Theoretical Analysis of the Adsorption of Pentachlorophenol and 6-OH-BDE-47 (6-Hydroxy-2,2’,4,4’-Tetrabromodiphenyl Ether) by Boron Nitride Nanotubes Decorated with Double-Decker Lanthanide(III) Phthalocyanine Complexes
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Neutral Forms of Pentachlorophenol and 6-OH-BDE-47
3.1.1. Non-Covalent Interaction (NCI)
3.1.2. Reaction Enthalpy, Bond Length, and Bond Angle
3.2. Deprotonated Forms of Pentachlorophenol and 6-OH-BDE-47
3.2.1. Non-Covalent Interaction (NCI)
3.2.2. Reaction Enthalpy, Bond Length, and Bond Angle
3.3. The Frontier Molecular Orbital (FMO)
3.4. The Electronic Excitation Spectrum
3.5. Hard and Soft Acid and Base (HSAB) Theoretical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoosefian, M.; Mirhaji, E.; Afshar, M.; Juan, A. Molecular dynamics simulations on interaction of ssDNA-causing DM1 with carbon and boron nitride nanotubes to inhibit the formation of CTG repeat secondary structures. Appl. Surf. Sci. 2020, 524, 146572. [Google Scholar] [CrossRef]
- Mirhaji, E.; Afshar, M.; Rezvani, S.; Yoosefian, M. Boron nitride nanotubes as a nanotransporter for anti-cancer docetaxel drug in water/ethanol solution. J. Mol. Liq. 2018, 271, 151–156. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Zhu, W.; Li, H. Hexagonal boron nitride adsorbent: Synthesis, performance tailoring and applications. J. Energy Chem. 2020, 40, 99–111. [Google Scholar] [CrossRef]
- Xue, L.; Lu, B.; Wu, Z.-S.; Ge, C.; Wang, P.; Zhang, R.; Zhang, X.-D. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants. Chem. Eng. J. 2014, 243, 494–499. [Google Scholar] [CrossRef]
- Zhang, X.; Lian, G.; Zhang, S.; Cui, D.; Wang, Q. Boron nitride nanocarpets: Controllable synthesis and their adsorption performance to organic pollutants. CrystEngComm 2012, 14, 4670–4676. [Google Scholar] [CrossRef]
- Maiti, K.; Thanh, T.D.; Sharma, K.; Hui, D.; Kim, N.H.; Lee, J.H. Highly efficient adsorbent based on novel cotton flower-like porous boron nitride for organic pollutant removal. Compos. Part B Eng. 2017, 123, 45–54. [Google Scholar] [CrossRef]
- Singla, P.; Goel, N.; Kumar, V.; Singhal, S. Boron nitride nanomaterials with different morphologies: Synthesis, characterization and efficient application in dye adsorption. Ceram. Int. 2015, 41, 10565–10577. [Google Scholar] [CrossRef]
- Song, Q.; Fang, Y.; Wang, J.; Liang, J.; Hu, Q.; Liu, Z.; Huang, Y.; Xue, Y.; Lin, J.; Tang, C. Enhanced adsorption of fluoride on Al-modified boron nitride nanosheets from aqueous solution. J. Alloy Compd. 2019, 793, 512–518. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, R.; Yan, C.; Wang, P.; Rao, L.; Wang, C. Developing boron nitride-pyromellitic dianhydride composite for removal of aromatic pollutants from wastewater via adsorption and photodegradation. Chemosphere 2019, 229, 112–124. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Ding, N.; Shi, J.; Wang, Z. Capture of aromatic organic pollutants by hexagonal boron nitride nanosheets: Density functional theoretical and molecular dynamic investigation. Environ. Sci. Nano 2016, 3, 1493–1503. [Google Scholar] [CrossRef]
- Chang, H.; Chao, Y.; Pang, J.; Li, H.; Lu, L.; He, M.; Chen, G.; Zhu, W.; Li, H. Advanced Overlap Adsorption Model of Few-Layer Boron Nitride for Aromatic Organic Pollutants. Ind. Eng. Chem. Res. 2018, 57, 4045–4051. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Yang, Q.; Wang, F.; Chou, K.-C.; Hou, X. Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water. Ceram. Int. 2016, 42, 8754–8762. [Google Scholar] [CrossRef]
