Requirements of Scintillation Crystals with the Development of PET Scanners
Abstract
:1. Overview
2. Basic Properties of Scintillation Crystals
2.1. Stopping Power
2.2. Luminous Properties
2.3. Timing Characteristics
2.4. Other Properties
3. Basic Properties of PET Scanners
3.1. Sensitivity
3.2. Spatial Resolution
4. PET Development and Requirements of Scintillation Crystals
4.1. TOF-PET
4.2. DOI-PET
4.3. Wb-PET
4.4. SAP
4.5. Organ-Specific PET
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawano, N.; Shinozaki, K.; Nakauchi, D.; Kimura, H.; Yanagida, T. Scintillation properties of organic–inorganic layered perovskite nanocrystals in glass. J. Appl. Phys. 2020, 127, 213103. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Shao, W.; Ouyang, X.; Wang, X.; Zhang, X.; Guo, Y.; Ouyang, X. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale 2020, 12, 9727–9732. [Google Scholar] [CrossRef] [PubMed]
- Van Eijk, C.W. Development of inorganic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 392, 285–290. [Google Scholar] [CrossRef]
- Crookes, W.; Dewar, J. Note on the effect of extreme cold on the emanations of radium. Proc. R. Soc. Lond. 1904, 72, 69–71. [Google Scholar]
- Moon, R.J. Inorganic crystals for the detection of high energy particles and quanta. Phys. Rev. 1948, 73, 1210. [Google Scholar] [CrossRef]
- Hofstadter, R. The detection of gamma-rays with thallium-activated sodium iodide crystals. Phys. Rev. 1949, 75, 796. [Google Scholar] [CrossRef]
- Hofstadter, R. Alkali halide scintillation counters. Phys. Rev. 1948, 74, 100. [Google Scholar] [CrossRef]
- Seliger, H.H. A photoelectric method for the measurement of spectra of light sources of rapidly varying intensities. Anal. Biochem. 1960, 1, 60–65. [Google Scholar] [CrossRef]
- Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems; Springer: Berlin, Germany, 2017. [Google Scholar]
- Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Weber, M.J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45. [Google Scholar] [CrossRef]
- Williams, R.T.; Grim, J.Q.; Li, Q.; Ucer, K.B.; Bizarri, G.A.; Burger, A. Scintillation Detectors of Radiation: Excitations at High Densities and Strong Gradients. In Excitonic and Photonic Processes in Materials; Springer: Singapore, 2015; pp. 299–358. [Google Scholar]
- Robertson, J.S.; Marr, R.B.; Rosenblum, M.; Radeka, V.; Yamamoto, Y.L. 32-Crystal Positron Transverse Section Detector (No. BNL-17237; CONF-720959-1); Brookhaven National Lab.: Upton, NY, USA, 1972. [Google Scholar]
- Budinger, T.F. Instrumentation trends in nuclear medicine. Semin. Nucl. Med. 1977, 7, 285–297. [Google Scholar] [CrossRef]
- Kinahan, P.E.; Townsend, D.W.; Beyer, T.; Sashin, D. Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 1998, 25, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Blasse, G. Scintillator materials. Chem. Mater. 1994, 6, 1465–1475. [Google Scholar] [CrossRef]
- Muehllehner, G.; Karp, J.S. Positron emission tomography. Phys. Med. Biol. 2006, 51, R117. [Google Scholar] [CrossRef]
- Bizarri, G. Scintillation mechanisms of inorganic materials: From crystal characteristics to scintillation properties. J. Cryst. Growth 2010, 312, 1213–1215. [Google Scholar] [CrossRef]
