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Abstract: The undercooling capacity of a superalloy is an essential physical property to determine its
single-crystal (SC) castability, because stray grains (SGs) will be formed if the geometrical undercool-
ing established at the platform extremities exceeds the undercooling capacity of the applied alloy. In
the present work, both the undercooling capacity of eight Ni-based superalloys and their SC castabil-
ity were experimentally investigated. The liquidus temperature, the critical temperature for grain
nucleation, and hence the undercooling capacities of the investigated alloys were evaluated based
on the temperature evolution during the heating and cooling processes. The current experimental
study revealed a significant difference in undercooling capacity for the superalloys. In the production
of SC blade castings, the tendency to form SG defects was found to be highly related to the alloy’s
undercooling capacity. The alloys having a low undercooling capacity of around 10 K were very
prone to the formation of SGs. In comparison, the alloys with a moderate undercooling capacity from
20 K to 30 K could be easily cast into SC blades without SGs, exhibiting the best SC castability. Other
factors influencing the SG formation were also analyzed. As a result, a criterion for the formation of
geometry-related SG defects was proposed, in which the influence of the alloy undercooling capacity,
casting geometry, and solidification condition are involved.

Keywords: superalloy; single crystal; blade casting; undercooling capacity; stray grain

1. Introduction

The single-crystal (SC) structure of superalloy turbine blades can maximally enhance
the efficiency of aero-engines compared to that with equiaxed grains or directional solidified
structures. Because the grain boundaries are totally eliminated, the SC blades exhibit
significantly better high-temperature performance such that the inlet temperature of the
aero-engines can be increased. In the production of SC blade castings, the most critical
problem is to establish an SC structure free of stray grains [1–5].

The formation of the SGs is one of the most common solidification defects in SC
blade castings. This solidification defect is unacceptable because of the high-angle grain
boundaries between the randomly orientated SGs. The SC castings are normally produced
in a Bridgman-type vacuum furnace to ensure a sharp temperature gradient for directional
solidification. The SGs are mostly formed at the platform extremities of the blade castings,
where the alloy melt undergoes a relatively quick cooling rate [6–9]. When the local
geometrical undercooling at the extremities exceeds the undercooling capacity of the
utilized alloy, the nucleation of new grains occurs, resulting in the formation of the so-
called geometry-induced SGs [10–14].

According to the state-of-the-art on the formation of SGs, many efforts have been
focused on the influence of the solidification conditions of the SC castings [14–20]. In
comparison, the effect of the undercooling ability of a superalloy on the formation of SGs
has not been studied systematically. The undercooling capacity of an alloy refers to the
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ability of the alloy to remain in liquid state without nucleation when the melt temperature
drops below its liquidus line. In our previous studies [21–23], it was found that different
superalloys have different undercooling capacities and different tendencies to form SGs. In
the current work, eight Ni-based superalloys were selected to determine their undercooling
capacities under the same process conditions. Then, the selected alloys were used to
produce turbine blades in an industrial Bridgman furnace to investigate their SC castability
in dependence on their undercooling capacity.

2. Experimental Section
2.1. Materials

Eight commercial Ni-based superalloys were selected to investigate their undercooling
capacities. The chemical composition of the superalloys is summarized in Table 1. The al-
loys were also used to produce SC blade castings under industrial conditions to investigate
their SC castability comparatively.

Table 1. Composition of the eight selected Ni-based superalloys (wt%).

Alloy
Alloying Element

Cr Co W Mo Al Ti Ta Re Hf Total (∑Ci)

CMSX-6 10.0 5.0 - 3.0 4.8 4.7 2.0 - 0.1 29.6
WZ30 3.5 6.0 6.5 0.4 5.8 0.15 8.0 4.95 0.03 35.33

MAR M247 8.2 9.2 9.5 0.5 5.6 0.7 3.2 - 1.05 37.95
CMSX-4 6.5 9.0 6.0 0.6 5.6 1.0 6.5 3.0 0.1 38.3

PWA1483 11.98 8.7 3.83 1.81 3.63 3.99 5.09 - 0.01 39.04
DZ445 13.15 10.0 4.50 1.76 4.13 2.30 4.75 - - 40.59
DD483 12.18 9.23 3.89 1.85 3.53 4.00 4.98 - 0.01 39.67
IN939 22.4 19.0 2.0 - 1.9 3.7 1.4 - - 50.4