- Yoosefian, M.; Etminan, N.; Moghani, M.Z.; Mirzaei, S.; Abbasi, S. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants. Superlattices Microstruct. 2016, 98, 325–331. [Google Scholar] [CrossRef]
- dos Santos, J.R.; da Silva, E.L.; de Oliveira, O.V.; dos Santos, J.D. Theoretical study of sarin adsorption on (12,0) boron nitride nanotube doped with silicon atoms. Chem. Phys. Lett. 2020, 738, 136816. [Google Scholar] [CrossRef]
- Wang, R.-X.; Zhang, D.-J.; Liu, C.-B. Theoretical study of adsorption of chlorinated phenol pollutants on CO-doped boron nitride nanotubes. Acta Phys.-Chim. Sin. 2015, 31, 877–884. [Google Scholar] [CrossRef]
- Wang, R.-X.; Zhang, D.-J.; Zhu, R.-X.; Liu, C.-B. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes. J. Mol. Model. 2014, 20, 2093. [Google Scholar] [CrossRef]
- Ren, X.-M.; Guo, L.-H. Molecular toxicology of polybrominated diphenyl ethers: Nuclear hormone receptor mediated pathways. Environ. Sci. Process. Impacts 2013, 15, 702–708. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, D.; Liu, C. DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Chemosphere 2017, 168, 18–24. [Google Scholar] [CrossRef]
- Mahdavian, L. Computational Investigation of 2,3,7,8-Tetrachlorodibenzo-Para-Dioxin (TCDD) Adsorption on Boron Nitride-Nanotube (BNNT). Polycycl. Aromat. Compd. 2020, 40, 824–831. [Google Scholar] [CrossRef]
- Ding, N.; Chen, X.; Wu, C.-M.L. Interactions between polybrominated diphenyl ethers and graphene surface: A DFT and MD investigation. Environ. Sci. Nano 2014, 1, 55–63. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Huang, H.; Niu, Z.; Han, W. Characterization of polybrominated diphenyl ethers (PBDEs) and hydroxylated and methoxylated PBDEs in soils and plants from an e-waste area, China. Environ. Pollut. 2014, 184, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, S.; Labuta, J.; Van Rossom, W.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. [Google Scholar] [CrossRef]
- Wong, R.C.; Lo, P.-C.; Ng, D. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev. 2019, 379, 30–46. [Google Scholar] [CrossRef]
- Reardon, K.F.; Zhong, Z.; Lear, K.L. Environmental Applications of Photoluminescence-Based Biosensors. In Optical Sensor Systems in Biotechnology; Rao, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 143–157. [Google Scholar]
- Lever, A.B.P. The Phthalocyanines. In Advances in Inorganic Chemistry and Radiochemistry; Emeléus, H.J., Sharpe, A.G., Eds.; Academic Press: Cambridge, MA, USA, 1965; Volume 7, pp. 27–114. [Google Scholar]
- Zhou, R.; Josse, F.; Göpel, W.; Öztürk, Z.Z.; Bekaroğlu, Ö. Phthalocyanines as Sensitive Materials for Chemical Sensors. Appl. Organomet. Chem. 1996, 10, 557–577. [Google Scholar] [CrossRef]
- Guillaud, G.; Simon, J.; Germain, J.P. Metallophthalocyanines: Gas sensors, resistors and field effect transistors1In memory of Christine Maleysson.1. Coord. Chem. Rev. 1998, 178–180, 1433–1484. [Google Scholar] [CrossRef]
- Lever, A.B.P. The Phthalocyanines—Molecules of Enduring Value; A Two-dimensional Analysis of Redox Potentials. J. Porphyr. Phthalocyanines 1999, 3, 488–499. [Google Scholar] [CrossRef]
- Armstrong, N.R. Phthalocyanines and porphyrins as materials. J. Porphyr. Phthalocyanines 2000, 4, 414–417. [Google Scholar] [CrossRef]
