Twin-Roll Casting as a Grain Refinement Method and Its Influence on the Microstructure and Deformation Behavior of an AZ31 Magnesium Alloy Wire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials—Casting Method and Heat Treatment
2.2. Experiments—Compression Tests and Groove Rolling Trials
2.3. Characterization
3. Results and Discussion
3.1. Casting/Twin-Roll Casting and Heat Treatment
3.2. Compression Tests
3.3. Rolling Tests
4. Conclusions
- While the direct-chill cast AZ31 exhibited globular but coarse grains, the twin-roll cast AZ31 showed equiaxed grains with segregations between the grain boundaries. The grain size of the TRC alloy is significantly finer than the grain size of the DC alloy. After heat treatment of the direct-chill cast AZ31 alloy, a homogenization of the microstructure was present, but the grain size increased slightly. A short heat treatment of the twin-roll cast alloy helped to dissolve the precipitations and contributed to an increase in grain size. The DC AZ31 showed a random orientation after casting, while the TRC alloy showed a slight rolling texture due to the TRC process. The texture was not influenced by the heat treatment. In comparison to the AZ31 DC, the mechanical properties of AZ31 TRC in the heat-treated state were higher. This is attributed to the manufacturing process and its influence on the development of finer grain size and texture.
- The obtained flow curves of both alloys show a typical increase and decrease in flow stress with increasing logarithmic strain and in dependence on the temperature and strain rate, indicating the typical mechanisms of dynamic recrystallization. The flow curves of the TRC alloy lay mostly above the curves of the DC alloy, which is attributed to the finer initial grain size, more pronounced accumulation of dislocations, and thus, hardening. The calculated activation energy for dynamical recrystallization was comparable for both alloys. The start of DRX is shifted to the lower strains in the case of the AZ31 TRC, which was also attributed to the finer initial grain size and probably already pre-deformed material.
- The main deformation mechanisms were TDRX and DDRX in both the AZ31 DC and AZ31 TRC alloy. This was attributed to a quite coarse initial grain size of the DC AZ31, and the stacking-fault energy of magnesium, which tends to pronounce DDRX. The deformation mechanisms were detected in the micrographs as well as in the EBSD pictures of the compression tests. The EBSD pictures indicate that a basal texture is present.
- Within the rolling tests, a fine grain size could be obtained for both materials. A rolling texture was present for both alloys, but the texture intensity was higher in the AZ31 TRC alloy. TRDX and DDRX were the present deformation mechanisms in both alloys, though the strain rate was higher during the rolling trials. An increase in strength could be achieved for both alloys compared to their heat-treated state before rolling. Interestingly, the ductility of the AZ31 TRC alloy was 50% higher than the ductility of the AZ31 DC alloy, though nearly the same fine grain size was present after hot rolling. This is attributed to the higher texture intensity, which might support the gliding on the basal planes, as the stress direction corresponds to the rolling direction in tensile testing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siengchin, S. A review on lightweight materials for defence applications: Present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Elambharathi, B.; Kumar, S.D.; Dhanoop, V.U.; Dinakar, S.; Rajumar, S.; Sharma, S.; Kumar, V.; Li, C.; Eldin, E.M.T.; Wojciechowski, S. Novel insights on different treatment of magnesium alloys: A critical review. Heliyon 2022, 8, e11712. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical properties and applications of Magnesium alloy—Review. Mater. Today Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Wang, Z.; Lin, X.; Liu, F.; Huang, W.; Liang, E. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Mater. Sci. Eng. A 2020, 774, 138942. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, E.-W.; Kim, D.-O.; Ju, E.-K.; Lee, J.-E.; Lee, J.; Byeon, J.-W. Mechanical strength and corrosion resistance of Al-additive friction stir welded AZ31B joints. J. Magnes. Alloys 2023, 11, 1519–1535. [Google Scholar] [CrossRef]
- Magnesium-Taschenbuch, 1st ed.; Kammer, C. (Ed.) Aluminium-Verlag: Düsseldorf, Germany, 2000; ISBN 3-87017-264-9. [Google Scholar]
- Bohlen, J.; Yi, S.B.; Swiostek, J.; Letzig, D.; Brokmeier, H.G.; Kainer, K.U. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr. Mater. 2005, 53, 259–264. [Google Scholar] [CrossRef]
- Swiostek, J.; Göken, J.; Letzig, D.; Kainer, K.U. Hydrostatic extrusion of commercial magnesium alloy at 100 °C and its influence on grain refinement and mechanical properties. Mater. Sci. Eng. A 2006, 424, 223–229. [Google Scholar] [CrossRef]
- Doiphode, R.L.; Murty, S.V.S.N.; Prabhu, N.; Kashyap, B.P. Microstructure and Texture Evolution During Annealing of Caliber Rolled Mg–3Al–1Zn Alloy. Trans. Indian Inst. Met. 2015, 68, 317–321. [Google Scholar] [CrossRef]
- Inoue, T.; Somekawa, H.; Mukai, T. Hardness Variation and Strain Distribution in Magnesium Alloy AZ31 Processed by Multi-pass Caliber Rolling. Adv. Eng. Mater. 2009, 11, 654–658. [Google Scholar] [CrossRef]
- Mukai, T.; Somekawa, H.; Inoue, T.; Singh, A. Strengthening Mg–Al–Zn alloy by repetitive oblique shear strain with caliber roll. Scr. Mater. 2010, 62, 113–116. [Google Scholar] [CrossRef]
- Doiphode, R.L.; Narayana Murty, S.; Prabhu, N.; Kashyap, B.P. Effects of caliber rolling on microstructure and room temperature tensile properties of Mg–3Al–1Zn alloy. J. Magnes. Alloys 2013, 1, 169–175. [Google Scholar] [CrossRef]
- Tanno, Y.; Mukai, T.; Asakawa, M.; Kobayashi, M. Study on Warm Caliber Rolling of Magnesium Alloy. MSF 2003, 419–422, 359–364. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Wang, C.; Ning, H.; Wang, T.; Zhang, C.-C.; Yang, Z.-Z.; Wang, H.-Y. Relieving segregation in twin-roll cast Mg–8Al–2Sn–1Zn alloys via controlled rolling. J. Magnes. Alloys 2021, 9, 254–265. [Google Scholar] [CrossRef]
- Park, S.S.; Bae, G.T.; Kang, D.H.; Jung, I.-H.; Shin, K.S.; Kim, N.J. Microstructure and tensile properties of twin-roll cast Mg–Zn–Mn–Al alloys. Scr. Mater. 2007, 57, 793–796. [Google Scholar] [CrossRef]
- Bohlen, J.; Cano, G.; Drozdenko, D.; Dobron, P.; Kainer, K.; Gall, S.; Müller, S.; Letzig, D. Processing Effects on the Formability of Magnesium Alloy Sheets. Metals 2018, 8, 147. [Google Scholar] [CrossRef]
- Kurz, G.; Petersen, T.; Hoppe, R.; Bohlen, J.; Letzig, D. Microstructure and Texture of MX20 after Conventional Rolling and Rolling from Twin Rolled Cast Strip. MSF 2018, 941, 1418–1423. [Google Scholar] [CrossRef]
- Bae, G.T.; Bae, J.H.; Kang, D.H.; Lee, H.; Kim, N.J. Effect of Ca addition on microstructure of twin-roll cast AZ31 Mg alloy. Met. Mater. Int. 2009, 15, 1–5. [Google Scholar] [CrossRef]