- Nikl, M. Scintillation detectors for X-rays. Meas. Sci. Technol. 2006, 17, R37. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Bartram, R.H.; Lempicki, A. Efficiency of electron-hole pair production in scintillators. J. Lumin. 1996, 68, 225–240. [Google Scholar] [CrossRef]
- Rodnyi, P.A. Physical Processes in Inorganic Scintillators; CRC Press: Boca Raton, FL, USA, 1997; Volume 14. [Google Scholar]
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 2018, 94, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K. The quest for the ideal inorganic scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 505, 111–117. [Google Scholar] [CrossRef]
- Guo, L.; Tian, J.; Chen, P.; Derenzo, S.E.; Choong, W.S. Improving timing performance of double-ended readout in TOF-PET detectors. J. Instrum. 2020, 15, P01003. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ishibashi, H. A GSO depth of interaction detector for PET. IEEE Trans. Nucl. Sci. 1998, 45, 1078–1082. [Google Scholar] [CrossRef]
- Melcher, C.L. Lutetium orthosilicate single crystal scintillator detector. U.S. Patent 5,025,151, 18 June 1991. [Google Scholar]
- Lewellen, T.K. Recent developments in PET detector technology. Phys. Med. Biol. 2008, 53, R287. [Google Scholar] [CrossRef]
- Van Loef, E.V.D.; Dorenbos, P.; Van Eijk, C.W.E.; Krämer, K.; Güdel, H.U. High-energy-resolution scintillator: Ce3+ activated LaBr 3. Appl. Phys. Lett. 2001, 79, 1573–1575. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, M.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. 2 inch diameter single crystal growth and scintillation properties of Ce: Gd3Al2Ga3O12. J. Cryst. Growth 2012, 352, 88–90. [Google Scholar] [CrossRef]
- Yao, B.; Zheng, L.; Zhao, G.; Zong, Y. Judd-Ofelt Analysis of Spectroscopic Properties of Tm3+ Doped Lu2SiO5 Crystals. Chin. J. Lasers 2008, 35, 601. [Google Scholar]
- Jadvar, H. Prostate cancer: PET with 18F-FDG, 18F-or 11C-acetate, and 18F-or 11C-choline. J. Nucl. Med. 2011, 52, 81–89. [Google Scholar] [CrossRef]
- Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S.H. Chemistry for positron emission tomography: Recent advances in 11C, 18F, 13N, and 15O labeling reactions. Angew. Chem. Int. Ed. 2019, 58, 2580–2605. [Google Scholar] [CrossRef]
- Xie, S.; Chen, J.; Yang, M.; Shi, H.; Peng, Q.; Xu, J. A γ-photon detector based on liquid light guide for whole-body PET. J. Instrum. 2017, 12, P11012. [Google Scholar] [CrossRef]
- Yang, H.L.; Liu, T.; Wang, X.M.; Xu, Y.; Deng, S.M. Diagnosis of bone metastases: A meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol. 2011, 21, 2604–2617. [Google Scholar] [CrossRef]
- McGeer, P.L.; Kamo, H.; Harrop, R.; McGeer, E.G.; Martin, W.R.W.; Pate, B.D.; Li, D.K.B. Comparison of PET, MRI, and CT with pathology in a proven case of Alzheimer’s disease. Neurology 1989, 36, 1569. [Google Scholar] [CrossRef]
- Sanaat, A.; Arabi, H.; Ay, M.R.; Zaidi, H. Novel preclinical PET geometrical concept using a monolithic scintillator crystal offering concurrent enhancement in spatial resolution and detection sensitivity: A simulation study. Phys. Med. Biol. 2020, 65, 045013. [Google Scholar] [CrossRef]
