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Abstract: The diameter prediction of silicon ingots in the Czochralski process is a complex problem
because the process is highly nonlinear, time-varying, and time-delay. To address this problem, this
paper presents a novel hybrid deep learning model, which combines the deep belief network (DBN),
support vector regression (SVR), and the ant lion optimizer (ALO). Continuous restricted Boltzmann
machines (CRBMs) are used in DBN for working with continuous industrial data. The feature
aggregates the outputs from various DBNs through an SVR model. Additionally, the ALO algorithm
is used for the parameter’s optimization of SVR. The newly developed model is verified with the
actual production data and compared with the back propagation neural network (BPNN) and the SVR
model. The simulation results demonstrate the availability and accuracy of the CRBM-DBN-ALO-SVR
hybrid deep learning model.

Keywords: Czochralski process; diameter prediction; deep belief network; support vector regression;
ant lion optimizer

1. Introduction

As a base material, silicon single crystal is used widely in fields such as microelec-
tronics, solar cells, power electronics, and information technology. In the Czochralski
process [1], which is the most extensive technique of growing silicon single crystal in indus-
try, the diameter of silicon ingots is a critical parameter in technical requirements because
it determines the stabilization of crystal growth, and the physical-chemical properties of
crystals [2–5]. Nowadays, with the development of semiconductor technology, silicon
single crystal should have the characteristics of low defects and large size.

Pulling speed is one key control variables of the crystal diameter. Some studies have
been carried out on the influence of the pulling speed on the crystal diameter. Hurle
presented a control method for the crystal diameter by the pulling speed, but this method
is only suitable for small-size crystals [6]. Based on the lumped parameter model and
the V/G theory for crystal growth, a technique based on a linear model was proposed
to produce large-size crystals [7]. This method controls the crystal diameter and the
growth rate simultaneously by adjusting the pulling speed and the heater power, but
it overly depends on the setting of some parameters. The structure of a feed-forward
control system is proposed, which has been utilized extensively in practice [8]. The control
system comprises a tracking generator, a growth controller, a temperature controller, and an
observer. Similarly, the input of a feed-forward controller depends on the experience curve
and the controller’s parameters, which are obtained by repeated experiments. However,
due to the complexity of the process and the restrictions on the use of sensors, it is not easy
to describe the diameter prediction model by the mechanism.

Meanwhile, the artificial neural network (ANN) has strong mapping capability for
nonlinear systems. When the number of hidden nodes is high enough, a neural network
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can approximate any continuous function in theory. Therefore, we can use a neural network
to understand the dynamic characteristic between the crystal diameter and the pulling
speed. In the past decade, ANN has been increasingly utilized in crystal growth [9]. Little
research, especially on crystal growth of semiconductors, has been conducted [10–16]. So
far, there have been mainly two research topics: parameter optimization, and the process
control of crystal growth by ANN. Optimizing process parameters by computational fluid
dynamics (CFD) is time-consuming [17]. The drawback of this method is that CFD data are
obtained through simulation, which is not very accurate compared with the actual data.

NARX (Nonlinear AutoRegressive with eXogenous Inputs) is a recurrent dynamic net-
work suitable for describing time-delay processes [18]. NARX has been successfully applied
to time-series prediction. The current output of the network is related to the past outputs, the
current inputs, and the past inputs. The NARX model is defined by Equation (1):

y(k) = f
[
y(k− 1), y(k− 2), . . . , y(k− ny), u(k− d), u(k− d− 1), . . . , u(k− d− nu)

]
(1)

where y(k) is the current predicted value of output, and f is some nonlinear function, such
as a polynomial, sigmoid function, and so on. nu and ny stand for the exogenous determining
input and output variables, respectively; d is the time delay; and k is the discrete time.
nu and ny can be determined by the Lipchitz quotients algorithm in the literature [19].
d can be determined by using the identification method in the literature [20].

Generally, a three-layer BP neural network can approximate a NARX model [21].
However, the BP neural network has some disadvantages, such as slow convergence, ease
of getting stuck at a local minimum value, and difficulty in optimizing [22]. It was not
until recently that these problems were resolved by Adam and other momentum-based
optimizers. However, they need a lot of labeled data. With the development of algorithms
and improvements in the capability of computation and storage, deep learning theory can
effectively solve the above problems. The deep learning algorithm has been successfully
applied in different industrial fields, such as robot [23], autonomous driving [24], fault
diagnosis [25], etc. The deep belief network (DBN) is a popular deep learning structure and
is simple and easy to implement. Therefore, DBN is used to identify the model between the
pulling speed and the crystal diameter in this paper.

