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Abstract: An anti-reflection coating on a back-illuminated 128 × 128 array Si-based blocked impurity
band (BIB) detector in a very-long-wave infrared range was designed in this work. The reflectance and
transmittance spectra of ZnS films with different thicknesses on intrinsic Si substrates were studied
with a FDTD simulation and experiment. Compared to bare Si substrate, the reflectance of Si coated
with 1.5, 2.0, 2.5, and 3.0 µm thick ZnS significantly decreased, while the transmittance increased
in the range of 10.0~25.0 µm band. The transmittance enhancement ratio reached approximately
32%, 32%, 28%, and 29%, respectively. It was evidenced that the enhanced transmission at a specific
wavelength was caused by the effective interference cancellation effect. Then, a 2.0 µm thick ZnS
thin film was deposited on the backside of the 128 × 128 array Si-based BIB detector. The spectral
responsivity of the detector increased significantly. Additionally, the blackbody responsivity increased
by approximately 36%, suggesting that the ZnS film is an ideal anti-reflection material for VLWIR
detectors in the range of 10.0~25.0 µm band.

Keywords: anti-reflection coating; Si-based BIB detector; reflectance spectra; blackbody responsivity

1. Introduction

The Si-based block impurity band (BIB) detector is an optimized structure of extrinsic
semiconductor photoconductive detector, which mainly include a heavily doped absorption
layer and a thin high-purity blocking layer [1–4]. The basic operation principle of Si-based
BIB detectors is that the carriers transfer from the impurity band to the conduction band in
the absorbing layer under the illumination of infrared radiation, which induces a spectral
response band in a very-long-wave infrared range (VLWIR) of 5–25 µm [5]. Moreover, the
dark current of the device is suppressed by employing the high-purity blocking layer to
block the impurity band conduction. The Si-based BIB detector has the advantages of a
wide response spectrum, low dark current, strong radiation resistance, and array imaging.
It has a wide range of application prospects in astronomical observation, atmospheric
monitoring, and non-destructive testing [6–11].

However, due to the high refractive index of Si, of approximately 3.4, within the
VLWIR, high Fresnel loss, also known as surface reflection loss, would occur at the Si–air
interface [12,13]. It would limit the photon absorption efficiency of the detector and
seriously reduce the detection efficiency of the device. Hence, it is necessary to use anti-
reflection techniques. Various anti-reflection techniques have been studied, such as surface
plasmons, meta-materials, and anti-reflection coatings [14–16]. Among them, anti-reflection
coatings have attracted interest for use in a wide range of industries and applications due
to their high surface hardness, excellent stability, and good attachability [17]. He et al.
and Carrasco et al. used anti-reflection coatings, such as SiNx, to improve the detection
efficiency of InGaAs detectors [18,19]. D’souza et al. and Saini et al. investigated YF3 and
ZnS double-layer and multi-layer anti-reflection coatings for HgCdTe detectors through the
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use of theories and experiments, respectively [4,20]. De Vita et al. deposited a ZnS-based
anti-reflection coating on a Si plate, after which a transmission enhancement ratio of 28%
was obtained at the wavelength range of 6–14 µm [21]. Nevertheless, the research on anti-
reflection coatings has mainly focused on infrared detectors with response wavelengths
of less than 14 µm, while research on anti-reflection coatings applicable to Si-based BIB
detectors with a response in the VLWIR range has rarely been reported yet. Therefore, the
design and preparation of VLWIR anti-reflection coatings integrated with Si-based BIB
detectors need to be fully investigated.