- de Saja, J.; Rodríguez-Méndez, M. Sensors based on double-decker rare earth phthalocyanines. Adv. Colloid Interface Sci. 2005, 116, 1–11. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, Y.; Ma, P.; Song, F.; Han, X.; Yao, S.; Yang, C. Highly ordered sandwich-type (phthalocyaninato)(porphyrinato) europium double-decker nanotubes and room temperature NO2 sensitive properties. Dalton Trans. 2017, 46, 1531–1538. [Google Scholar] [CrossRef]
- Collins, G.; Schiffrin, D. The electrochromic properties of lutetium and other phthalocyanines. J. Electroanal. Chem. Interfacial Electrochem. 1982, 139, 335–369. [Google Scholar] [CrossRef]
- Konami, H.; Hatano, M.; Kobayashi, N.; Osa, T. Redox potentials of a series of lanthanide-bisphthalocyanine sandwich complexes. Chem. Phys. Lett. 1990, 165, 397–400. [Google Scholar] [CrossRef]
- Weijing, D.; Weihong, Z.; Xiaodong, Z.; Baofeng, Z.; Lei, C.; Laizhi, S.; Shuangxia, Y.; Haibin, G.; Guanyi, C.; Liang, Z.; et al. The application of DFT in catalysis and adsorption reaction system. Energy Procedia 2018, 152, 997–1002. [Google Scholar] [CrossRef]
- Rodrigues, N.M.; Daniel, C.R.A.; Edna da Silva, M.R.; da Costa, N.B., Jr.; Gimenez, I.D.F.; Freire, R.O. Lanthanide organic frameworks geometry prediction accuracies of quantum chemical calculations. J. Mol. Struct. 2019, 1184, 310–315. [Google Scholar] [CrossRef]
- Dutra, J.D.L.; Filho, M.A.M.; Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials. J. Chem. Theory Comput. 2013, 9, 3333–3341. [Google Scholar] [CrossRef] [PubMed]
- Kadish, K.; Guilard, R.; Smith, K.M. The Porphyrin Handbook: Phthalocyanines: Spectroscopic and Electrochemical Characterization; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Trogen, G.-B.; Annila, A.; Eriksson, J.; Kontteli, M.; Meriluoto, J.; Sethson, I.; Zdunek, J.; Edlund, U. Conformational Studies of Microcystin-LR Using NMR Spectroscopy and Molecular Dynamics Calculations. Biochemistry 1996, 35, 3197–3205. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2012, 19, 1–32. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Contreras-Garcia, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Allouche, A.-R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, A.F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Pearson, R.G.; Songstad, J. Application of the Principle of Hard and Soft Acids and Bases to Organic Chemistry. J. Am. Chem. Soc. 1967, 89, 1827–1836. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Parr, R.G. Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry; Springer: Berlin/Heidelberg, Germany, 1980; pp. 5–15. [Google Scholar]
- Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Okumura, M. DFT and DFT-D studies on molecular structure of double-decker phthalocyaninato-terbium(III) complex. Mol. Phys. 2014, 112, 995–1001. [Google Scholar] [CrossRef]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Joon, N.K.; Barnsley, J.E.; Ding, R.; Lee, S.; Latonen, R.-M.; Bobacka, J.; Gordon, K.C.; Ogawa, T.; Lisak, G. Silver(I)-selective electrodes based on rare earth element double-decker porphyrins. Sens. Actuators B Chem. 2020, 305, 127311. [Google Scholar] [CrossRef]
- Krasnov, P.O.; Basova, T.V.; Hassan, A. Interaction of metal phthalocyanines with carbon zigzag and armchair nanotubes with different diameters. Appl. Surf. Sci. 2018, 457, 235–240. [Google Scholar] [CrossRef]
- Dyrda, G.; Zakrzyk, M.; Broda, M.A.; Pędziński, T.; Mele, G.; Słota, R. Hydrogen Bond-Mediated Conjugates Involving Lanthanide Diphthalocyanines and Trifluoroacetic Acid (Lnpc(2)@TFA): Structure, Photoactivity, and Stability. Molecules 2020, 25, 3638. [Google Scholar] [CrossRef] [PubMed]