2.2. Undercooling Experiment

In order to investigate the undercooling capacity of the selected Ni-based superal-
loys, casting clusters with small spherical sample overhangs were designed to measure
the undercooling behavior of the superalloy during the solidification process. To obtain
more measurement data, four wax samples of 12 mm in diameter were obtained in one
wax pattern cluster, as illustrated in Figure 1a. The corresponding mold clusters were
manufactured (Figure 1b). As shown in Figure 1c, two or three separated segments were
used in each experiment, so that two or three alloys could be measured simultaneously but
individually under the same process condition. An example of the as-solidified sample
cluster is shown in Figure 1d.
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The ceramic molds of Al2O3 were prepared via a standard lost-wax procedure. The
thermocouples in the ceramic sheaths were installed into the cavity center of the spherical
molds to record the temperature evolution in the alloy samples during the undercooling
experiments. During the preheating process in the vacuum furnace, the superalloy ingots
pre-placed in the pouring cups were melted and poured into the individual mold cavities for
the subsequent undercooling experiments. After a period of homogenization, the heaters
were switched off to cool down the melt, followed by the gradual solidification of the su-
peralloy. When the furnace temperature dropped to 1200 ◦C, the heaters were switched on
again to start a new melting–solidification (heating–cooling) cycle, thus making it possible
to obtain a new set of experimental data. During the periodic heating–cooling processes,
namely the melting–solidification cycles, the temperature evolution of the samples was
recorded to evaluate the critical nucleation undercooling of the superalloys.

2.3. Casting Experiment of SC Blades

In these experiments, the turbine blades, as characterized by abrupt profile (cross-
section) variation at the transition from the aerofoil to the platform, were manufactured.
Blades with this geometrical feature are the main components of aero-engines. The extremi-
ties of the platforms are very sensitive to the geometrical undercooling, leading to a high
risk of SG defects. To produce the SC blade castings, the blade wax patterns with grain
selectors at the bottom were assembled into a cluster (Figure 2a). Using the wax cluster,
the shell molds were produced in a standard investment casting process. After the desired
thickness was attained, the shell molds were de-waxed and subsequently sintered for the
casting process (Figure 2b).
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Figure 2. (a) Wax pattern cluster; (b) shell mold cluster; (c) withdrawal of poured mold in Bridg-
man furnace.

In an industrial Bridgman-type vacuum furnace, the shell mold placed on the chill
plate was preheated in the heating chamber. After pouring the melt of a superalloy, the shell
mold was withdrawn downward from the heating chamber to the cold chamber (Figure 2c).
After the casting experiment for each superalloy listed in Table 1, the blade castings in
the shell mold were knocked out and cut off from the casting cluster. After sand blasting
and macro-etching, the blade castings were inspected for SGs, especially in the platform
regions, to analyze the SC castability of the investigated alloys.

3. Results and Analysis
3.1. Evaluation of Undercooling Capacity

The undercooling capacity of an alloy reflects the tolerated undercooling ability of
its melt before solidification begins. It could be evaluated by averaging the nucleation
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undercooling values (∆TN) that were measured through the undercooling experiments.
The temperature evolution of the PWA1483 samples during the cooling–heating cycles
(Cycle 1 and Cycle 2) is compared to the heater temperature in Figure 3. The measured
data were used to evaluate the characteristic temperatures of the investigated alloys, such
as the nucleation temperature and the liquidus temperature.

Crystals 2023, 13, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. The measured temperature curves of the heater and four PWA1483 samples (No. 1 to No. 

4) in the undercooling experiment. 

 

Figure 4. Temperature curves of the four samples of alloy CMSX-6 (No. 1 to No. 4 ), recorded in the 

first cooling–heating cycle. This figure serves to illustrate the approach to evaluating the character-

istic temperatures TN, TL and ∆TN. 