Among several available transparent materials in the VLWIR, such as ZnS, ZnSe,
MgF2, diamond, etc., ZnS is non-toxic, non-hygroscopic, and compatible with Si pro-
cesses, which can be deposited throughout the use of sputtering and evaporation at room
temperature [22,23]. Moreover, its refractive index (approximately 1.9) is close to the square
root of the refractive index of Si (approximately 3.4), satisfying the single anti-reflection
coating’s reflectivity equation [24]. Thus, the reflectance and transmittance characteristics
of the ZnS thin film on an intrinsic Si substrate were studied with a finite difference time
domain (FDTD) simulation and experiment. Compared to bare Si substrate, the reflectance
of the ZnS/Si structures in the range of 10.0~25.0 µm band reduced significantly, and the
transmittance obviously increased, based on the interference effect of the film. Finally, by
depositing a 2.0 µm ZnS film on the backside of the 128 × 128 array Si-based BIB detector,
the spectral responsivity of the detector increased significantly, and blackbody responsivity
increased by approximately 36%.

2. Materials and Methods

To study the anti-reflection characteristics of the ZnS intuitively, the reflectance and
transmittance spectra of the ZnS films with different thicknesses on intrinsic Si substrates
were investigated with a FDTD simulation and experiment. The FDTD model of the ZnS/Si
structure is shown in Figure 1a. The thickness of the ZnS layer was successively set as
1.5, 2.0, 2.5, and 3.0 µm, and that of the Si substrate was set as 500 µm. The monitors for
reflection and transmission records were placed above and below the ZnS/Si structure,
respectively. The measured material parameters, such as the refractive indexes of Si and ZnS
(shown in Figures S1 and S2 in the Supplementary Materials), were used in the simulation.
Additionally, the boundary conditions were periodic.

Then, ZnS films with a thickness of approximately 1.5, 2.0, 2.5, and 3.0 µm were
deposited on Si substrates through electron beam evaporation at room temperature, respec-
tively. During the deposition process, the background vacuum was better than 9 × 10−4 Pa
and the deposition rate was maintained at 1.5 Å/s. The reflectance and transmittance
spectra of the ZnS/Si structures were measured at 4 K with a Bruker VERTEX 80 V Fourier
transform infrared (FTIR) spectrometer.

Lastly, the Si-based BIB detector integrated with a ZnS coating was fabricated. The
Si-based BIB detector was a 128 × 128 array with a pixel pitch of 45 µm, and was designed
as a back-illuminated structure, as shown in Figure 1b. On the surface of the 500 µm thick
intrinsic Si substrate, a B-doped negative electrode contact layer was fabricated through
ion implantation and rapid thermal annealing. A P-doped absorbing layer with a concen-
tration ratio of approximately 8 × 1017 cm−3 and an intrinsic block layer were deposited
successively using chemical vapor deposition. Then, a B-doped positive electrode contact
layer was formed. A V-groove was dug in the negative area to expose the electrode contact
layer. Subsequently, the Ti/Al/Ni/Au electrode upon the contact layer was deposited
through magnetron sputtering. The pixels were then electrically separated from each other
with 15 µm wide and 20 µm deep grid-shaped ditches. At last, the ZnS coating with a
thickness of 2.0 µm was deposited on the backside of the polished intrinsic Si substrate of
the BIB detector using electron beam evaporation. Figure 1c shows the optical micrograph
of the BIB detector with a pixel array of 128 × 128 and a pixel pitch of approximately 45 µm.
The prepared detectors were packaged on the designed circuit substrate with the flip-chip
method, as shown in Figure 1d. Then, the spectral response of the Si-based BIB detector was
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measured at 4 K with a FTIR spectrometer. The blackbody responsivities of the BIB detector
with and without the ZnS film were measured at 4 K using a 500 K blackbody source.
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Figure 1. (a) Schematic diagram of ZnS/Si model. (b) The structure of the back-illuminated Si-based
BIB detector integrated with ZnS coating. (c) Optical micrograph of the Si-based BIB detector.
(d) Photo image of the packaged BIB detector.

