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Abstract: Nanomaterial-based catalytic conversion of hazardous organic pollutants into benign
substances is one of the green methods employed for wastewater treatment. This study demon-
strates the fabrication of (rGO-ZnO)/CuO nanocomposites (NCs) via a microwave (MW)-assisted
method for (photo)catalytic application. The crystal structure, optical, morphological, and electro-
chemical characteristics were examined using X-ray diffraction (XRD), spectroscopic, microscopic,
and electrochemical techniques. The analysis indicated that rod-like (rGO-ZnO)/CuO NCs having
a nanoscale diameter with enhanced light absorption and well-matched band positions between
rGO-ZnO and CuO were formed. Furthermore, the catalytic reduction of 4-nitrophenol (4-NP) and
photocatalytic degradation of methylene blue (MB) tests showed remarkable results with rate con-
stants of 0.468 min−1 for 4-NP reduction within 8 min and 0.02213 min−1 for MB degradation within
105 min. Thus, the artful decoration of ZnO nanorods (NRs) with CuO into the (rGO-ZnO)/CuO
NCs interface is an effective strategy for fabricating highly efficient photocatalysts.

Keywords: p-n heterojunctions; (rGO-ZnO)/CuO nanocomposites; nanorods; photocatalysis; cat-
alytic reduction

1. Introduction

Nowadays, nanostructured materials have been acquiring significant attention for
applications in environmental remediation [1–4]. Specifically, heterogeneous photocatalysts
have been recognized as a promising method for degrading organic water pollutants [5].
Organic pollutants, for instance, dyes from untreated textile industry effluents, can cause
serious health and environmental problems [6,7]. More specifically, MB and 4-NP are
among the major industrial pollutants discharged into water bodies, causing toxicity,
vomiting, nausea, and eye irritation, among others [8,9]. Therefore, their removal is vital. In
this regard, the use of nanomaterials for photocatalytic degradation has an advantage over
other conventional methods to remove organic dyes due to their green properties, simplicity,
and affordability, among others [10,11]. Generally, catalysis experiments for waste water
remediation require mild conditions and simple UV–vis spectroscopy techniques to monitor
the reaction/degradation progress, making catalysis a facile, eco-friendly, economical, and
flexible approach [12,13].

In the field of photocatalysis, metal oxides and metal oxide-based nanostructured
materials have drawn considerable attention due to their distinctive properties [14]. Among
these oxides, ZnO has been extensively studied because of its impressive properties. Wide
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bandgap, affordability, high binding energy, and availability as well as ease of preparation
are some of the features that make an n-type ZnO a highly relevant material for photocatal-
ysis [15,16]. However, the practical applications of pristine ZnO were limited due to the
high rate of e−/h+ recombination, the wide bandgap for the activation by visible light, and
the photocorrosion in aqueous media [15,17]. Studies have shown that coupling ZnO with
readily available, nontoxic, low-bandgap p-type semiconductor CuO greatly improved
visible light absorption capacity, e−/h+ recombination rates, and degree of photostability
in aqueous media [18–20]. Nevertheless, adsorption capacity, recoverability, as well as
reusability are still limiting the large-scale application of p-n heterojunction of CuO-ZnO
for photocatalytic remediation of organic pollutants. According to the literature reports,
using carbonaceous nanomaterials (graphene, carbon nanotubes, etc.) as catalyst support
increases the adsorptivity, reduces photocorrosion, and improves the dispersibility of the
resulting nanocomposites (NCs) in aqueous media [21–23]. High electrical conductivity,
large surface area, and 2D structure make graphene the most suitable catalyst-support
material [24]. It is therefore highly desirable to prepare CuO-ZnO–graphene NCs for
promising heterogeneous photocatalysis.

The photocatalytic activity of nanomaterials is highly morphology-dependent. Owing
to their morphology, 1D nanostructures exhibit attractive features that make them a poten-
tial candidate for photocatalytic applications [25]. In particular, ZnO nanorods (NRs) are
known for having high surface area and aspect ratio, fast charge transfer, high photosensi-
tivity, better charge separation, and efficient confinements on electrons and photons [26–28].
Liu et al. have reported that ZnO NRs possess better photocatalytic activities (99.8%) than
truncated hexagonal cones (75%) and multilayered disks (23%) against methyl orange
under UV irradiation [29]. Hence, designing an effective technique to synthesize a rod-like
(rGO-ZnO)/CuO nanostructure is highly desirable to exploit the maximum benefit from its
catalytic applications.