When the temperature dropped below 1200 °C, the heaters were switched on again, 

leading to an increase in the measured temperature, as shown in Figure 4, i.e., the sample 

was reheated. In the early stage of the reheating process, the relatively slow heating rates 

were due to the absorption of the latent heat during the remelting of the solid phase. From 

1325 °C, the heating rates of the samples increased obviously, which indicated that the 

Figure 3. The measured temperature curves of the heater and four PWA1483 samples (No. 1 to No. 4)
in the undercooling experiment.

The temperature evolution of the four CMSX-6 samples in the first cooling–heating
cycle is illustrated in Figure 4. During the cooling stage, the measured curves for the four
samples exhibit a clear temperature jump close to 1300 ◦C, which should be caused by the
release of latent heat due to the triggering of the sample’s solidification. The lowest point
on the cooling curve before recalescence, TN, is the nucleation temperature of the alloy.
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When the temperature dropped below 1200 ◦C, the heaters were switched on again,
leading to an increase in the measured temperature, as shown in Figure 4, i.e., the sample
was reheated. In the early stage of the reheating process, the relatively slow heating rates
were due to the absorption of the latent heat during the remelting of the solid phase. From
1325 ◦C, the heating rates of the samples increased obviously, which indicated that the solid
phase was completely remelted. The corresponding temperature at this changing point
was the liquidus temperature or melting point of the investigated superalloy (TL). The
difference between TL and TN, i.e., ∆TN = TL − TN, is the critical nucleation undercooling
of the alloy. According to the cooling–heating curves, the TN and TL values of the CMSX-6
samples are equal to 1284 ◦C and 1325 ◦C, respectively, leading to the result of ∆TN = 41 K.

The temperature evolution of the DD483 samples during the first cooling–heating cycle
is illustrated in Figure 5. In the same way, the liquidus temperature TL and the nucleation
temperature TN were measured to be 1322 ◦C and 1313 ◦C, respectively. The nucleation
undercooling was correspondingly evaluated to be 9 K, i.e., ∆TN = 1322 − 1313 = 9 K.
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cooling–heating cycle.

The experimental data of all alloy samples are summarized in Table 2. It is interesting
to find that the Ni-based superalloys have significantly different undercooling capacity
values, despite the same matrix element Ni and similar alloying elements. According to
the measured undercooling capacity values listed in Table 2, the Ni-based superalloys are
categorized into three groups: (1) highly uncontrollable alloys having ∆TN values over
40 K, such as CMSX-6 and WZ30; (2) the alloys with medium ∆TN values between 20 and
30 K, such as DZ445, MAR M247, CMSX-4 and PWA1483; (3) the alloys with very low ∆TN
values of around 10 K, such as IN939 and DD483. It is not clear why the alloy composition
influences the undercooling capacity of the superalloys so strongly.

For each superalloy studied in this work, the total percentage of the added alloying
elements (∑Ci) was calculated and summarized, as in Table 1. Comparing the ∑Ci values
and ∆TN values in Tables 1 and 2, CMSX-6 and WZ30 are the alloys having the lowest
∑Ci values and the highest ∆TN values. In contrast, the IN939 alloy has the highest
addition of alloying elements (∑Ci = 50.4%), whose undercooling capacity is almost the
lowest (∆TN = 10 K). It appears that the alloys with a smaller addition of alloying elements
(∑Ci) exhibit a higher undercooling capacity (∆TN). In other words, the ∆TN values
of the superalloys tend to decrease with the ∑Ci values; see Figure 6. There are also
exceptions, e.g., the alloy DD483 shows high values for both ∑Ci and ∆TN. Therefore,
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further investigation of the individual contribution of each alloying element is necessary to
better understand the influence of the alloy composition on the undercooling capacity and
its relationship with the formation of SG defects.

Table 2. The characteristic temperatures of the investigated superalloys, measured in the undercool-
ing experiments.