3. Results

Figure 2a,b show the reflectance and transmittance spectra of the ZnS/Si structure
simulated using FDTD, where the thickness of the ZnS layer varied. It was found that the
reflectance of the bare Si substrate was approximately 30% in the range of 10.0~25.0 µm due
to the mismatch of refractive indices between the Si and the air, while the reflectance of the
Si coated with ZnS significantly decreased and transmittance increased. As for the Si coated
with 1.5, 2.0, 2.5, and 3.0 µm thick ZnS layers, the reflectance of the ZnS/Si structure could
be significantly reduced by up to 2.0%, 1.0%, 0.3%, and 0.4%, and the transmittance could
be increased up to 97%, 97%, 96%, and 93%, respectively. The corresponding transmittance
enhancement ratios were approximately 39%, 39%, 37%, and 33%. This demonstrated that
the ZnS film was an ideal anti-reflection coating in the VLWIR band. Meanwhile, with the
thickness of the ZnS coating increasing, the minimum valley positions of the reflectance
spectra and the peak positions of the transmittance spectra red shifted from 13.4 to 17.2, 19.0,
and 22.0 µm. This was highly consistent with the interference cancellation formula [24],

d = λ/4n1,

where d is the thickness of the ZnS, λ is the wavelength of the incident light, n1 is the
refractive index of the ZnS, and the value of n1 is approximately 1.9. This suggests that the
reduction in reflectance for the ZnS/Si structure was caused by the effective interference
cancellation effect.
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Figure 2. (a) Reflectance and (b) transmittance spectra of the Si and ZnS/Si structures simulated with
FDTD, in which the thickness of the ZnS layer was set to 1.5, 2.0, 2.5, and 3.0 µm, respectively.

The reflectance and transmittance spectra of the ZnS/Si structures obtained in the
experiment are shown in Figure 3a,b. It was observed that a reflection of approximately
45% was produced on the surface of the bare Si substrate. Such a large reflection would
seriously affect the properties of corresponding devices. Compared to the bare Si substrate,
the reflectance of the ZnS/Si structures in the range of 10.0~25.0 µm band significantly
reduced, and the transmittance clearly increased. After successively depositing the 1.5, 2.0,
2.5, and 3.0 µm thick ZnS films on the polished silicon substrates, the minimum valley of
the reflectance spectrum reduced to 24.5%, 23.9%, 14.6%, and 21.2%, and the corresponding
transmittance increased to 70%, 66%, 62%, and 65%, respectively. The transmittance en-
hancement ratios reached approximately 32%, 32%, 28%, and 29%. Thus, it was concluded
that the existence of the ZnS film could significantly reduce the reflectance and increase
the absorptance of the device in the range of 10.0~25.0 µm band. Due to the manufac-
turing process deviation, the numerical values were smaller than the simulation results.
Moreover, with the thickness of the ZnS film increasing, the minimum valley positions of
the reflectance spectra and the maximum peak positions of the transmittance spectra red
shifted from 11.7 to 20.4 µm. This correlated well with the FDTD simulation results.
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where the thicknesses of the ZnS layers were 1.5, 2.0, 2.5, and 3.0µm, respectively.

Since the response spectrum of the Si-based BIB detector was located at 17.0 µm,
as shown in Figure 4a, it was in good agreement with the minimum peak position of
the reflectance spectra of the ZnS (2.0 µm)/Si structure. Thus, a 2.0 µm thick ZnS film
was deposited on the silicon-based BIB detector. The intensity of the spectral response
peak for the ZnS (2.0 µm)/BIB detector was apparently stronger than that of the bare BIB
detector. Then, the blackbody responsivities of the BIB detector before and after the ZnS
film being deposited were detected. The data of three non-adjacent pixels were extracted,
as shown in Figure 4b. Under 500 K blackbody radiation, the mean responsivity of the
pixels with the 2.0 µm ZnS coating was approximately 1.01 A/W, while that of the pixels
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without the ZnS coating was approximately 0.74 A/W at 2 V. Through calculations, the
responsivity of the BIB detector was found to have increased significantly, by 36%, through
being covered with a 2.0µm thick ZnS layer. This demonstrated that the ZnS coating would
be an ideal anti-reflection coating for enhancing the performance of VLWIR Si-based BIB
detectors. Additionally, the almost coincident blackbody responsivity curves showed that
the anti-reflection film had good uniformity.
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