In the existing literature, the applications of ANN in crystal growth are mainly focused
on optimization problems. So, a novel optimization method, ant lion optimizer (ALO), will
be described shortly.

This paper is structured as follows: In Section 2, the conventional control system
for Czochralski silicon single-crystal growth is illustrated. Section 3 introduces some
fundamental theories applied in this paper. In Section 4, a diameter prediction model is
developed by a hybrid deep learning method. In Section 5, the simulations are performed
to validate the availability of the proposed prediction model. Finally, the conclusion is
summarized in Section 6.

2. Description of the Object

There are many factors affecting the crystal diameter and the quality of silicon ingots
in the Czochralski process, such as the pulling speed, the rotational rate of the crystal and
the crucible, the position of the crystallization front, etc. Figure 1 illustrates the traditional
cascade PID control structure, which is popular in practice.

The control system has two loops: the pulling speed loop and the temperature loop.
In the pulling speed loop, the error between the diameter reference value and the measured
value by the CCD camera is sent to the automatic diameter controller (ADC), which adjusts
the pulling speed. In the temperature loop, an automatic temperature controller (ATC)
regulates the thermal field temperature to compensate for thermal disturbances, such
as the latent heat of crystallization, the thermal convection, and the thermal radiation.
Here, the thermal field temperature refers to the temperature of an appropriate spot on
the furnace wall, measured by the temperature sensor, such as an infrared sensor or a
thermocouple. Since the pulling speed will directly affect the properties of the crystal, it is
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required that the pulling speed should track the predetermined reference trajectory tightly.
For this purpose, the automatic growth controller (AGC) is designed to cascade with ATC.
The AGC compares the actual pulling speed with the reference value to provide the ATC
thermal field temperature that is required.
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Figure 1. Schematic diagram of the control system for Czochralski silicon single-crystal growth. 
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Figure 1. Schematic diagram of the control system for Czochralski silicon single-crystal growth.

The frequent change in the pulling speed will cause some defects in the crystal. In this
control structure, it is ensured that the system can respond quickly to the perturbations
of the crystal diameter. The model between the pulling speed and the crystal diameter
is characterized by the time delay and nonlinearity, which are challenging to deal with.
So, researching the model between the pulling speed and the crystal diameter is of great
importance.

3. Research Methodology
3.1. CRBM-DBN

Since Hinton et al. presented a new training algorithm for deep neural networks,
the deep belief network (DBN) has been extensively used [26]. The DBN is stacked by a
group of restricted Boltzmann machines (RBMs), which can understand the more com-
plex relationship between visible and hidden units [27]. In addition, the combination of
the unsupervised DBN and the supervised regression method forms a semi-supervised
framework, which has better representation ability [28].

Figure 2a is the structure diagram of an RBM, which has two layers: an input layer
containing visible units v = {v1, v2, . . . , vi} and a hidden layer containing hidden units
h =

{
h1, h2, . . . , hj

}
. An energy function is given by

E(v, h) = −
V

∑
i=1

H

∑
j=1

wijvihj −
V

∑
i=1

aivi −
H

∑
j=1

bjhj (2)

where vi and hj denote the states of visible unit i and hidden unit j, wij is the weight
between them, and ai and bj are their biases.

A typical three-hidden-layer DBN model is shown in Figure 2b. The training process
of DBN is realized in two steps: the first is pre-training, and the second is fine-tuning [29].
The contrast divergence (CD) algorithm is used for adjusting the weight parameters, and
the standard back propagation algorithm is used for fine-tuning the whole DBN.

Generally, in the typical DBN structure, the logistic regression or Softmax regression
is widely used as the last layer of the network, so the DBN is more suitable for solving
classification problems [30–32]. However, the DBN is rarely applied to regression problems.
Because the original units of the RBM are binary and discrete, it is impossible to model
continuous values [33]. For analog data, Chen proposed a continuous RBM (CRBM) [34].
By replacing RBM with the CRBM, the traditional classification of the DBN is improved and
the CRBM-DBN for regression is developed. In CRBM, binary units in RBM are replaced by
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continuous stochastic units, and the learning rule is “Minimizing Contrastive Divergence”
(MCD) [35]. The continuous stochastic unit is as follows:

sj = φj

(
∑

i
wijsi + σNj(0, 1)

)
(3)

with ϕj
(

xj
)
= θL +

(θH−θL)

1+e(−αj xj)
.
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Figure 2. Network architectures: (a) an RBM and (b) a three-hidden-layer DBN.