Recently, nanostructures comprised of ZnO, rGO, and CuO components with varieties
of morphologies were reported for catalytic applications. These include flower-like for
photocatalytic degradation of RhB and 4-chlorophenol [21], needle-like for photocatalytic
oxidation of flue gas [30], flower-rod-like heterostructures for 4-nitroaniline catalytic re-
duction [31], and others [32]. Generally, the synthesis methods reported in most cases
involve the co-deposition of both ZnO and CuO on rGO or GO sheets. Among the synthesis
methods reported are solid-state [21], hydrothermal [30–34], wet chemical/ refluxing [35],
and other methods [36,37]. Inherent to the attractive features of nanorods, reports on the
synthesis of rod-shaped (rGO-ZnO)/CuO for MB degradation and 4-NP reduction are
rare. Impregnation of the preformed rGO-ZnO nano seed with Cu2+ in the presence of
polyethylene glycol (PEG) facilitates the growth of the nano-seeds into a rod-shaped multi-
heterojunction (rGO-ZnO)/CuO NCs under microwave (MW) irradiation. MW irradiation
offers higher reproducibility, purity, yields, and scalability as compared to conventional
methods [38,39].

In this context, the purpose of this work is, therefore, to synthesize a novel (rGO-
ZnO)/CuO NRs catalyst by MW-assisted method for organic water pollutants removal
applications. The optical characteristics, crystal structures, morphology, and composition
of the synthesized material were investigated. The (rGO-ZnO)/CuO NCs performance was
tested against MB photocatalytic degradation and 4-NP catalytic reduction.

2. Materials and Methods
2.1. Materials

Graphite powder (C) (Blulux, 99.5%), zinc acetate (Zn(CH3COO)2.2H2O) (UNI-CHEM,
99%), copper (II) nitrate (Cu(NO3)2.3H2O) (UNI-CHEM, 99%), potassium permanganate
(KMnO4) (alpha, 99.5%), sulfuric acid (H2SO4) (Loba, 98%), orthophosphoric acid (H3PO4),
(Loba, 75%), sodium borohydride (NaBH4) (SRL, 95%), ascorbic acid (C6H8O6) (SRL, 99%),
sodium hydroxide (NaOH) (Loba, 98%), polyethylene glycol 200 (Loba), concentrated
hydrochloric acid (HCl) (Loba, 35.4%), methylene blue (C16H18ClN3S.3H2O), and hydrogen
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peroxide (H2O2) (Fine chemicals, 30%) were used. Distilled water (DW) was used for
washing and solution-preparation purposes.

2.2. Method
2.2.1. Synthesis of GO

GO was synthesized using improved Hammer’s method with few modifications [40].
Briefly, 1 g graphite powder and 160 mL mixture of H2SO4/H3PO4 (volume ratio 9:1) were
mixed in the ice bath under magnetic stirring. After 30 min of stirring, 6 g of KMnO4 was
slowly added to the mix keeping the temperature below 10 ◦C using the ice bath. After
that, the whole content was stirred overnight at a temperature between 35 ◦C to 40 ◦C. To
the resulting mixture, 100 mL DW was added slowly under stirring. Then, an additional
100 mL of DW was added instantly. Eventually, 5 mL H2O2 was added to the mixture and
stirred for 10 min, which resulted in a yellowish solution. The yellow suspension was left
overnight to stand still. The supernatant was decanted away, and the residue was washed
repeatedly with DW and finally with ethanol. The resulting brown residue was dried at
60 ◦C for 12 h.

2.2.2. Synthesis of rGO

Ascorbic acid was used to reduce graphene oxide according to the procedure described
elsewhere with some modifications [41]. GO dispersion (0.2 mg/mL) was prepared in water
and ethanol mix (with 8:2 volume fraction H2O/CH3CH2OH) utilizing ultrasonication for
1 h. To the resulting 400 mL dispersion, 1.2 g of ascorbic acid was added and stirred for
20 min. The pH of the medium was adjusted to 10 by NaOH (20 wt%) aqueous solution.
Then, the mixture was subjected to MW irradiation for 15 min at 50% of the 1000-watt
output power oven. Subsequently, the black suspension was left to stand still for 6 h to
settle the rGO. To purify the resulting product, the residue was filtered and washed well
with water repeatedly until the filtrate pH reached 7 and then with ethanol. In the end, the
residue was dried for 12 h at 80 ◦C.