Alloy Liquidus Temperature
TL (◦C)

Nucleation Temperature
TN (◦C)

Nucleation
Undercooling

∆TN = TL − TN (K)

Undercooling
Capacity Level

WZ30 1416 1374 42 High
CMSX-6 1325 1284 41

DZ445 1347 1318 29

Medium
MAR M247 1368 1343 25

CMSX-4 1372 1350 22
PWA1483 1328 1307 21

IN 939 1326 1316 10
LowDD483 1322 1313 9
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3.2. Inspection of Stray Grains in Blade Castings

Figure 7a shows a typical photo of the etched SC blades of alloy PWA 1483, in which no
stray grains were found. Even the sensitive extremities of the blade platforms (Figure 7b),
where the geometrical undercooling was the most serious, are also free of stray grains.
In fact, all blades of this alloy have a single-crystal structure without SG defects. Besides
PWA1483, the other alloys with medium undercooling capacity, as listed in Table 1, such as
DZ445, MAR M247 and CMSX-4, exhibit also excellent castability for single crystals. Using
this type of alloy, similar SG-free blades, as shown in Figure 7a, could be easily produced.
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Figure 7. Casting results of the PWA1483 alloy. (a) Etched blade castings; (b) the corresponding
platform, revealing SG-free structure.

Figure 8 presents the etched blade castings made from the alloy DD483, whose under-
cooling capacity is only 9 K (Table 2). In the blade root regions, as shown in Figure 8b, the
SGs in the platform can be clearly distinguished from the SC matrix in the aerofoil region.
As summarized in Table 2, the alloy DD483 has such a low ∆TN value that it could be
easily exceeded by the geometrical undercooling established at the extremities of the bade
platforms, where the undercooling of the melt is up to dozens of degrees. The consequence
is the nucleation of SGs at the platform extremities. The SGs will further grow into the
blade roots in the subsequent solidification process. Another alloy in the low undercooling
capacity group, the IN939 alloy (around 10 K in Table 2), is also shown to be SG-prone, and
a similar structure to the results in Figure 7 was produced.
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Figure 8. Casting results of the DD483 alloy. (a) Etched blade castings; (b) the SC growth in the
airfoils and SGs originating from the platform extremities.

For CMSX-6 and WZ30, with a high undercooling capacity of over 40 K (Table 2), the
SC structure of the blade castings could be achieved. Based on the current experimental
study, no SGs were observed on the surface of the blade casting; see Figure 9a. However, in
a microscopic inspection of the platform extremities, the fragmentation of the secondary
dendrite arms was observed beneath the casting surface; see Figure 9b. In this case, the
so-called SC microstructure is polycrystalline in reality, although no macroscopic grain
boundaries can be detected on the casting surface. Due to the small size of the as-formed
fragments, these microscopic structure defects are usually tolerated in the production of SC
blade castings.
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Figure 9. (a) Typical photo of the etched CMSX-6 blade, and (b) the cross-section of the platform
extremity showing fragmentation of dendrite arms.

3.3. Analysis of Formation Mechanism of SG

As depicted schematically in Figure 10a, the currently used Bridgman furnace has a
cylindrical configuration, including the heater on the top and the cooler on the bottom.
The shell mold clusters are correspondingly arranged in a circle construction. During the
directional solidification of blade castings by withdrawing the filled mold, SGs are often
formed in the platforms with abrupt expansion, as indicated by the blue frame in Figure 10a
and its magnified view in Figure 10b. Besides the undercooingl capacity of the superalloy
(alloy properties), the tendency to form SG defects can be influenced by other factors, such
as the geometry expansion (geometrical effects) and the inclination of the liquidus isotherm
in the platform regions (solidification conditions).
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Figure 10. (a) Schematic to show the solidification process of blade castings during the withdrawal
process in the Bridgman furnace; (b) magnified view of the blue frame area in (a) to illustrate the
geometrical undercooling at a platform extremity. (TL: liquidus temperature, θ: inclination angle, G:
temperature gradient, ∆TM: maximum undercooling, d: expansion distance).