Where si and sj denote the states of the units i, j, Nj(0, 1) represents a unit Gaus-
sian, and σ is a constant. ϕj(x) is a sigmoid function, θL and θH are the lower and upper
asymptotes, and α determines the slope.

The CRBM-DBN removes the Logistic or Softmax layer and uses the mean square
error of the predictors to calculate the fine-tuning step. Moreover, the learning steps are the
same as those of DBN. A three-hidden-layer CRBM-DBN is shown in Figure 3.

3.2. Support Vector Regression

The support vector machine (SVM) [36] is a machine learning method based on statistical
learning theory. It is used to solve practical problems, such as a small sample, the local
minimum, etc. SVM can accomplish the classification task of nonlinear data by using the
kernel functions, which map the original space onto a higher dimensional feature space so
that a hyperplane is obtained for separating the data [37]. Additionally, SVM has extended to
nonlinear regression problems and is known as a support vector regression (SVR) [38,39].

Suppose a training set, {xi, yi}i=1,··· ,l , where xi ∈ Rn is the input and yi ∈ Rnh is the
corresponding output. The regression function is given

y(x) = wTφ(x) + b (4)

where w is the weight vector, b is the bias, and φ(·) : Rn → Rnh is the nonlinear mapping
function. The optimal parameters, w and b, can be determined by solving the following
optimization problem [40]:

minJ(w, ξ) = 1
2 wTw + C 1

2

l
∑

i=1
ξi

2

s.t. yi = wTφ(xi) + b + ξi, i = 1, · · · , l
(5)

where C is a penalty factor and ξi is the slack variables.
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Figure 3. The structure of a three-hidden-layer CRBM-DBN.

Constructing the Lagrange function as

L(w, b, ξ, α) = J(w, ξ)

−
l

∑
i=1

αi(wTφ(xi) + b + ξi − yi)
(6)

where αi are Lagrange multipliers. Then first-order KKT conditions are

∂L
∂w = 0→ w =

l
∑

i=1
αiφ(xi)

∂L
∂b = 0→

l
∑

i=1
αi = 0

∂L
∂ξ = 0→ αi = Cξi
∂L
∂α = 0→ wTφ(xi) + b− yi + ξi = 0

(7)

Furthermore, Equation (7) is equivalent to Equation (8).[
0 1T

1 K(xi, xj) + C−1 I

] [
b
α

]
=

[
0
y

]
(8)

where y = [y1; · · · ; yl ]
T , 1 = [1; · · · ; 1]T , α = [α1; · · · ; αl ]

T , K(xi, xj) = φT(xi) · φ
(

xj
)

(i, j = 1, 2, · · · , l) is the kernel function.
Therefore, the regression function in Equation (4) is converted into a more explicit formula.

y(x) =
m

∑
i=1

αiK(xi, xj) + b (9)
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Because the radial basis function (RBF) has better properties under general smoothness
conditions, it is selected as the kernel function in this work.

K(xi, xj) = exp
(
−γ
∥∥xi − xj

∥∥2
)

(10)

where γ > 0 is the width of the kernel function.
It is essential to set appropriate parameters, which will affect the learning and general-

ization capabilities of the SVR. The SVR has two parameters [41], i.e., C and γ, which can
be set up through an optimization algorithm.

In this work, these parameters are optimized by a novel optimization algorithm, which
is outlined below.

3.3. Ant Lion Optimizer (ALO)

ALO is a kind of swarm intelligent optimization algorithm, which is inspired by the
hunting behavior of antlions [42]. The antlion is an insect of the Myrmeleontid family. In
the larval phase, they mainly catch and feed on ants. The antlion digs a cone-shaped trap
and waits at the bottom of the trap for the ant to fall in. When the ant is in the trap, the
antlion throws sand at the ant to prevent escape. After the feeding is finished, the antlion
rebuilds the trap for the next hunt. Figure 4 shows the predation behavior of the antlion.
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In the ALO algorithm, ants walk in the solution space as search agents, and antlions
become fitter by hunting. According to the interaction between antlions and ants in this
process, the main steps are modeled mathematically as follows.

(1) Random Walk of Ants

According to Equation (11), ants walk randomly and search the solution space.