- Komeda, T.; Katoh, K.; Yamashita, M. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties. Prog. Surf. Sci. 2014, 89, 127–160. [Google Scholar] [CrossRef]
- Katoh, K.; Isshiki, H.; Komeda, T.; Yamashita, M. Molecular Spintronics Based on Single-Molecule Magnets Composed of Multiple-Decker Phthalocyaninato Terbium(III) Complex. Chem.-Asian J. 2012, 7, 1154–1169. [Google Scholar] [CrossRef]
- Serrano, G.; Velez-Fort, E.; Cimatti, I.; Cortigiani, B.; Malavolti, L.; Betto, D.; Ouerghi, A.; Brookes, N.B.; Mannini, M.; Sessoli, R. Magnetic bistability of a TbPc2 submonolayer on a graphene/SiC(0001) conductive electrode. Nanoscale 2018, 10, 2715–2720. [Google Scholar] [CrossRef]
- Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; DEL Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; et al. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate. Sci. Rep. 2016, 6, 21740. [Google Scholar] [CrossRef]
- Studniarek, M.; Wäckerlin, C.; Singha, A.; Baltic, R.; Diller, K.; Donati, F.; Rusponi, S.; Brune, H.; Lan, Y.; Klyatskaya, S.; et al. Understanding the Superior Stability of Single-Molecule Magnets on an Oxide Film. Adv. Sci. 2019, 6, 1901736. [Google Scholar] [CrossRef]
- Martínez-Díaz, M.V.; de la Torre, G.; Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 2010, 46, 7090–7108. [Google Scholar] [CrossRef]
- Nagaraj, G.; Mohammed, M.K.A.; Abdulzahraa, H.G.; Sasikumar, P.; Karthikeyan, S.; Tamilarasu, S. Effects of the surface of solar-light photocatalytic activity of Ag-doped TiO2 nanohybrid material prepared with a novel approach. Appl. Phys. A 2021, 127, 269. [Google Scholar] [CrossRef]
- Colombelli, A.; Serri, M.; Mannini, M.; Rella, R.; Manera, M.G. Volatile Organic Compounds sensing properties of TbPc2 thin films: Towards a plasmon-enhanced opto-chemical sensor. Sens. Actuators B Chem. 2017, 253, 266–274. [Google Scholar] [CrossRef]
- Blase, X.; Rubio, A.; Louie, S.G.; Cohen, M.L. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Eur. Lett. 1994, 28, 335–340. [Google Scholar] [CrossRef]
- Chou, Y.-M.; Wang, H.-W.; Lin, Y.-J.; Chen, W.-H.; Wang, B.-C. Infinite single-walled boron-nitride nanotubes studies by LGTO-PBC-DFT method. Diam. Relat. Mater. 2009, 18, 351–354. [Google Scholar] [CrossRef]
- Lauret, J.S.; Arenal, R.; Ducastelle, F.; Loiseau, A.; Cau, M.; Attal-Tretout, B.; Rosencher, E.; Goux-Capes, L. Optical Transitions in Single-Wall Boron Nitride Nanotubes. Phys. Rev. Lett. 2005, 94, 037405. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Yang, J.; Hou, J.; Zhu, Q. First-principles study of small-radius single-walled BN nanotubes. Phys. Rev. B 2003, 68, 035427. [Google Scholar] [CrossRef]
- Suzuki, A.; Oku, T. Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine. Appl. Surf. Sci. 2016, 380, 127–134. [Google Scholar] [CrossRef]
- Bottari, G.; de la Torre, G.; Guldi, D.M.; Torres, T. Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chem. Rev. 2010, 110, 6768–6816. [Google Scholar] [CrossRef]
∆Hf | ∆Hf | ||||||
---|---|---|---|---|---|---|---|
(kcal mol−1) | (kcal mol−1) | ||||||
BN90 | +CePc2 | →BN90_CePc2 | −76.0 | BN90 | +TbPc2 | →BN90_TbPc2 | −77.8 |
BN180 | +CePc2 | →BN180_CePc2 | −90.3 | BN180 | +TbPc2 | →BN180_TbPc2 | −93.4 |
BN90_CePc2 | +pcp | →BN90_CePc2_pcp | −58.5 | BN90_TbPc2 | +pcp | →BN90_TbPc2_pcp | −58.4 |
BN90_CePc2 | +6ohbde47 | →BN90_CePc2_6ohbde47 | −45.1 | BN90_TbPc2 | +6ohbde47 | →BN90_TbPc2_6ohbde47 | −45.8 |
BN180_CePc2 | +pcp | →BN180_CePc2_ pcp | −57.9 | BN180_TbPc2 | +pcp | →BN180_TbPc2_ pcp | −58.7 |