In order to analyze the formation mechanism of the geometry-related SGs, a simpli-
fied platform with an expansion distance d is developed, as shown in Figure 10b. The
liquidus isotherm TL is simplified to an oblique line with an inclination angle θ. During the
withdrawal process, the melt at corner A cools down much faster than the melt at corner
B. After the TL isotherm passes corner A (extremity), due to the geometrical effect of the



Crystals 2023, 13, 57 9 of 11

casting, the melt in the platform starts to be undercooled from corner A to the interior of the
casting. When the TL isotherm reaches corner B, the undercooling of the melt at corner A,
i.e., ∆TA = T − TA, reaches its maximum ∆TM. This value can be calculated as the product
of the expansion d and the lateral component of the local temperature gradient G:

∆TM = d × G × sin(θ) (1)

When ∆TM exceeds ∆TN, the nucleation of new grains seems to be unavoidable.
Thus, an index F is proposed to quantify the formation potential of SGs as the ratio of
the maximum undercooling (∆TM) at the extremity to the undercooling capacity (∆TN)
of the alloy:

F =
∆TM

∆TN
=

d × G × sin(θ)
∆TN

(2)

A higher F value means higher potential for SG formation. The criterion for SG
formation is then proposed as F > 1.

The three most important factors for the SG formation, i.e., casting geometry (d),
solidification condition (θ), and alloy property (∆TN), are all included in the currently
proposed index F, which can be reasonably used to predict and hence to control the
formation of geometry-related SG defects. According to the F index criterion, a relatively flat
TL isotherm with a small angle θ should be established, so the probability for SG formation
can be reduced. The blades in the cluster should be well arranged to keep the expansion d
as short as possible. If the expansion d is extremely large, a grain continuator can be used
as a bypass to transfer the SC growth to the extremities of the blade platforms [2,22]. In this
case, the abrupt expansion distance d decreases to 0, and then the F index becomes 0, so that
SG-free SC castings can be expected. However, during the withdrawal process, the growth
direction of the dendrites in the grain continuator may deviate from the growth direction
of the dendrites in the blade body. In this case, the formation of subgrain boundaries
becomes inevitable.

As shown in Formula (2), the F index is inversely proportional to the undercooling
capacity ∆TN of the alloys. The alloys with a very low ∆TN (e.g., DD483 and IN939) should
have a very high probability to form SGs. This has been evidenced in this experimental
work, as shown in Figure 8. In contrast, for the alloys with a medium or high ∆TN (e.g.,
PWA1483 and CMSX-6), the SC blade castings should be easily produced. This has been also
proven by the current experimental results, listed in Figures 7 and 9, respectively. However,
we should mention that although the formation of macroscopic SGs on the casting surface
can be eliminated, some small mis-oriented fragments (by pinching off the high-order side
arms) may be produced in highly undercooled platform extremities; see Figure 9b. Based
on the current study, the formation of SGs is highly related to the undercooling capacity
of the superalloy. In order to reduce or even eliminate the geometry-related SG defects, a
superalloy with a proper undercooling capacity (Table 2) should be used for the production
of SC castings.

4. Conclusions

According to the experimental results regarding the undercooling measurements
and SC castability, the currently studied Ni-based superalloys can be categorized into
three groups:

1. Highly undercoolable alloys having an undercooling capacity of over 40 K. Using this
type of alloy, SC blades without macroscopic SG defects could be produced easily.
However, the occurrence of dendrite fragmentation in the platforms due to the locally
high undercooling may result in microscopic defects.

2. The alloys having medium undercooling capacity between 20 and 30 K. The alloys
with this moderate undercooling capacity exhibit optimal castability for SC blade
castings. Both the macroscopic SG defects and the microscopic fragmentation of
dendrite arms can be avoided.
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3. The alloys having very low undercooling capacity of only around 10 K. The undercool-
ing capacity for these alloys is so low that it is normally exceeded by the geometrical
undercooling established at the platform extremities, so these alloys are prone to the
formation of SGs. It is very difficult to produce SC components free of SGs using this
type of alloy.

Based on the experimental results, an analytical criterion to predict the occurrence of
geometry-related SGs was proposed. The influences of three factors, i.e., the alloy property,
casting geometry, and solidification condition, on the formation of SG defects are taken
into account.
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