X = [0, cumsum(2r(1)− 1), cumsum(2r(2)− 1), · · · , cumsum(2r(t)− 1)
· · · , cumsum(2r(T)− 1)]

(11)

where X is the vector of walk position; cumsum is the cumulative sum; T is the maximum
number of iterations; t is the current number of iterations; and r(t) is the stochastic function
calculated by

r(t) =
{

1 i f rand > 0.5
0 otherwise

(12)

where rand function returns a random number between 0 and 1.
To keep the walks within the search space, they are normalized by the min-max

normalization method.

Zt
i =

(
Xt

i − ai
)
×
(
dt

i − ct
i
)

(bi − ai)
+ ct

i (13)

where Zt
i normalized walk position of ith variable at tth iteration. ai and bi denote the

minimum and maximum of ith variable, and ct
i and dt

i denote the minimum and maximum
of ith variable at tth iteration.
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(2) Entrapping ants

Since the walk of the ant is influent by the antlion’s trap, it can be described by
Equation (14). {

ct
i = Antliont

j + ct

dt
i = Antliont

j + dt (14)

where ct and dt are minimum and maximum of all variables at tth iteration, ct
i and dt

i are
minimum and maximum of all variables for ith ant, and Antliont

j is the position of jth
antlion at tth iteration.

(3) Building Trap

Supposing an ant is trapped by only one selected antlion, the roulette wheel operator
is used to select an antlion. This mechanism gives a fitter antlion more opportunities to
hunt ants.

(4) The ant gliding to the antlion

Once an ant falls into the trap, the antlion will shoot sand to slide down the ant, and
the radius of the ant’s walk will shrink. This behavior is modeled by Equation (15).{

ct = ct/R
dt = dt/R

(15)

where R = 10pt/T, p is

p =


2 i f t > 0.1T
3 i f t > 0.5T
4 i f t > 0.75T
5 i f t > 0.9T
6 i f t > 0.95T

(5) Capturing prey and rebuilding the trap

Finally, the ant reaches the bottom of the trap and is eaten by the antlion. This means
that the ant’s fitness is better than the antlion’s fitness. The antlion must update its position.
The process is expressed as follows:

Antliont
j = Antt

i i f f (Antt
i) > f (Antliont

j) (16)

where f is the fitness function.

(6) Elitism

The best antlion is regarded as the elite, which is saved in iteration. Then, the walk of
all ants is affected by the elite and the antlion selected by roulette wheel simultaneously,

Antt
i =

Rt
A + Rt

E
2

(17)

where Rt
A and Rt

E denote the random walks around the selected antlion and the elite at
tth iteration.

Zhao X. et al. presented an improved ALO algorithm of continuous radius contraction
and dynamic random search [43,44], which has better convergence speed and optimization
accuracy. Additionally, it is adopted for the parameter optimization of SVR.

4. Diameter Prediction Model Based on CRBM-DBN-ALO-SVR

For regression, when the epoch of back propagation training changes, the results
differ. Therefore, we can integrate all of the outputs generated by the DBNs with a different
number of epochs. By analyzing each output and predicted output, the corresponding
weight is assigned to each output to calculate the overall predicted output. In this study, we
propose a hybrid deep learning model based on the CRBM-DBN-ALO-SVR for diameter
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prediction. All of the outputs of the DBNs are obtained using a different number of epochs,
and the final prediction is obtained as the output of an SVR whose inputs are the outputs of
the DBNs. ALO is used to optimize the SVR parameters. The proposed model is illustrated
in Figure 5.
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Figure 5. Structure of the proposed hybrid prediction model.

The specific procedures are as follows:
(1) Initializing the network parameters (weight vector W and the offset a, b, learning

rate, etc.); training the CRBM using the contrast divergence method and adjusting the weight
vector and the offset; and training the DBN network by using the layer-by-layer CRBM.

(2) Using input data X to fine-tune the DBN’s parameters by using the gradient
descent method.

(3) Setting the back propagation epoch from 100 to 2000 and the step size to 100, and
obtaining 20 prediction outputs, from Y1 to Y20.

(4) Training an SVR with the output data matrix Y and 20 prediction outputs from the
DBNs. The parameters of the SVR are optimized by an improved ALO algorithm.

(5) The output of the SVR is considered the final predicted value.
The flowchart of this hybrid deep learning method is shown in Figure 6.
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5. Results

In this section, some simulations are made to test the proposed model. The software
and hardware of the computational platform are shown in Table 1.

