Effect of Reduction Annealing on the Coloration Mechanism of Yellow Sapphire with High Iron Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transition Metal Elements
3.2. Reduction Annealing
3.3. Optical Spectroscopy
3.4. Analysis of Lattice Parameter
3.5. Charge Compensation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Townsend, M.G. Visible charge transfer band in blue sapphire. Solid State Commun. 1968, 6, 81–83. [Google Scholar] [CrossRef]
- Lehmann, G.; Harder, H. Optical spectra of di-and trivalent iron in corundum. Am. Mineral. 1970, 55, 98–105. [Google Scholar]
- Faye, G.H. On the optical spectra of di-and trivalent iron in corundum: A discussion. Am. Mineral. 1971, 56, 344–348. [Google Scholar]
- Ferguson, J.; Fielding, P.E. The origin of the colours of yellow, green and blue sapphires. Chem. Phys. Lett. 1971, 10, 262–265. [Google Scholar] [CrossRef]
- Krebs, J.J.; Maisch, W.G. Exchange effects in the optical-absorption spectrum of Fe3+ in Al2O3. Phys. Rev. B 1971, 4, 757–769. [Google Scholar] [CrossRef]
- Ferguson, J.; Fielding, P.E. The origins of the colours of natural yellow, blue, and green sapphires. Aust. J. Chem. 1972, 25, 1371–1385. [Google Scholar] [CrossRef]
- Tippins, H.H. Charge-transfer spectra of transition-metal ions in corundum. Phys. Rev. B 1970, 1, 126–135. [Google Scholar] [CrossRef]
- Marfunin, A.S.; Egorova, N.G. Physics of Minerals and Inorganic Materials: An Introduction; Li, G.S., Translator; Geological Publishing House: Beijing, China, 1984; pp. 170–177. (In Chinese) [Google Scholar]
- Zwann, P.C. Sri-Lanka: The gem island. Gems. Gemol. 1982, 18, 62–71. [Google Scholar] [CrossRef]
- Kiefert, L.; Schmetzer, K. Blue and yellow sapphire from Kaduna Province, Nigeria. J. Gemmol. 1987, 20, 427–442. [Google Scholar] [CrossRef]
- Rakotondrazafy, A.F.M.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Rakotosamizanany, S.; Andriamamonjy, A.; Ralantoarison, T.; Razanatseheno, M.; Offant, Y.; Garnier, V.; et al. Gem corundum deposits of Madagascar: A review. Ore Geol. Rev. 2008, 34, 134–154. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Zaw, K.; Meffre, S.; Yui, T.F.; Thu, K. Advances in trace element “fingerprinting” of gem corundum, ruby and sapphire, Mogok area, Myanmar. Minerals 2014, 5, 61–79. [Google Scholar] [CrossRef]
- McClure, D.S. Optical spectra of transition-metal ions in corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Fritsch, E. Blue color in sapphire caused by Fe2+/Fe3+ intervalence charge transfer. Gems. Gemol. 1993, 29, 151. [Google Scholar]
- Schmetzer, K.; Bosshart, G.; Hänni, H.A. Natural coloured and treated yellow and orange-brown sapphires. J. Gemmol. 1983, 18, 607–622. [Google Scholar] [CrossRef]
- Han, X.Z.; Guo, S.G.; Kang, Y.; Feng, X.Q.; Li, Y.S. Colorizing Role of Iron and Titanium in Dark Blue Sapphire from Changle, Shandong. J. Chin. Ceram. Soc. 2018, 46, 1483–1488. (In Chinese) [Google Scholar]
- Mattson, S.M.; Rossman, G.R. Identifying characteristics of charge transfer transitions in minerals. Phys. Chem. Miner. 1987, 14, 94–99. [Google Scholar] [CrossRef]
- Bristow, J.K.; Tiana, D.; Parker, S.C.; Walsh, A. Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. J. Mater. Chem. A 2014, 2, 6198–6208. [Google Scholar] [CrossRef]
- Garcia-Lastra, J.M.; Barriuso, M.T.; Aramburu, J.A.; Moreno, M. Origin of the different color of ruby and emerald. Phys. Rev. B 2005, 72, 113104. [Google Scholar] [CrossRef]
- Moulton, P.F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 1986, 3, 125–133. [Google Scholar] [CrossRef]
- Ramírez, R.; Tardío, M.; González, R.; Santiuste, J.E.M. Optical properties of vacancies in thermochemically reduced Mg-doped sapphire single crystals. J. Appl. Phys. 2007, 101, 123520. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta. Cryst. B. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Tian, Y.J.; Cao, M.S.; Cao, C.B. Introduction of advanced materials; Harbin Institute of Technology Press: Harbin, China, 2014; p. 271. (In Chinese) [Google Scholar]
- Nikolskaya, L.V.; Terekhova, V.M.; Samoilovich, M.I. On the origin of natural sapphire color. Phys. Chem. Miner. 1978, 3, 213–224. [Google Scholar] [CrossRef]