BN180_CePc2 | +6ohbde47 | →BN180_CePc2_ 6ohbde47 | −46.0 | BN180_TbPc2 | +6ohbde47 | →BN180_TbPc2_ 6ohbde47 | −45.2 |
BN90 | +EuPc2 | →BN90_EuPc2 | −77.5 | BN90 | +YbPc2 | →BN90_YbPc2 | −79.2 |
BN180 | +EuPc2 | →BN180_EuPc2 | −92.9 | BN180 | +YbPc2 | →BN180_YbPc2 | −94.2 |
BN90_EuPc2 | +pcp | →BN90_EuPc2_pcp | −58.2 | BN90_YbPc2 | +pcp | →BN90_YbPc2_pcp | −57.7 |
BN90_EuPc2 | +6ohbde47 | →BN90_EuPc2_6ohbde47 | −45.7 | BN90_YbPc2 | +6ohbde47 | →BN90_YbPc2_6ohbde47 | −45.1 |
BN180_EuPc2 | +pcp | →BN180_EuPc2_ pcp | −58.5 | BN180_YbPc2 | +pcp | →BN180_YbPc2_ pcp | −59.0 |
BN180_EuPc2 | +6ohbde47 | →BN180_EuPc2_ 6ohbde47 | −45.5 | BN180_YbPc2 | +6ohbde47 | →BN180_YbPc2_ 6ohbde47 | −45.3 |
GAP (eV) | I (eV) | A (eV) | χ (eV) | η (eV) | μ (eV) | S (eV−1) | ω (eV) | |
---|---|---|---|---|---|---|---|---|
CePc2 | 4.858 | 4.544 | −0.314 | 2.115 | 2.429 | −2.115 | 0.206 | 0.921 |
EuPc2 | 4.813 | 4.456 | −0.357 | 2.050 | 2.407 | −2.050 | 0.208 | 0.873 |
TbPc2 | 4.798 | 4.423 | −0.375 | 2.024 | 2.399 | −2.024 | 0.208 | 0.854 |
YbPc2 | 4.783 | 4.380 | −0.403 | 1.989 | 2.392 | −1.989 | 0.209 | 0.827 |
BN90 | 5.888 | 7.781 | 1.893 | 4.837 | 2.944 | −4.837 | 0.170 | 3.974 |
BN180 | 5.933 | 7.846 | 1.913 | 4.880 | 2.967 | −4.880 | 0.169 | 4.013 |
BN90–CePc2 | 4.093 | 4.654 | 0.561 | 2.608 | 2.047 | −2.608 | 0.244 | 1.661 |
BN90–EuPc2 | 4.050 | 4.585 | 0.535 | 2.560 | 2.025 | −2.560 | 0.247 | 1.618 |
BN90–TbPc2 | 4.029 | 4.560 | 0.531 | 2.546 | 2.015 | −2.546 | 0.248 | 1.608 |
BN90–YbPc2 | 4.025 | 4.533 | 0.508 | 2.521 | 2.013 | −2.521 | 0.248 | 1.578 |
BN180–CePc2 | 3.749 | 4.698 | 0.949 | 2.824 | 1.875 | −2.824 | 0.267 | 2.126 |
BN180–EuPc2 | 3.706 | 4.636 | 0.930 | 2.783 | 1.853 | −2.783 | 0.270 | 2.090 |
BN180–TbPc2 | 3.681 | 4.609 | 0.928 | 2.769 | 1.841 | −2.769 | 0.272 | 2.082 |
BN180–YbPc2 | 3.647 | 4.573 | 0.926 | 2.750 | 1.824 | −2.750 | 0.274 | 2.073 |
pcp | 8.301 | 9.811 | 1.510 | 5.661 | 4.151 | −5.661 | 0.120 | 3.860 |
6ohbde47 | 8.382 | 9.278 | 0.896 | 5.087 | 4.191 | -−5.087 | 0.119 | 3.087 |
pcp-H | 7.840 | 4.793 | −3.047 | 0.873 | 3.920 | −0.873 | 0.128 | 0.097 |
6ohbde47-H | 6.987 | 4.638 | −2.349 | 1.145 | 3.494 | −1.145 | 0.143 | 0.187 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-L.; Chi, S.-C.; Chang, C.M. Theoretical Analysis of the Adsorption of Pentachlorophenol and 6-OH-BDE-47 (6-Hydroxy-2,2’,4,4’-Tetrabromodiphenyl Ether) by Boron Nitride Nanotubes Decorated with Double-Decker Lanthanide(III) Phthalocyanine Complexes. Crystals 2022, 12, 1205. https://doi.org/10.3390/cryst12091205
Lee C-L, Chi S-C, Chang CM. Theoretical Analysis of the Adsorption of Pentachlorophenol and 6-OH-BDE-47 (6-Hydroxy-2,2’,4,4’-Tetrabromodiphenyl Ether) by Boron Nitride Nanotubes Decorated with Double-Decker Lanthanide(III) Phthalocyanine Complexes. Crystals. 2022; 12(9):1205. https://doi.org/10.3390/cryst12091205
Chicago/Turabian StyleLee, Chien-Lin, Shu-Chun Chi, and Chia Ming Chang. 2022. "Theoretical Analysis of the Adsorption of Pentachlorophenol and 6-OH-BDE-47 (6-Hydroxy-2,2’,4,4’-Tetrabromodiphenyl Ether) by Boron Nitride Nanotubes Decorated with Double-Decker Lanthanide(III) Phthalocyanine Complexes" Crystals 12, no. 9: 1205. https://doi.org/10.3390/cryst12091205
APA StyleLee, C. -L., Chi, S. -C., & Chang, C. M. (2022). Theoretical Analysis of the Adsorption of Pentachlorophenol and 6-OH-BDE-47 (6-Hydroxy-2,2’,4,4’-Tetrabromodiphenyl Ether) by Boron Nitride Nanotubes Decorated with Double-Decker Lanthanide(III) Phthalocyanine Complexes. Crystals, 12(9), 1205. https://doi.org/10.3390/cryst12091205