Table 1. Instructions for the computational platform.

Software and Hardware Configuration

Operation System Windows 10 Professional
CPU i5-4590, 3.7 GHz
RAM 8 GB

Matlab R2016b

5.1. Data Source and Evaluation Indices

The simulations make use of the measured data from a TDR-150 Czochralski single-
crystal growth furnace, which is represented in Figure 7.

The main production parameters are as follows: the feeding amount is 90 kg, the furnace
pressure is 20 Torr, the argon flow rate is 100 L/min, the rotational rate of the crucible is
9.5 rpm, and the rotational rate of the crystal is 7 rpm. The set value of the crystal diameter is
208 mm, and the data sampling time is 2 s. Data on the crystal diameter and the pulling speed
are shown in Figure 8, which has been processed by moving-average filtering.
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Because the magnitude of the crystal diameter is different from that of the pulling
speed, the data are firstly normalized to the range [0, 1]. In light of the modeling require-
ments, the data are divided into a training data and a testing data.

To better evaluate the proposed prediction model, two indices are adopted in this
paper: the mean absolute error (MAE) and the root mean square error (RMSE).

MAE =
1
N

N

∑
t=1
|et| (18)

RMSE =
1
N

√√√√ N

∑
t=1

e2
t (19)

where et = ŷt − yt, t is the sampling time, N is sample size, yt is a measured value, and
ŷt is known as the predicted value at the time t.

5.2. Diameter Prediction of Silicon Ingots

To avoid the influence of the thermal field temperature on the crystal diameter, the
data in the period when the temperature remains unchanged are selected in this paper.
There are 6000 sets of data in this period, as shown in Figure 8. In order to reduce the
calculation, one sample is taken for every six sets of data to obtain 1000 sets of data. In
chronological order, the first 700 sets of data are for training and the last 300 sets of data are
for testing.

Based on the above identification method [18,19], the time delay is d = 9, and the
orders of the input/output are nu = ny = 2. For the NARX neural network, the input is
[y(k− 1), y(k− 2), u(k− 9), u(k− 10)]. According to experience, a DBN model is designed
in this work, which has a 4-100-100-1 structure. The learning rate is 0.1, and the initial
iteration number is 1000. The sigmoid function and the ReLU function are the activation
functions for the hidden layer and the output layer, respectively. For the ALO algorithm,
the number of iterations T = 1000, and the population size N = 30. In SVR, the parameters
C and γ are 2 and 0.2, respectively.

The actual measured values of the crystal diameter and the predicted value are com-
pared in Figure 9.
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From Figure 9, the predicted value of the proposed model has little deviation from the
actual measured value, and the two curves almost completely overlap. This shows that the
proposed model performs the best at diameter prediction.
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5.3. Comparison of Different Prediction Methods

To further verify the proposed model, it is compared with the BPNN, the SVR, and the
CRBM-DBN-SVR models, as shown in Figure 10. The data set for validation is the same for
each model.
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Table 2. Performance evaluations of different prediction models.

RMSE MAE

SVR 0.0269 0.0965
BPNN 1.3259 × 10−4 0.0106

CRBM-DBN-SVR 5.2152 × 10−5 0.0067
CRBM-DBN-ALO-SVR 1.9632 × 10−7 3.4235 × 10−4

From Figure 10 and Table 2, the hybrid deep learning model (the CRBM-DBN-SVR
and the CRBM-DBN-ALO-SVR) has better accuracy than the single model (the BPNN and
the SVR). These results may be caused by the reason that the hybrid deep learning model
combines the capability of DBN to extract data-depth features and the capability of SVR
to obtain global optimality. Additionally, the CRBM-DBN-ALO-SVR model optimized by
the ALO algorithm improves the accuracy more than the CRBM-DBN-SVR model without
optimization. The simulation shows the merits of the proposed hybrid deep learning model.

6. Conclusions

In this study, a novel hybrid deep learning model is proposed for diameter prediction
in the Czochralski process, which is called the CRBM-DBN-ALO-SVR. Based on actual
industry data, it is compared with two other models: the BPNN and the SVR. The simulation
proves its effectiveness and accuracy. The work successfully demonstrates the merits of
deep learning in the crystal diameter prediction. Additionally, this study provides a good
foundation for the advanced predictive control of the Czochralski process.

In the future work, we will apply the proposed model to the advanced predictive control
of Czochralski silicon single-crystal growth and verify the simulation results by experiments.
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