- Müller, R.; Günthard, Hs. H. Spectroscopic study of reduction Nickel and Cobalt ions in sapphire. J. Chem. Phys. 1966, 44, 365–373. [Google Scholar] [CrossRef]
- Volynets, F.K.; Vorobev, V.G.; Sidorova, E.A. Infrared absorption bands in corundum crystals. J. Appl. Spectrosc. 1969, 10, 665–667. [Google Scholar] [CrossRef]
- Eigenmann, K.; Günthard, H.H. Hydrogen incorporation in doped α-Al2O3 by high temperature redox reactions. Chem. Phys. Lett. 1971, 12, 12–15. [Google Scholar] [CrossRef]
- Moon, A.R.; Phillips, M.R. Defect clustering in H, Ti:α-Al2O3. J. Phys. Chem. Solids 1991, 52, 1087–1099. [Google Scholar] [CrossRef]
- Beran, A. Trace hydrogen in Verneuil-grown corundum and its colour varieties—An IR spectroscopic study. Eur. J. Mineal. 1991, 3, 971–976. [Google Scholar] [CrossRef]
- Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [Google Scholar] [CrossRef]
- Phlayrahan, A.; Monarumit, N.; Boonmee, C.; Satitkune, S.; Wathanakul, P. Fe oxidation state in heat-treated basaltic blue sapphire samples and its implication to the 3309 cm−1-series peaks in infrared absorption spectra. In Proceedings of the Siam Physics Congress 2018: A Creative Path to Sustainable Innovation, Pitsanulok, Thailand, 21–23 May 2018. [Google Scholar]
- Phlayrahan, A.; Monarumit, N.; Satitkune, S.; Wathanakul, P. Role of Ti content on the occurrence of the 3309-cm−1 peak in FTIR absorption spectra of ruby samples. J. Appl. Spectrosc. 2018, 85, 385–390. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, G.K.; Tang, T. Fe effect on the process of intrinsic point defects in α-Al2O3. J. Mater. Sci. 2018, 53, 11194–11203. [Google Scholar] [CrossRef]
Oxide | TiO2 | V2O3 | Cr2O3 | MnO | T-Fe2O3 | CoO | NiO | CuO | Ga2O3 | |
---|---|---|---|---|---|---|---|---|---|---|
Content | YS-1 | 9.2 | 2.3 | 27.1 | <1 | 10,425 | <1 | <1 | <1 | 11.5 |
YS-2 | 11.3 | 1.9 | 21.6 | <1 | 11,018 | <1 | <1 | <1 | 12.3 | |
YS-3 | 8.8 | 2.6 | 16.4 | <1 | 10,017 | <1 | <1 | <1 | 11.2 |
Band center / cm−1 | 26,550 | 25,840 | 22,170 | 11,690 |
Absorption coefficient / cm−1 | 1.780 | 2.887 | 3.223 | 3.249 |
FWHM / cm−1 | 683 | 1,077 | 1,492 | 6,153 |
(h k l) | Before Reduction Annealing | After Reduction Annealing | ||
---|---|---|---|---|
d/nm | 2θ/o | d/nm | 2θ/o | |
(0 1 12) | 0.34906 | 25.497 | 0.34891 | 25.508 |
(1 0 4) | 0.25553 | 35.088 | 0.25547 | 35.098 |
(1 1 0) | 0.23833 | 37.713 | 0.23829 | 37.72 |
(1 1 3) | 0.20829 | 43.409 | 0.20907 | 43.239 |
(0 2 4) | 0.17414 | 52.505 | 0.17411 | 52.516 |
(1 1 6) | 0.16041 | 57.398 | 0.16019 | 57.481 |
(2 1 1) | 0.15497 | 59.611 | 0.15486 | 59.658 |
(0 1 8) | 0.15118 | 61.264 | 0.15127 | 61.221 |
(2 1 4) | 0.14073 | 66.369 | 0.14062 | 66.429 |
(3 0 0) | 0.13755 | 68.111 | 0.13746 | 68.164 |
(1 2 5) | 0.13353 | 70.462 | 0.13373 | 70.338 |
(1 0 10) | 0.12406 | 76.766 | 0.12402 | 76.796 |
(1 1 9) | 0.12343 | 77.23 | 0.12358 | 77.116 |
(2 2 0) | 0.11914 | 80.564 | 0.11908 | 80.611 |
(3 0 6) | 0.11611 | 83.119 | 0.11598 | 83.236 |
(2 2 3) | 0.11486 | 84.228 | 0.1148 | 84.289 |
(0 2 10) | 0.11001 | 88.88 | 0.10996 | 88.934 |
Valence State | Coordination Number | Crystal Field State | Spin State | Ionic Radius (nm) |
---|---|---|---|---|
Fe3+(3d5) | 6 | weak-field | high-spin | 0.065 |
Fe2+(3d6) | 6 | strong-field | low-spin | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Han, X.; Kang, Y.; Feng, X.; Guo, S. Effect of Reduction Annealing on the Coloration Mechanism of Yellow Sapphire with High Iron Content. Crystals 2022, 12, 1257. https://doi.org/10.3390/cryst12091257
Wu X, Han X, Kang Y, Feng X, Guo S. Effect of Reduction Annealing on the Coloration Mechanism of Yellow Sapphire with High Iron Content. Crystals. 2022; 12(9):1257. https://doi.org/10.3390/cryst12091257
Chicago/Turabian StyleWu, Xiao, Xiaozhen Han, Yan Kang, Xiqi Feng, and Shouguo Guo. 2022. "Effect of Reduction Annealing on the Coloration Mechanism of Yellow Sapphire with High Iron Content" Crystals 12, no. 9: 1257. https://doi.org/10.3390/cryst12091257
APA StyleWu, X., Han, X., Kang, Y., Feng, X., & Guo, S. (2022). Effect of Reduction Annealing on the Coloration Mechanism of Yellow Sapphire with High Iron Content. Crystals, 12(9), 1257. https://doi.org/10.3390/cryst12091257