- Visser, E.P.; Disselhorst, J.A.; Brom, M.; Laverman, P.; Gotthardt, M.; Oyen, W.J.; Boerman, O.C. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J. Nucl. Med. 2009, 50, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Ming, Y.; Wu, N.; Qian, T.; Li, X.; Wan, D.Q.; Li, C.; Li, Y.; Wu, Z.; Wang, X.; Liu, J.; et al. Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front. Oncol. 2020, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Townsend, D.; Conti, M.; Eriksson, M.; Rothfuss, H.; Schmand, M.; Casey, M.E.; Bendriem, B. An investigation of sensitivity limits in PET scanners. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 836–842. [Google Scholar] [CrossRef]
- Peng, H.; S Levin, C. Recent developments in PET instrumentation. Curr. Pharm. Biotechnol. 2010, 11, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Dahlbom, M. PET Imaging: Basic and New Trends. In Handbook of Particle Detection and Imaging; Springer International Publishing: Cham, Switherland, 2021; pp. 1237–1277. [Google Scholar]
- Salomoni, M.; Pots, R.; Auffray, E.; Lecoq, P. Enhancing light extraction of inorganic scintillators using photonic crystal. Crystals 2018, 8, 78. [Google Scholar] [CrossRef]
- Pots, R.H.; Salomoni, M.; Gundacker, S.; Zanettini, S.; Gâté, V.; Usureau, E.; Turover, D.; Lecoq, P.; Auffray, E. Improving light output and coincidence time resolution of scintillating crystals using nanoimprinted photonic crystal slabs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 254–261. [Google Scholar] [CrossRef]
- Moses, W.W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 648, S236–S240. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Xie, Q.; Xie, S.; Ye, B.; Guo, M.; Zhao, Z.; Huang, Q.; Xu, J.; Peng, Q. Design study of a PET detector with 0.5 mm crystal pitch for high-resolution preclinical imaging. Phys. Med. Biol. 2021, 66, 135013. [Google Scholar] [CrossRef] [PubMed]
- Mintun, M.A.; Welch, M.J.; Siegel, B.A.; Mathias, C.J.; Brodack, J.W.; McGuire, A.H.; Katzenellenbogen, J.A. Breast cancer: PET imaging of estrogen receptors. Radiology 1988, 169, 45–48. [Google Scholar] [CrossRef]
- Coleman, R.E. PET in lung cancer. J. Nucl. Med. 1999, 40, 814–820. [Google Scholar]
- Enghardt, W.; Crespo, P.; Fiedler, F.; Hinz, R.; Parodi, K.; Pawelke, J.; Poenisch, F. Charged hadron tumour therapy monitoring by means of PET. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 525, 284–288. [Google Scholar] [CrossRef]
- Schindler, T.H.; Schelbert, H.R.; Quercioli, A.; Dilsizian, V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc. Imaging 2010, 3, 623–640. [Google Scholar] [CrossRef]
- Phelps, M.E. PET: Molecular Imaging and its Biological Applications; Springer Science Business: Media, UK, 2004. [Google Scholar]
- Bengel, F.M.; Schwaiger, M. Assessment of cardiac sympathetic neuronal function using PET imaging. J. Nucl. Cardiol. 2004, 11, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, A.; Rinne, J.O.; Kadir, A.; Långström, B. The use of PET in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 78. [Google Scholar] [CrossRef]
- Younes-Mhenni, S.; Janier, M.-F.; Cinotti, L.; Antoine, J.C.; Tronc, F.; Cottin, V.; Ternamian, P.J.; Trouillas, P.; Honnorat, J. FDG-PET improves tumour detection in patients with paraneoplastic neurological syndromes. Brain 2004, 127, 2331–2338. [Google Scholar] [CrossRef]