2.2.3. Synthesis of (rGO-ZnO)/CuO NCs

The (rGO-ZnO)/CuO NCs were synthesized according to the following procedure.
First, 80 mg rGO was dispersed in a 150 mL mixture of DW and ethanol in a 2:8 ratio
under sonication for 30 min. To this dispersion, 50 mL of 0.225 M Zn(CH3COO)2.2H2O
was added and then stirred for 20 min at 70 ◦C. Then, the pH was adjusted to 10 by NaOH
(20 wt%) [42]. The resulting greyish-white suspension was put in the microwave oven and
irradiated for 10 min at 50% of the 1000-watt output power oven. After cooling, the content
was stirred for 20 min at 70 ◦C. To this suspension, 12 mL (Cu(NO3)2.3H2O) (0.225 M) and
10 mL polyethylene glycol (PEG-200) were added drop by drop. NaOH was used to adjust
the pH to 10. The resulting greyish solution was further MW irradiated for 10 min. Finally,
the resulting precipitate was washed with ample water and then with ethanol. Drying
was carried out at 80 ◦C for 6h and then at 200 ◦C for 2 h. For comparison, CuO-ZnO
NCs and ZnO NPs were prepared. Hence, the same route as that of (rGO-ZnO)/CuO
was followed: (i) without the addition of GO (to prepare CuO-ZnO) and (ii) without the
addition of GO and Cu(NO3)2.3H2O (to prepare ZnO). The products obtained were then
used for characterization and catalytic degradation and reduction of pollutants. Scheme 1
shows the synthesis overview of (rGO-ZnO)/CuO.
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2.3. Characterizations

To investigate the crystallinity and structural phases of the samples, an X-ray diffrac-
tion (XRD) instrument (XRD-7000S, Shimadzu, Kyoto, Japan) with Cu Kα radiation was
used. A UV–vis spectrophotometer (Azzota: SM-1600, Hyderabad, India) was used to
determine the UV–vis absorbance spectrum. Similarly, FTIR spectral characterization of the
samples was performed using Spectrum 65 FT-IR (Perkin Elmer, Waltham, MA, USA) in the
range 4000–400 cm−1 using KBr pellets. Scanning electron microscopy (SEM) (HITACHI,
S-4800, Tokyo, Japan) was employed to analyze the surface morphology of the samples
and the elemental mapping of the species found in the sample. The emission spectra of the
samples were obtained by a fluorescence spectrophotometer (Agilent Cary Eclipse Fluo-
rescence Spectrophotometer, Santa Clara, CA, USA). The electrochemical measurements
were conducted using the Ivium Technologies system with an IviumSoft (v4.1018) and a
standard three-electrode cell with Ag/AgCl reference electrode (saturated), platinum wire
counter electrode, and FTO coated with the catalyst sample as working electrode.

2.4. Performance Evaluation

Photocatalytic performance of the (rGO-ZnO)/CuO sample was tested against the
MB degradation (with a 150-watt tungsten-halogen lamp, Philips). First, 120 mL of MB
(10 ppm) and 20 mg catalyst were used to prepare the reaction suspension. The catalyst
and dye molecules were homogenously dispersed by sonication for 30 min. While stirring,
the mixture was irradiated by visible light. The progress of degradation was monitored
by withdrawing 4 mL sample every 15 min and recording the absorbance. After filtration,
the absorbance of each sample was measured. The trapping experiment was carried
out similarly to the MB photodegradation using 20 mg (rGO-ZnO)/CuO NCs, 1 mmol
scavenger, and 120 mL of 10 ppm MB. Equations (1) and (2) were used to determine
degradation percentage (D%) and reaction rate, respectively [23].

D(%) =
C0 −Ct

C0
× 100 (1)
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ln
(

Ct

Co

)
= −kt (2)

where k stands for the rate constant, and C0 and Ct stand for concentrations before (or at
time = 0 min) and after exposure to light (or at time = t min), respectively.

To evaluate the catalytic performance of the prepared samples, 4-NP was used as a
model pollutant along with NaBH4 as a reductant. Typically, a 40 mg catalyst sample and
40 mg NaBH4 were mixed with 100 mL of 20 ppm 4-NP in a 250 mL beaker. The progress
of catalysis was determined by a UV–vis spectrophotometer [43]. The absorbance spectrum
of the solution was recorded every 3 min by withdrawing 3 mL out of the mixture. Finally,
Equation (2) was used to analyze the rate of reduction.

