Influence of Fly Ash on the Fluidity of Blast Furnace Slag for the Preparation of Slag Wool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Viscosity Test
2.3. Viscosity Model
2.4. Activation Energy of Particle Migration
3. Results and Discussion
3.1. Influence of Fly Ash on the Viscosity and Fluidity of Modified Blast Furnace Slag
3.2. Influence of Fly Ash on the Activation Energy of Particle Migration of Modified Blast Furnace Slag
3.3. Effect of Fly Ash on the Slag Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussein, A.D.; Rifat, B.; Scott Garland, G.; Christopher, R.C. Utilization of blast-furnace slag as a standalone stabilizer for high sulfate-bearing Soils. J. Mater. Civ. Eng. 2021, 33, 04021257. [Google Scholar]
- Zhang, J.; Yan, D.L.; Qi, Y.H.; Shen, P.F.; Xu, H.J.; Gao, J.J. Difficulty analysis on treatment and utilization of iron and steel smelting slag. Iron Steel 2020, 55, 1–5. [Google Scholar]
- Sun, Z.Q.; Li, J.M.; Yin, J.Y.; Liu, Q.W.; Hu, Z.Y. Resource utilization of multi industry solid waste in building materials industry. China Cem. 2020, 26, 114–117. [Google Scholar]
- Luo, Y.L.; Wang, F.; Zhu, H.Z.; Liao, Q.L.; Xu, Y.L.; Liu, L.B. Preparation and characterization of glassceramics with granite tailings and titanium-bearing blast furnace slags. J. Non-Cryst. Solids 2022, 582, 121463. [Google Scholar] [CrossRef]
- Huang, W.; Qin, Z.R.; Qu, Y.L.; Xing, N. Situation analysis of iron and steel industry in 2021 and prospect in 2022. Metall. Econ. Manag. 2022, 37, 19–21. [Google Scholar]
- Zhang, Y.M.; Li, J.B.; Jiang, Z.Z. Glass Fibre and Mineral Wool Encyclopedia, 1st ed.; Chemical Industry Press: Beijing, China, 2001; p. 639. [Google Scholar]
- Li, J.; Liu, W.X.; Zhang, Y.Z.; Yang, A.M.; Zhao, K. Research on modifying blast furnace slag as a raw material of slag fiber. Mater. Manuf. Process. 2015, 30, 374–380. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.J.; Gui, F.; Zhang, X.C.; Wu, S.Y.; Jiang, W.H. The status and prospect of blast furnace slag resource utilization. Ind. Miner. Process. 2021, 50, 48–53. [Google Scholar]
- Du, P.P.; Zhang, Y.Z.; Long, Y.; Xing, L. Effect of the acidity coefficient on the properties of molten modified blast furnace slag and those of the produced slag fibers. Materials 2022, 15, 3113. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.C.; Liao, Y.L.; Zhang, Y.; Su, B.W.; Wang, W. Research progress on preparation of building materials and functional materials with copper metallurgical slag. Mater. Rep. 2020, 34, 13044–13049, 13057. [Google Scholar]
- Mastali, M.; Zahra, A.; Hugo, K.; Faraz, R. Utilization of mineral wools in production of alkali activated materials. Constr. Build. Mater. 2021, 283, 122790. [Google Scholar] [CrossRef]
- Juho, Y.; Paivo, K.; Pasi, K.; Mirja, L. Utilization of Mineral Wools as Alkali-Activated Material Precursor. Materials 2016, 9, 312. [Google Scholar]
- Wei, Z.Y.; Zhang, H.B. Analysis of the comprehensive utilization path of fly ash under the goal of double carbon: Take inner mongolia autonomous region as an example. Appl. Energy Technol. 2022, 10, 1–5. [Google Scholar]
- Yuan, P. Present situation and development trend of comprehensive utilization of fly ash in China. Fujian Build. Mater. 2022, 7, 116–118. [Google Scholar]
- Shi, C.L.; Xing, H.W.; Wu, J.H. Process overview of preparation of slag wool and its insulation board from blast furnace slag. Hebei Metall. 2021, 62, 10–13, 73. [Google Scholar]
- Bizjan, B.; Širok, B.; Hočevar, M.; Orbanić, A. Liquid ligament formation dynamics on a spinning wheel. Chem. Eng. Sci. 2014, 119, 187–198. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.L.; Zhao, G.Z.; Cang, D.Q. Pilot practice of direct modification of molten blast furnace slag and preparation of mineral wool fiber. Iron Steel 2017, 52, 99–103. [Google Scholar]
- Du, P.P.; Zhang, Y.Z.; Long, Y. Effect of iron tailings on melt fluidity in preparation of slag fiber. Iron Steel 2019, 54, 109–113. [Google Scholar]
- Ren, Q.Q.; Zhang, Y.Z.; Long, Y.; Zou, Z.S.; Pei, J.J. Crystallisation behaviour of blast furnace slag modified by adding fly as. Ceram. Int. 2018, 44, 11628–11634. [Google Scholar] [CrossRef]
- Tang, X.L.; Xing, X.J. Experimental study on preparation of slag fiber from blast furnace slag and fly ash. Environ. Eng. 2020, 38, 180–186. [Google Scholar]
- Yao, J.X.; Bian, M.L. Effect of fly ash on crystallization properties of modified blast furnace slag for preparing slag cotton. Sci. Technol. Eng. 2019, 19, 388–393. [Google Scholar]
- GB 18599—2020; Standard for Pollution Control on Storage and Landfill of General Industrial Solid Wastes. Ministry of Ecology and Environment: Beijing, China, 2020.