- Bettinardi, V.; Danna, M.; Savi, A.; Lecchi, M.; Castiglioni, I.; Gilardi, M.C.; Bammer, H.; Lucignani, G.; Fazio, F. Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 867–881. [Google Scholar] [CrossRef]
- Surti, S.; Karp, J.S. Imaging characteristics of a three-dimensional GSO whole-body PET camera. J. Nucl. Med. 2004, 45, 1040–1049. [Google Scholar]
- Jakoby, B.W.; Bercier, Y.; Conti, M.; Casey, M.E.; Bendriem, B.; Townsend, B.W. 2011 Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys. Med. Biol. 2011, 56, 2375. [Google Scholar] [CrossRef]
- Conti, M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys. Med. Biol. 2010, 56, 155. [Google Scholar] [CrossRef]
- Lecoq, P.; Auffray, E.; Brunner, S.; Hillemanns, H.; Jarron, P.; Knapitsch, A.; Meyer, T.; Powolny, F. Factors influencing time resolution of scintillators and ways to improve them. IEEE Trans. Nucl. Sci. 2010, 57, 2411–2416. [Google Scholar] [CrossRef]
- Vinke, R.; Seifert, S.; Schaart, D.R.; Schreuder, F.P.; de Boer, M.R.; van Dam, H.T.; Beekman, F.J.; Löhner, H.; Dendooven, P. Optimization of digital time pickoff methods for LaBr 3-SiPM TOF-PET detectors. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; IEEE, 2009; pp. 2962–2968. [Google Scholar]
- Kuhn, A.; Surti, S.; Karp, J.S.; Raby, P.S.; Shah, K.S.; Perkins, A.E.; Muehllehner, G. Design of a lanthanum bromide detector for time-of-flight PET. IEEE Trans. Nucl. Sci. 2004, 51, 2550–2557. [Google Scholar] [CrossRef]
- Karp, J.S.; Wiener, R.; Surti, S.; Schmall, J.P.; Ferri, A.; Gola, A.; Tarolli, A.; Piemonte, C. Timing and energy resolution of new near-UV SiPMs coupled to LaBr3: Ce for TOF-PET. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea, 27 October–2 November 2013; pp. 1–5. [Google Scholar]
- Xie, S.; Zhang, X.; Zhang, Y.; Ying, G.; Huang, Q.; Xu, J.; Peng, Q. Evaluation of various scintillator materials in radiation detector design for positron emission tomography (PET). Crystals 2020, 10, 869. [Google Scholar] [CrossRef]
- Daube-Witherspoon, M.E.; Surti, S.; Perkins, A.; Kyba, C.C.; Wiener, R.; Werner, M.E.; Kulp, R.; Karp, J.S. The imaging performance of a LaBr3-based PET scanner. Phys. Med. Biol. 2009, 55, 45. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Liu, C.; Xu, X.; Liu, F.; Guo, X.; Li, N.; Wang, X.; Yang, J.; Yang, X.; Zhu, H.; et al. Preclinical Evaluation and Pilot Clinical Study of Al18F-PSMA-BCH for Prostate Cancer PET Imaging. J. Nucl. Med. 2019, 60, 1284–1292. [Google Scholar] [CrossRef]
- Miao, Z.; Ren, G.; Liu, H.; Jiang, L.; Cheng, Z. Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein. Bioconjugate Chem. 2010, 21, 947–954. [Google Scholar] [CrossRef]
- Epstein, F.H.; Catana, C.; Tsui, B.M.; Ritman, E.L. Small-animal molecular imaging methods. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 18S–32S. [Google Scholar]
- Sanchez, F.; Moliner, L.; Correcher, C.; Gonzalez, A.; Orero, A.; Carles, M.; Soriano, A.; Rodriguez-Alvarez, M.J.; Medina, L.A.; Mora, F.; et al. Small animal PET scanner based on monolithic LYSO crystals: Performance evaluation. Med. Phys. 2012, 39, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bec, J.; Zhou, J.; Zhang, M.; Judenhofer, M.S.; Bai, X.; Di, K.; Wu, Y.; Rodriguez, M.; Dokhale, P.; et al. A prototype high-resolution small-animal PET scanner dedicated to mouse brain imaging. J. Nucl. Med. 2016, 57, 1130–1135. [Google Scholar] [CrossRef]