3. Results and Discussion
3.1. X-ray Diffraction Analysis

The information about the crystalline structure and phase composition of the synthe-
sized materials was obtained from the XRD analysis. The XRD pattern of GO, rGO, ZnO,
CuO-ZnO, and (rGO-ZnO)/CuO samples are displayed in Figure 1A. The characteristic
XRD peaks of GO and rGO were displayed at 2θ of 9.9◦ and 24.4◦, with a corresponding in-
terlayer distance of about 0.89 nm and 0.36 nm, as shown in Figure 1A. The relatively wider
interlayer distance of GO could be attributed to the presence of carboxyl, hydroxyl, and
epoxide groups formed by the oxidation of the graphite [44–46], whereas the reduction of
GO to rGO resulted in an interlayer distance decreased to about 0.3640 nm, which is closer
to that of the literature values for bulk graphite, suggesting the reduction of the hydroxyl,
carboxyl, and epoxide functional groups [45,46]. Further, the peak at 2θ of 9.9◦ was absent,
while the new peak at 2θ of 24.4◦ also indicates the reduction of the oxygen-containing
functional groups.
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Figure 1. (A) XRD patterns of GO, rGO, ZnO, CuO-ZnO, and (rGO-ZnO)/CuO samples; (B) FTIR
spectra of ZnO, CuO-ZnO, and (rGO-ZnO)/CuO samples.

As illustrated in Figure 1A, the diffraction patterns of (rGO-ZnO)/CuO appeared at
2θ of (31.76, 34.42, 36.26, 47.56, 56.62, 62.88, and 67.98◦), which could be from (100), (002),
(101), (102), (110), (103), and (112) planes of hexagonal ZnO phases according to JCPDS
card (36-1451), respectively. Most of the diffraction peaks arising from CuO were weak
and masked by strong peaks from the ZnO phase related to the relatively smaller CuO
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content. Hence, the weak diffraction peaks appeared at 2θ of (35.54, 38.90, 58.26, and 61.52◦)
assigned to planes ((11-1), (200), (202), and (11-3)) belonging to the monoclinic CuO phases
according to JCPDS card (36-1451), respectively. Distinct peaks related to the rGO were not
seen in the pattern of (rGO-ZnO)/CuO, which might be due to the low crystallinity and
small amount of rGO producing low intensity [44,47].

3.2. FTIR Analysis

To investigate the metal–oxygen linkage of the prepared materials, the FTIR analysis
was conducted, and the resulting spectra of the ZnO, CuO-ZnO, and (rGO-ZnO)/CuO are
given in Figure 1B. The bands at 3422 and 1300 cm−1 correspond to the O–H groups stretch-
ing and bending vibrational frequencies, respectively. Similarly, the peak at 1628 cm−1

could be ascribed to the C=O bond stretching [48]. The source of the O-H and C=O
functional groups could be due to the adsorbed H2O and CO2 molecules during sample
preparation. The M-O stretching vibrations of metal oxides usually appear in the ranges
between 400 and 600 cm−1 of the FTIR spectrum. In light of this, the peaks that appeared in
the range 400–510 cm−1 (Figure 1B) could belong to the Cu–O and Zn–O vibrations of CuO
and ZnO samples, respectively [49]. The pristine ZnO sample displayed a peak at 415 cm−1

corresponding to Zn-O vibrations [50]. Similarly, the CuO-ZnO and (rGO-ZnO)/CuO sam-
ples showed peaks between 410 and 490 cm−1 belonging to the Cu-O and Zn-O vibration
band supporting the XRD analysis [50,51]. The peaks of the composite samples did not
show a significant difference from that of pristine ZnO, which could be due to the low
content of rGO and CuO in the (rGO-ZnO)/CuO sample [52]. The FTIR spectra of GO and
rGO were given in Figure S1A (see Supplementary Materials).

3.3. Morphology Characterization

The SEM image analysis provides morphological information about the samples pre-
pared. Figure 2 shows SEM images and EDS results of ZnO, CuO-ZnO, and (rGO-ZnO)/CuO
samples. The low-magnification (1 µm) SEM micrograph of the (rGO-ZnO)/CuO sample
(Figure 2C) exhibited random arrays of rod-shaped morphology. The high-magnification
SEM micrographs (Figure 2F) showed that the whiskers were uniformly distributed on
the NRs, where some particles appear to be elongated and hexagonal. The rod-shaped
crystals fall in the nanoscale regime with an average diameter of about 70 nm. Similarly,
pure ZnO (Figure 2A,D) samples are composed of NRs with an average diameter of about
65 nm, whereas the image of CuO-ZnO samples (Figure 2E) illustrate the presence of one-
dimensional heterostructures (ribbon-like and short rod-like nanostructures), indicating
that the growth rate is slower than those in the case of ZnO NRs or (rGO-ZnO)/CuO
NCs [53].

