τ = 10.8, 8.9, and 7.5 fs),
but increases for HH (τ = 0.41, 0.46, 0.53 fs), where ΓFWHM is the full width at the half
maximum of the transmission peak. The tunneling lifetime of the state is the time between
transmission events [27]. However, the electron state has a longer tunneling lifetime than
the HH state. The tunneling lifetime depends on the width of both the quantum barrier
and the well, as well as the external electric field. Strongly electron bound states have a
longer tunneling lifetime. Resonant tunneling devices eventually reach their speed limits
due to the tunneling lifetime [34]. The probability of LH tunneling was about 22.3%, which
is smaller than that of electron and HH tunneling. This may be explained by the small
barrier height V0 for the LH band, potentially indicating that all the states were bound
states with finite tunneling lifetimes τ. The lifetimes τ increased with an increase in barrier
width, reaching up to 65 fs at 12 nm.

The relationships between the current density and applied voltages of 1 nm, and
12 nm for the barrier thickness for various values of x0, are illustrated in Figures 12–17.
The current density peaks that occurred under the conditions of an electric field that has
been applied across the InGaN/GaN structure is evidence of electron resonant tunneling
through the potential well [4,15,27]. A comparison between the electron tunneling current
density and HH tunneling current density revealed that the current density peaks for
electrons tended to occur at higher voltages with increased x0 than for the HH at a barrier
width of 1 nm. The electron tunneling current density is decreased with increased x0 at
a barrier width of 1 nm. The number of current density peaks increased for the electrons
and HH at a barrier width of 12 nm. The electron tunneling current density is higher
than HH and LH tunneling current density at a barrier width of 1 nm, while being less
than both HH and LH at a barrier width of 12 nm. Additionally, the barrier width = 12
nm had a higher peak-to-valley ratio (PVR) than the barrier width = 1 nm; this indicates
a series of NDRs, hence low power dissipation. The NDR property is critical in circuit
implementation, because it can provide different voltage-controlled logic states for the
peak and valley currents [4,35]. In Figures 16 and 17 no peaks are observed, indicating the
absence of NDRs. The LH tunneling current density decreased with increased x0.
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Figure 17. Current density-voltage characteristics of the LH tunneling at width barrier 12 nm.

The relationship between the transmission coefficient T(E) and the electric field inten-
sity of the structure was also investigated; the results were used to calculate the current
density versus voltage (J–V) characteristics of the resonant tunneling diodes (RTDs) with a
negative differential resistance (NDR).

IQE curves as a function of current are plotted in Figures 18 and 19, according to the
ABC model in Equation (12). The current values were determined using Equation (11).
The calculation shows that an increase in x0 would effectively decrease the efficiency. The
efficiency droop at a current of 1 A would be 3%, 14%, and 65% at a barrier width of 1 nm,
and would be 4%, 20%, and 75% at a barrier width of 12 nm, with decreasing x0. The reason
for this efficiency droop could be related to the increase in current and decrease in tunneling
lifetime. A decrease in tunneling lifetime would reduce the escape speed of particles. That
means the LED with the thicker quantum barriers has a smaller efficiency droop. Therefore,
we obtained a slight amelioration with increased barrier width.
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Figure 19. Internal quantum efficiency as a function of current at barrier width 12 nm.

Figure 20 shows normalized internal quantum efficiency as a function of current den-
sity at barrier width = 12 nm and x0 = 0.2. The results are obtained from the experimental
data [16] and the theoretical results. It is clear that the data obtained from the theoretical
results yield results close to the experimental data.
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previous study [16], along with the theoretical results.

4. Conclusions

The effect of the mole fraction on the resonant tunneling of electrons, heavy holes, and
light holes through the InxGa1−xN/GaN parabolic quantum well/LED structure, as well
as its efficiency, was investigated theoretically. In this study, the magnitude of strain and its
type were taken into consideration. The increase in strain with the mole fraction pushed
the conduction and HH bands upward in the same direction, resulting in a decrease in the
energy gap. The results showed that an increase in the mole fraction tended to decrease the
tunneling lifetime of electrons, although the barrier height increased, while the tunneling
lifetime of HH increased. Moreover, the transmission peaks of electrons and HH shifted
to a higher energy with the increase in the mole fraction. The LH–HH splitting value
increased with the mole fraction and remained higher than the Fermi energy; therefore,
only the HH band was dominant in terms of the valence band properties, with no crossing
or anti-crossing of the LH and HH bands. The calculations showed that an increase in the
mole fraction decreases the efficiency. However, the difference between barrier width 1 nm
and 12 nm is minimal in the efficiency droop, except that the efficiency can be increased by
increasing the quantum barrier width and taking into account the decreased mole fraction.
The series of NDRs in the thicker barrier indicate low power dissipation.
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