- Xia, Y.; Ma, T.; Liu, Y.; Wang, S.; Shao, Y. A modified spatial resolution formula for DOI-PET. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 2632–2635. [Google Scholar]
- Zhang, X.; Badawi, R.D.; Cherry, S.R.; Qi, J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys. Med. Biol. 2018, 63, 135010. [Google Scholar] [CrossRef]
- Ito, M.; Lee, J.S.; Kwon, S.I.; Lee, G.S.; Hong, B.; Lee, K.S.; Sim, K.; Lee, S.J.; Rhee, J.T.; Hong, S.J. A four-layer DOI detector with a relative offset for use in an animal PET system. IEEE Trans. Nucl. Sci. 2010, 57, 976–981. [Google Scholar] [CrossRef]
- Schmall, J.P.; Surti, S.; Karp, J.S. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI. Phys. Med. Biol. 2015, 60, 3549. [Google Scholar] [CrossRef]
- Ren, S.; Yang, Y.; Cherry, S.R. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Med. Phys. 2014, 41, 72503. [Google Scholar] [CrossRef]
- Ito, M.; Lee, J.S.; Park, M.J.; Sim, K.S.; Hong, S.J. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT. Phys. Med. Biol. 2010, 55, 3827. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, S.; Yang, J.; Weng, F.; Xu, J.; Huang, Q.; Peng, Q. A depth encoding PET detector using four-crystals-to-one-SiPM coupling and light-sharing window method. Med. Phys. 2019, 46, 3385–3398. [Google Scholar] [CrossRef]
- Kuang, Z.; Wang, X.; Li, C.; Deng, X.; Feng, K.; Hu, Z.; Fu, X.; Ren, N.; Zhang, X.; Zheng, Y.; et al. Performance of a high-resolution depth encoding PET detector using barium sulfate reflector. Phys Med Biol. 2017, 62, 5945–5958. [Google Scholar] [CrossRef]
- Schneider, F.R.; Shimazoe, K.; Somlai-Schweiger, I.; Ziegler, S.I. A PET detector prototype based on digital SiPMs and GAGG scintillators. Phys. Med. Biol. 2015, 60, 1667. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.Y.; Lee, M.S.; Lee, J.S. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG crystals. Phys. Med. Biol. 2020, 65, 195005. [Google Scholar] [CrossRef]
- Choghadi, M.A.; Huang, S.C.; Shimazoe, K.; Takahashi, H. Evaluation of dual-ended readout GAGG-based DOI-PET detectors with different surface treatments. Med. Phys. 2021, 48, 3470–3478. [Google Scholar] [CrossRef]
- Cherry, S.R. The 2006 Henry, N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J. Nucl. Med. 2006, 47, 1735–1745. [Google Scholar]
- Badawi, R.D.; Shi, H.; Hu, P.; Chen, S.; Xu, T.; Price, P.M.; Ding, Y.; Spencer, B.A.; Nardo, L.; Liu, W.; et al. First human imaging studies with the EXPLORER total-body PET scanner. J. Nucl. Med. 2019, 60, 299–303. [Google Scholar] [CrossRef]
- Poon, J.K.; Dahlbom, M.L.; Moses, W.W.; Balakrishnan, K.; Wang, W.; Cherry, S.R.; Badawi, R.D. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: A simulation study. Phys. Med. Biol. 2012, 57, 4077. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Cherry, S.R.; Badawi, R.D.; Qi, J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys. Med. Biol. 2017, 62, 2465. [Google Scholar] [CrossRef]