The EDS spectrum of the (rGO-ZnO)/CuO depicted in Figure 2G showed that the
sample contained Zn, Cu, O, and C elements, confirming the presence of the expected
elements. Furthermore, the EDS mapping analysis illustrated that the Zn, Cu, O, and C
elements were homogeneously distributed throughout the (rGO-ZnO)/CuO sample. This
implies that the rGO, ZnO, and CuO were properly integrated with the sample [54]. In
addition, the absence of traces of other elements in the EDS spectra signifies the purity of
the synthesized material and supports the XRD data [55].
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A TEM image of rGO-ZO/CuO samples in Figure 3 illustrates a rod-like morphology
that correlates with the SEM image. The rods consist of different sizes with lengths ranging
from 230–780 nm and diameters 30–96 nm. The HRTEM image shown in Figure 3 indicates
a high degree of crystallinity, as evidenced by lattice fringes [56]. Calculated inter-planar
spacings were 0.190 nm, corresponding to between the hexagonal ZnO (102) and 0.187 nm
between monoclinic CuO (20-2) planes. The results of this study are consistent with those
found in the literature [JCPDS 361451] for ZnO and [JCPDS 481548] for CuO.
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3.4. UV–vis and PL Analysis

The characteristic UV–vis absorption peaks of GO and rGO suspension in ethanol and
photographs of their powder as well as the corresponding aqueous suspensions are given in
Figure S1B–D. A strong absorbance at 235 nm and a weak shoulder at 303 nm were observed
for GO. The intense band at 235 nm could be assigned to the π-π* transitions of aromatic
C-C bonds, and the weaker shoulder around 303 nm could be due to the n-π* transitions of
C=O bonds [57]. Upon reduction of GO, the shoulder peak at 303 nm disappeared, and
that at 235 nm was red-shifted to the broader peak at around 265 nm and attributed to the
aromatic C-C π→π* transition, indicating the restoration of the aromatic structure in the
electronic conjugation of rGO [58]. The results for both GO and rGO are in close agreement
with the values reported elsewhere [59,60]. Therefore, the shift in the 235 nm peak to the
265 nm and the color change from brown to black confirms the reduction of GO into rGO
using ascorbic acid [58,61].

Similarly, the spectra displayed in Figure 4A,B belong to the absorbance and the
corresponding Tauc’s plot of ZnO, CuO-ZnO, and (rGO-ZnO)/CuO samples. All samples
displayed a strong absorption band in the UV region (λmax ≈ 367 nm), which is supported
by the absorbance of ZnO nanoparticles reported elsewhere [62]. As it can be seen from
the Figure, both CuO-ZnO and (rGO-ZnO)/CuO samples displayed a significant portion
of their absorption spectra in the visible range compared to the ZnO sample, indicating a
smaller energy bandgap compared to ZnO [50]. The direct bandgap of the samples was
obtained using Tauc’s formula (Equation (3)) [63] from the curves fitting of (αhν)2 vs. hν,
as depicted in Figure 4B [64], by extrapolating the slope of the linear region to the x-
axis intersection (i.e., at (αhν)2 = 0). The estimated bandgap from the fitted graph
was 3.09 eV for ZnO, 2.89 eV for CuO-ZnO, and 2.43 eV for (rGO-ZnO)/CuO samples.
The result revealed that CuO-ZnO NCs possess a lower bandgap than that of ZnO NPs.
Therefore, modifying ZnO with CuO and rGO resulted in improved visible light harvesting
(rGO-ZnO)/CuO samples, which makes it an effective photocatalyst for pollutant dye
degradation under visible light [65,66].

(αhν)n = C
(
hν− Eg

)
(3)

where α, h, v, Eg, n, and C are the absorption coefficient, Planck’s constant, light frequency,
bandgap energy, the power factor of the transition mode (2 for direct, 0.5 for indirect), and
constant related to the material, respectively.
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Figure 4. (A) UV–vis absorbance spectra, (B) Tauc’s plot, and (C) PL spectra of ZnO, CuO-ZnO, and
(rGO-ZnO)/CuO samples.