- HJ 761—2015; Determination of Organic Matter in Solid Wastes—Ignition Loss Method. Ministry of Ecology and Environment: Beijing, China, 2015.
- NY/T 1121.16—2006; Soil Testing—Determination of Total Water Soluble Salts in Soil. Ministry of Agriculture: Beijing, China, 2006.
- Zhang, Z.Q.; Gong, J.; Long, Y. Research on the influence mechanism of rheological properties on the fibration process of metallurgical slag. Multipurp. Util. Miner. Resour. 2021, 31, 7–10, 80. [Google Scholar]
- Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Fan, X.Y.; Zhang, J.L.; Xu, R.Z. Effect of B2O3 on fluidity of low MgO slag containing titanium. J. Cent. South Univ. (Sci. Technol.) 2018, 49, 1863–1868. [Google Scholar]
- Zhao, Y.Z.; Yin, H.R. Glass Technology, 2nd ed.; Chemical Technology Press: Beijing, China, 2016; pp. 26–31. [Google Scholar]
- Du, P.P.; Zhang, Y.Z.; Long, Y. Effect of Mk on slag properties in the process of preparing slag wool from modified-blast-furnace-slag. J. Northeast. Univ. (Nat. Sci.) 2019, 40, 1279–1283. [Google Scholar]
- Lu, P.W. Fundamentals of Inorganic Materials Science (Silicate Physicochemistry), 1st ed.; Wuhan University of Technology Press: Wuhan, China, 1996; pp. 77–79. [Google Scholar]
Raw Material | SiO2 | CaO | MgO | Al2O3 | K2O | Na2O |
---|---|---|---|---|---|---|
Blast furnace slag | 32.60 | 36.43 | 8.72 | 15.44 | 0.71 | 0.55 |
Fly ash | 51.87 | 3.37 | 0.011 | 33.34 | 0.78 | 0.10 |
Sample | Chemical Composition of Modified Blast Furnace Slag | ||||
---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | R2O | |
Modified blast furnace slag 1 | 33.56 | 34.78 | 8.28 | 16.34 | 1.24 |
Modified blast furnace slag 2 | 34.53 | 33.12 | 7.85 | 17.23 | 1.23 |
Modified blast furnace slag 3 | 35.49 | 31.47 | 7.41 | 18.13 | 1.20 |
Modified blast furnace slag 4 | 36.45 | 29.82 | 6.98 | 19.02 | 1.17 |
Modified blast furnace slag 5 | 37.42 | 28.17 | 6.54 | 19.92 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Long, Y.; Zhang, Y.; Zhang, L. Influence of Fly Ash on the Fluidity of Blast Furnace Slag for the Preparation of Slag Wool. Crystals 2023, 13, 119. https://doi.org/10.3390/cryst13010119
Du P, Long Y, Zhang Y, Zhang L. Influence of Fly Ash on the Fluidity of Blast Furnace Slag for the Preparation of Slag Wool. Crystals. 2023; 13(1):119. https://doi.org/10.3390/cryst13010119
Chicago/Turabian StyleDu, Peipei, Yue Long, Yuzhu Zhang, and Liangjin Zhang. 2023. "Influence of Fly Ash on the Fluidity of Blast Furnace Slag for the Preparation of Slag Wool" Crystals 13, no. 1: 119. https://doi.org/10.3390/cryst13010119
APA StyleDu, P., Long, Y., Zhang, Y., & Zhang, L. (2023). Influence of Fly Ash on the Fluidity of Blast Furnace Slag for the Preparation of Slag Wool. Crystals, 13(1), 119. https://doi.org/10.3390/cryst13010119