- Leung, E.K.; Berg, E.; Omidvari, N.; Spencer, B.A.; Li, E.; Abdelhafez, Y.G.; Schmall, J.P.; Liu, W.; He, L.; Tang, S.; et al. Quantitative accuracy in total-body imaging using the uEXPLORER PET/CT scanner. Phys. Med. Biol. 2021, 66, 205008. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.A.; Berg, E.; Schmall, J.P.; Omidvari, N.; Leung, E.K.; Abdelhafez, Y.G.; Tang, S.; Deng, Z.; Dong, Y.; Lv, Y.; et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J. Nucl. Med. 2021, 62, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Van Sluis, J.; De Jong, J.; Schaar, J.; Noordzij, W.; Van Snick, P.; Dierckx, R.; Borra, R.; Willemsen, A.; Boellaard, R. Performance characteristics of the digital biograph vision PET/CT system. J. Nucl. Med. 2019, 60, 1031–1036. [Google Scholar] [CrossRef]
- Prasad, R.; Supanich, M. Performance Characterization of 3D PET System for High Count Dynamic Cardiac Imaging. In Proceedings of the European Congress of Radiology-ECR 2020, Vienna, Austria, 15 January 2020. [Google Scholar]
- Pan, T.; Einstein, S.A.; Kappadath, S.C.; Grogg, K.S.; Lois Gomez, C.; Alessio, A.M.; Hunter, W.C.; Fakhri, G.E.; Kinahan, P.E.; Mawlawi, O.R. Performance evaluation of the 5-Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2-2012 Standard. Med. Phys. 2019, 46, 3025–3033. [Google Scholar] [CrossRef] [PubMed]
- Chicheportiche, A.; Marciano, R.; Orevi, M. Comparison of NEMA characterizations for Discovery MI and Discovery MI-DR TOF PET/CT systems at different sites and with other commercial PET/CT systems. EJNMMI Phys. 2020, 7, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Michopoulou, S.; O’shaughnessy, E.; Thomson, K.; Guy, M.J. Discovery molecular imaging digital ready PET/CT performance evaluation according to the NEMA NU2-2012 standard. Nucl. Med. Commun. 2019, 40, 270–277. [Google Scholar] [CrossRef]
- Surti, S.; Kuhn, A.; Werner, M.E.; Perkins, A.E.; Kolthammer, J.; Karp, J.S. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J. Nucl. Med. 2007, 48, 471–480. [Google Scholar]
- Ingvar, M.; Eriksson, L.; Rogers, G.A.; Stone-Elander, S.; Widen, L. Rapid feasibility studies of tracers for positron emission tomography: High-resolution PET in small animals with kinetic analysis. J. Cereb. Blood Flow Metab. 1991, 11, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Chatziioannou, A.F.; Cherry, S.R.; Shao, Y.; Silverman, R.W.; Meadors, K.; Farquhar, T.H.; Pedarsani, M.; Phelps, M.E. Performance evaluation of microPET: A high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J. Nucl. Med. 1999, 40, 1164. [Google Scholar] [PubMed]
- Huisman, M.C.; Reder, S.; Weber, A.W.; Ziegler, S.I.; Schwaiger, M. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 532–540. [Google Scholar] [CrossRef]
- Sempere Roldan, P.; Chereul, E.; Dietzel, O.; Magnier, L.; Pautrot, C.; Rbah, L.; Sappey-Marinier, D.; Wagner, A.; Zimmer, L.; Janier, M.; et al. Raytest ClearPETTM, a new generation small animal PET scanner. Nucl. Instrum. Methods Phys. Res. A 2007, 571, 498–501. [Google Scholar] [CrossRef]
- Prasad, R.; Ratib, O.; Zaidi, H. Performance evaluation of the FLEX triumph X-PET scanner using the national electrical manufacturers association NU-4 standards. J. Nucl. Med. 2010, 51, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, J.; Liang, X.; Niu, M.; Wu, X.; Kao, C.-M.; Kim, H.; Xie, Q. Performance evaluation of the Trans-PET® BioCaliburn® LH system: A large FOV small-animal PET system. Phys. Med. Biol. 2014, 60, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Inubushi, M.; Takeuchi, Y.; Katafuchi, T.; Koizumi, M.; Saga, T.; Sasaki, M. Performance characteristics of a novel clustered multi-pinhole technology for simultaneous high-resolution SPECT/PET. Ann. Nucl. Med. 2015, 29, 460–466. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Blankemeyer, E.; Mollet, P.; Surti, S.; Holen, R.V.; Karp, J.S. Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys. Med. Biol. 2018, 63, 155013. [Google Scholar] [CrossRef]