The room temperature emission spectra of ZnO NPs, CuO-ZnO NCs, and (rGO-
ZnO)/CuO NCs are depicted in Figure 4C. At an excitation wavelength of 340 nm, the PL
spectra are composed of a strong emission band at 383 nm (UV region) and relatively weaker
emission bands at 462 and 496 nm (visible region), including a shoulder band at 422 nm [67].
The intense emission band at 383 nm could be assigned to e−/h+ recombination originating
from the near band-edge of ZnO [67], whereas the other relatively weaker emission peaks
in the visible range could be attributed to the recombination originating from the deep-level
defects of the corresponding material [68]. As it is displayed in Figure 4C, the emission
intensity from pure ZnO is higher than that of the composite both from the near band-edge
and from the defect levels, indicating better e−/h+ separation and decreased defect level
in the CuO-ZnO and (rGO-ZnO)/CuO NCs [67,69]. That is, the photogenerated electrons
in the conduction band (CB) of CuO transfer effectively to the CB of ZnO and rGO sheets,
preventing the direct recombination of excitons [70]. Therefore, modifying ZnO with CuO
and rGO indicated that the decreased recombination rate with improved visible light
absorption could make the resulting modified nanomaterials a potential candidate for
photocatalysis [71].
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3.5. Electrochemical Analysis

The electrochemical behavior of the synthesized photocatalyst materials was investi-
gated by electrochemical impedance spectroscopy (EIS) and Mott–Schottky (MS) analysis.
In this study, the EIS and MS results of the (rGO-ZnO)/CuO NCs were compared to those
of CuO-ZnO and ZnO. An EIS survey of the resistance and capacitance properties of
synthesized nanomaterials across the semiconductor-electrolyte interface was carried out
to examine charge carriers’ separation, transfer, and recombination behavior. According
to the impedance analysis shown in Figure S2A, CuO-ZnO NCs displayed the smallest
impedance arc radius compared to ZnO NRs and (rGO-ZnO)/CuO NCs, indicating a
suppressed recombination rate due to fast electron transfer across the interface [72]. In
the EIS analysis, Nyquist plots with a smaller semicircle arc indicate materials with better
conductivity leading to facilitated transfer of charge carriers, which could lead to enhanced
photocatalytic performance [73]. The results obtained from the EIS are consistent with the
PL analysis (Figure 4C).

Similarly, the Mott–Schottky plots of (rGO-ZnO)/CuO NCs, CuO-ZnO NCs, and ZnO
NRs are illustrated in Figure S2B–D. A plot of ZnO NRs showed a positive slope, indicating
an n-type semiconductor with a flat band potential (Efb) of −0.4 V vs. Ag/AgCl. However,
in the case of (rGO-ZnO)/CuO NCs and CuO-ZnO NCs, the co-existence of negative and
positive slopes was observed, confirming the effective development of p-n heterojunction
between CuO and ZnO [74]. The values were shown in Figure S2C,D with −0.4 and
1.2 V for CuO-ZnO NCs and 0.37 and 1.3 V for (rGO-ZnO)/CuO NCs vs. Ag/AgCl. The
potentials relative to the reversible hydrogen electrode (RHE) were obtained using the
Nernst equation and potentials measured vs. Ag/AgCl (Equation (4)) [75].

ERHE = EAg/AgCl + E0
Ag/AgCl + 0.059 pH (4)

where E0
Ag/AgCl(sat) = 0.197 V, and the electrolyte pH is 7.

Hence, the corresponding Efb relative to RHE is given in Table S1. According to the
literature, the Efb of the n-type semiconductors is close to the conduction band-edge (i.e.,
CB is more negative Efb by ~0.1 V), and that of the p-type semiconductors is close to the
valence band-edge (i.e., VB is more positive than Efb by ~0.1 V) [76]. Combining these
values with the bandgap energy obtained from Tauc’s formula, the VB of ZnO and the CB
of CuO can be calculated using Equation (5) [76]. Thus, using the Efb and the calculated
band gaps, the conduction and valence band potentials of ZnO NRs, CuO-ZnO NCs, and
(rGO-ZnO)/CuO NCs were determined (Table S1). In the (rGO-ZnO)/CuO NCs, the CB
and VB potentials of ZnO and CuO were found to be 0.14 and 2.57 V for ZnO and −0.42
and 2.01 V for CuO, respectively. Further, from the band-edge position of VB and CB of
ZnO and CuO in the (rGO-ZnO)/CuO NCs, type II staggered band alignment was formed
between ZnO and CuO.