- Keller, S.H.; Svarer, C.; Sibomana, M. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization. IEEE Trans. Med. Imaging 2013, 32, 1611–1621. [Google Scholar] [CrossRef]
- De Jong, H.W.; Van Velden, F.H.; Kloet, R.W.; Buijs, F.L.; Boellaard, R.; Lammertsma, A.A. Performance evaluation of the ECAT HRRT: An LSO-LYSO double layer high resolution, high sensitivity scanner. Phys. Med. Biol. 2007, 52, 1505. [Google Scholar] [CrossRef] [PubMed]
- De Jong, H.W.; Boellaard, R.; Knoess, C.; Lenox, M.; Michel, C.; Casey, M.; Lammertsma, A.A. Correction methods for missing data in sinograms of the HRRT PET scanner. IEEE Trans. Nucl. Sci. 2003, 50, 1452–1456. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delocourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Emsen, B.; Villafane, G.; David, J.P.; Evangelista, E.; Chalaye, J.; Lerman, L.; Authier, F.J.; Gracies, J.M.; Itti, E. Clinical impact of dual-tracer FDOPA and FDG PET/CT for the evaluation of patients with parkinsonian syndromes. Medicine 2020, 99, e23060. [Google Scholar] [CrossRef]
- Tian, M.; Watanabe, Y.; Kang, K.W.; Murakami, K.; Chiti, A.; Carrio, I.; Civelek, A.C.; Feng, J.; Zhu, Y.; Zhou, R. International consensus on the use of [18F]-FDG PET/CT in pediatric patients affected by epilepsy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3827–3834. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Honda, M.; Oohashi, T.; Shimizu, K.; Senda, M. Development of a brain PET system, PET-Hat: A wearable PET system for brain research. IEEE Trans. Nucl. Sci. 2011, 58, 668–673. [Google Scholar] [CrossRef]
- Melroy, S.; Bauer, C.; McHugh, M.; Carden, G.; Stolin, A.; Majewski, S.; Brefczynski-Lewis, J.; Wuest, T. Development and design of next-generation head-mounted ambulatory microdose positron-emission tomography (AM-PET) system. Sensors 2017, 17, 1164. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.G.; Gonzalez, A.V.; Rebolleda, J.F.; Jurado, R.S.; Ferrando, J.R.; Gonzalez, L.B.; Cabanero, D.G.; Santiago, M.D.C. Performance evaluation of a high resolution dedicated breast PET scanner. Med. Phys. 2016, 43, 2261–2272. [Google Scholar] [CrossRef]
- Rosen, E.L.; Turkington, T.G.; Soo, M.S.; Baker, J.A.; Coleman, R.E. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: Initial experience. Radiology 2005, 234, 527–534. [Google Scholar] [CrossRef]
- Bowen, S.L.; Wu, Y.; Chaudhari, A.J.; Fu, L.; Packard, N.J.; Burkett, G.W.; Yang, K.; Lindfors, K.K.; Shelton, D.K.; Hagge, R.; et al. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J. Nucl. Med. 2009, 50, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Raylman, R.R.; Majewski, S.; Smith, M.F.; Proffitt, J.; Hammond, W.; Srinivasan, A.; McKisson, J.; Popov, V.; Weisenberger, A.; Judy, C.O.; et al. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): Design, construction and phantom-based measurements. Phys. Med. Biol. 2008, 53, 637. [Google Scholar] [CrossRef] [PubMed]