EVB = ECB + Eg (5)

3.6. Photocatalytic Activity and Mechanism

The photocatalytic performance of ZnO NRs, CuO-ZnO NCs, and (rGO-ZnO)/CuO
NCs were evaluated against MB degradation as a test organic pollutant under visible light
irradiation (Figure 5). The aqueous solution of MB showed a strong absorbance peak at
664 nm [77]. The absorbance of MB solution in the presence of catalysts showed a gradual
decrease under irradiation indicating MB degradation. According to the result, pure ZnO
NRs degraded about 37% of the initial MB concentration within 105 min, whereas CuO-
ZnO NCs and (rGO-ZnO)/CuO NCs degraded about 80% and 90% of the initial MB within
105 min, respectively (Figure 5A,D). In addition, the kinetics of the degradation reaction
was displayed in Figure 5E,F. According to the linear fit of ln(Ct/Co) vs. time (Figure 5F),
the rate constant (k) was found to be 0.0045 min−1, 0.0158 min−1, and 0.0221 min−1 for
ZnO, CuO-ZnO NCs, and (rGO-ZnO)/CuO NCs, respectively. This enhancement in the
photocatalytic performance compared to pure ZnO NRs signifies that the introduction of
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CuO and rGO improved the visible light absorption and suppressed the rate of recombi-
nation [15]. The result from the optical studies supported the improved performance of
the NCs. Particularly, the weaker PL intensity of the composite than of pure ZnO suggests
the enhanced separation of the excitons [78,79]. In other words, a higher charge separation
assists the migration of excitons to the surface and reacts with the adsorbed species, leading
to the higher activities of the composite compared to the pristine ZnO [79]. The ratio
constant (rate constant per g of catalyst) of (rGO-ZnO)/CuO NCs for the photocatalytic
degradation of MB compared to the previously reported materials is given in Table 1. It
indicates that (rGO-ZnO)/CuO NCs showed remarkable performance.
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Figure 5. Progress of MB degradation using catalysts: ZnO NRs (A), CuO-ZnO NCs (B), and (rGO-
ZnO)/CuO NCs (C); (D) plots of Ct/C0 vs. t; (E) plots of ln(Ct/C0) vs. t for MB degradation using
ZnO, CuO-ZnO, and (rGO-ZnO)/CuO NCs; (F) effect of scavengers on the photocatalytic degradation
of MB using (rGO-ZnO)/CuO NCs.
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Table 1. Comparison of (rGO-ZnO)/CuO NCs to previous reports against photocatalytic degradation
of MB.

Catalyst Synthesis
Method

Experimental Conditions Performance

Ref.Catalyst
(mg)

Conc. of
MB Light Efficiency

(%)
Ratio Constant,
K (min−1g−1)

ZnO/CuO Combustion 40 20 ppm Solar 93 in 60 min 0.5575 [51]

CuO-ZnO Wet chemical 5 5 µM Solar 93.8 in 20 min 27.2 [18]

ZnO–CuO Co-
precipitation 25 0.001 M Vis 95.6 0.94 [16]

GO–CuFe2O4–
ZnO Combustion 10 40 ppm Solar 100 in 40 min 9.94 [55]

ZnO/CuO Biocombustion 40 10 ppm UV 99.2 in 60 min 1.45 [77]

MoS2-ZnO-
rGO Hydrothermal 100 20 ppm Solar 90 in 75 min - [48]

(rGO-
ZnO)/CuO MW 40 10 ppm Vis 90 in 105 min 11.7 This work

A trapping experiment was performed to find out the main active species involved
in photocatalysis using ethylenediaminetetraacetic acid disodium (EDTA-2Na), AgNO3,
and isopropanol (IPA) to scavenge photogenerated holes (h+), superoxide radicals (•O2

−),
and hydroxyl radicals (•OH), respectively [79]. The results of the experiment are illustrated
in Figure 5F. As can be seen from the Figure, the addition of the scavengers resulted in
decreased efficiency of MB photocatalytic degradation, indicating that h+, •OH, and •O2

−

are the active species involved. These active species could be generated in varieties of
ways. Under visible light illumination of (rGO-ZnO)/CuO, excitons generate where e−

resides in the CB, and h+ resides in the VB, leading to the generation of other active species
(i.e., reactive oxygen species): (i) The •O2

− could be generated by the reaction between
photogenerated electrons and adsorbed oxygen, where CB potentials are more negative
than the potential of O2/•O2

− (−0.16V) (Equation (6)) [80]. The •O2
− further reacts and

forms other reactive oxygen species (Equations (7), (8) and (10)). (ii) The •OH could be
generated as shown in the Equations (Equations (10)–(13)). The •OH degrades MB to yield
degraded products (Equations (15) and (16)). (iii) The photogenerated holes in the VB
or trap states react with the adsorbed species (OH−, H2O, or MB) and generate reactive
radicals that further react with other species and degrade the pollutants (Equations (12)–(14)
and (16)). Oxidation of the adsorbed species (H2O, OH−) to generate •OH occurs when
the VB edge potentials are more positive than that of OH−/•OH (1.9V vs. NHE) and
H2O/•OH + H+ (2.73 V vs. NHE) [81].