Property | NaI (Tl) | BGO | GSO | LSO | LYSO | LaBr3 | GAGG |
---|---|---|---|---|---|---|---|
Chemical Formula | NaI | Bi4Ge3O12 | Gd2SiO5 | Lu2SiO5 | Lu2(1−x)Y2xSiO5 | LaBr3 | Gd3(Ga, Al)5O12 |
Zeff | 51 | 74 | 59 | 66 | 60 | 47 | 48 |
Density (g/cm3) | 3.67 | 7.13 | 4.89 | 7.4 | 7.2 | 5.3 | 6.63 |
Light output (ph/keV) | 41 | 9 | 10 | 31 | 30 | 67 | 54 |
Wavelength (nm) | 410 | 480 | 440 | 420 | 420 | 370 | 540 |
Decay time (ns) | 230 | 300 | 60 | 40 | 41 | 25 | 94 |
Hygroscopic? | Yes | No | No | No | No | Yes | No |
Crystal Material | Crystal Size (mm3) | Array Structure | DOI? | CTR (ps) | Spatial Resolution (mm) | Sensitivity (kcps/MBq) | Name |
---|---|---|---|---|---|---|---|
LYSO | 2.76 × 2.76 × 18.1 | 5 × 14 | Yes | 412 | ~3.0 | 174 | uEXPLORER [84,85,86] |
LYSO | 3.2 × 3.2 × 20 | 5 × 5 | No | 210 | ~3.5 | 16.4 | Biograph Vision [87] |
LSO | 4 × 4×20 | 13 × 13 | No | N/A | ~4.7 | N/A | Biograph Horizon [88] |
LYSO | 3.95 × 5.3 × 25 | 4 × 9 | No | 381.7 | ~4.6 | 13.3 | Discovery MI [89,90] |
LYSO | 4.2 × 6.3 × 25 | 6 × 9 | No | 552.7 | ~4.6 | 6.3 | Discovery MI-DR [90,91] |
LYSO | 4 × 4×22 | 23 × 44 | No | 585 | ~4.8 | 6.6 | Gemini TF [92] |
Crystal Material | Crystal Size (mm3) | Array Specification | DOI? | Spatial Resolution (mm) | Sensitivity | Name |
---|---|---|---|---|---|---|
GSO | 2 × 2 × 10 | N/A | No | 2.32 | 2.83% | Mosaic HP [95] |
LYSO/ LuYAP | 2 × 2 × 10 | 8 × 8/8 × 8 | Yes | 1.94 | 3.03% | ClearPET [96] |
BGO | 2.32× 2.32 × 9.4 | 8 × 8 | No | 2 | 5.90% | FLEX Triumph [97] |
LYSO | 1.89 × 1.89 × 13 | 13 × 13 | No | 1 | 2.04% | Trans-PET [98] |
NaI(Tl) | 51 × 38 × 9.5 | Continuous | Yes | 0.55 | 0.20% | U-PET [99] |
LYSO | 25.4 × 25.4 × 8 | Continuous | Yes | 0.85 | 12.60% | Beta_CUBE [100] |
Crystal Material | Crystal Size (mm3) | Array Structure | DOI? | TOF? | Spatial Resolution (mm) | Sensitivity | Name |
---|---|---|---|---|---|---|---|
GSO | 4.9 × 5.9 × 8 | 11 × 8 | Yes | Yes | ~4.0 | 0.72% | PET-Hat [106] |
LSO/LYSO | 2.44 × 2.44 × 10 | 8 × 8 | Yes | No | ~3.0 | 0.5% | HRRT [101,102] |
LYSO | 1.5 × 1.5 × 10 | 32 × 33 | No | No | 2–4 | 0.5% | Helmet-PET [107] |
LYSO | 3 × 3 × 10 | 10 × 10 | No | No | N/A | N/A | Mind-tracker [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhang, X.; Zhang, H.; Peng, H.; Ren, Q.; Xu, J.; Peng, Q.; Xie, S. Requirements of Scintillation Crystals with the Development of PET Scanners. Crystals 2022, 12, 1302. https://doi.org/10.3390/cryst12091302
Yu X, Zhang X, Zhang H, Peng H, Ren Q, Xu J, Peng Q, Xie S. Requirements of Scintillation Crystals with the Development of PET Scanners. Crystals. 2022; 12(9):1302. https://doi.org/10.3390/cryst12091302
Chicago/Turabian StyleYu, Xin, Xi Zhang, Heng Zhang, Hao Peng, Qiushi Ren, Jianfeng Xu, Qiyu Peng, and Siwei Xie. 2022. "Requirements of Scintillation Crystals with the Development of PET Scanners" Crystals 12, no. 9: 1302. https://doi.org/10.3390/cryst12091302
APA StyleYu, X., Zhang, X., Zhang, H., Peng, H., Ren, Q., Xu, J., Peng, Q., & Xie, S. (2022). Requirements of Scintillation Crystals with the Development of PET Scanners. Crystals, 12(9), 1302. https://doi.org/10.3390/cryst12091302