O2 + e− →•O2
− (6)

•O2
− + H2O→ HOO• + OH− (7)
•O2

− + H+ → HOO• (8)

HOO• + H+ + e− → H2O2 (9)
•O2

− + H2O2 → •OH + OH− + O2 (10)

HOO• + H2O→ •OH + H2O2 (11)

H2O + h+ → •OH + H+ (12)

OH− + h+ → •OH (13)

RH + h+ → R• + H+ (14)
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RH + •OH→ R• + H2O (15)

R• → intermediate/final degraded product (16)

∴ RH
catalyst + hv→ intermediates → CO2 + H2O + inorganic products

where RH stands for MB dye.

3.7. Catalytic Reduction Activity

Catalytic reduction of 4-NP to 4-aminophenol (4-AP) was used to evaluate the per-
formance of the prepared (rGO-ZnO)/CuO in the presence of NaBH4. Figure 6 shows
the reduction progress and kinetics of the (rGO-ZnO)/CuO NCs. The absorbance of the
4-NP aqueous solution showed maximum absorbance at 319 nm. However, the addition of
NaBH4 made the band at 319 nm disappear, and a new band emerged at 405 nm, indicating
the formation of a 4-nitrophenolate ion (Figure 6A). Upon addition of catalysts to the
NaBH4 containing 4-NP solution, absorbance at 405 was decreased, while a new band at
300 nm appeared, revealing the formation of 4-AP. Both (rGO-ZnO)/CuO and CuO-ZnO
NCs reduced almost all 4-NP in less than 9 min, whereas ZnO NRs exhibited insignificant
catalytic activity, showing that ZnO has lower catalytic efficiency compared to CuO-ZnO
and (rGO-ZnO)/CuO NCs (Figure 6B–D).

The kinetics analysis of the reduction reaction of 4-NP using NaBH4 in the presence
of ZnO NRs, CuO-ZnO NCs, and (rGO-ZnO)/CuO NCs is given in Figure 6E,F. Based on
the kinetic analysis, it was found that the data most closely fitted the pseudo-first-order
reaction equation (Equation (2)) [82]. The rate constants of ZnO NRs, CuO-ZnO NCs, and
(rGO-ZnO)/CuO NCs were found to be 0.00026, 0.465, and 0.468 min−1, respectively. The
result indicated that the rate of reduction reaction was high when the nanocomposites were
used (Figure 6F). The mechanism of the 4-NP reduction reaction involves the following:
(i) adsorption of BH−4 and 4-NP to the catalyst surface, (ii) transfer of electrons from BH−4
to the adsorbed 4-NP [83], (iii) transfer of protons from the BH−4 and H2O to the 4-NP [84],
and (iv) desorption steps. In the (rGO-ZnO)/CuO NCs, the highest rate of reaction could
be related to the presence of rGO and the CuO-ZnO p-n heterojunction facilitating the
adsorption and transfer of charged species [43]. The key steps in 4-NP reduction by
(rGO-ZnO)/CuO NCs are illustrated in Scheme 2.
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Figure 6. Photocatalytic degradation of MB using catalysts: ZnO NRs (A), CuO-ZnO NCs (B), and
(rGO-ZnO)/CuO NCs (C); (D) plots of Ct/C0 vs. reaction time (min); (E) plots of ln(Ct/C0) vs.
reaction time (min) for MB degradation using ZnO, CuO-ZnO, and (rGO-ZnO)/CuO NCs; (F) effect
of scavengers on the photocatalytic degradation of MB using (rGO-ZnO)/CuO NCs.
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4. Conclusions

In summary, rod-shaped (rGO-ZnO)/CuO NCs were successfully synthesized via a
simple and repeatable MW-assisted method. The synthesized samples were characterized
using XRD, spectroscopic, and microscopic techniques. The crystalline structure of (rGO-
ZnO)/CuO NCs with CuO and ZnO phases was obtained. Moreover, EDS results confirmed
that the sample was composed of O, C, Cu, and Zn elements distributed homogeneously.
Additionally, (rGO-ZnO)/CuO NCs exhibited enhanced visible light absorption with a
reduced e−/h+ recombination rate compared to the pristine ZnO NPs. Furthermore,
(rGO-ZnO)/CuO NCs showed enhanced performance against MB degradation with rate
constants of 0.02213 min−1 and that of 4-NP reduction with 0.468 min−1. This makes
(rGO-ZnO)/CuO NCs a potential candidate for treating water polluted by organic dyes.
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