- Watari, H.; Haga, T.; Koga, N.; Davey, K. Feasibility study of twin roll casting process for magnesium alloys. J. Mater. Process. Technol. 2007, 192–193, 300–305. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Suh, B.-C.; Sasaki, T.T.; Ohkubo, T.; Kim, N.J.; Hono, K. High strength and formable Mg–6.2Zn–0.5Zr–0.2Ca alloy sheet processed by twin roll casting. Mater. Sci. Eng. A 2014, 609, 154–160. [Google Scholar] [CrossRef]
- Park, S.S.; Park, W.-J.; Kim, C.H.; You, B.S.; Kim, N.J. The twin-roll casting of magnesium alloys. JOM 2009, 61, 14–18. [Google Scholar] [CrossRef]
- Kittner, K.; Ullmann, M.; Henseler, T.; Kawalla, R.; Prahl, U. Microstructure and Hot Deformation Behavior of Twin Roll Cast Mg-2Zn-1Al-0.3Ca Alloy. Materials 2019, 12, 1020. [Google Scholar] [CrossRef]
- Kittner, K.; Ullmann, M.; Arndt, F.; Kawalla, R.; Prahl, U. Microstructure and Texture Evolution during Twin-Roll Casting and Annealing of a Mg–6.8Y2.5Zn–0.4Zr Alloy (WZ73). Crystals 2020, 10, 513. [Google Scholar] [CrossRef]
- Gong, X.; Kang, S.B.; Li, S.; Cho, J.H. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Mater. Des. 2009, 30, 3345–3350. [Google Scholar] [CrossRef]
- Neh, K.; Ullmann, M.; Oswald, M.; Berge, F.; Kawalla, R. Twin Roll Casting and Strip Rolling of Several Magnesium Alloys. Mater. Today Proc. 2015, 2, S45–S52. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, J.G.; Lee, H.C.; Kim, N.J. Development of wrought Mg alloys via strip casting. In Essential Readings in Magnesium Technology; Mathaudhu, S.N., Luo, A.A., Neelameggham, N.R., Nyberg, E.A., Sillekens, W.H., Eds.; Springer International Publishing: Cham, Switzerland, 2004; pp. 233–238. [Google Scholar]
- Javaid, A.; Czerwinski, F. Progress in twin roll casting of magnesium alloys: A review. J. Magnes. Alloys 2021, 9, 362–391. [Google Scholar] [CrossRef]
- Berge, F.; Krüger, L.; OUAZIZ, H.; ULLRICH, C. Influence of temperature and strain rate on flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys. Trans. Nonferrous Met. Soc. China 2015, 25, 1–13. [Google Scholar] [CrossRef]
- Haga, T.; Tkahashi, K.; Ikawaand, M.; Watari, H. Twin roll casting of aluminum alloy strips. J. Mater. Process. Technol. 2004, 153–154, 42–47. [Google Scholar] [CrossRef]
- Lehmann, G.; Kawalla, R.; Oswald, M.; Seifert, M. Verfahren zum Gießwalzen von Magnesiumdrähten. DE102012209568A1, 14 January 2016. [Google Scholar]
- Moses, M.; Wemme, H.; Ullmann, M.; Kawalla, R.; Prahl, U. Twin-roll casting of magnesium wire: An innovative continuous production route. In Proceedings of the METAL 2019: 28th International Conference on Metallurgy and Materials, Brno, Czech Republic, 22–24 May 2019; pp. 438–443. [Google Scholar]
- Moses, M.; Ullmann, M.; Kawalla, R.; Prahl, U. Improving Mechanical Properties of Twin-Roll Cast AZ31 by Wire Rolling. Mater. Sci. Forum 2021, 1016, 957–963. [Google Scholar] [CrossRef]
- Hamu, G.B.; Eliezer, D.; Wagner, L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd. 2009, 468, 222–229. [Google Scholar] [CrossRef]
- Shan, Z.; Bai, J.; Fan, J.; Wu, H.; Zhang, H.; Zhang, Q.; Wu, Y.; Li, W.; Dong, H.; Xu, B. Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT. J. Mater. Sci. Technol. 2020, 51, 111–118. [Google Scholar] [CrossRef]
- Shen, M.J.; Wang, X.J.; Li, C.D.; Zhang, M.F.; Hu, X.S.; Zheng, M.Y.; Wu, K. Effect of submicron size SiC particles on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater. Des. 2014, 54, 436–442. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Hu, X.; Wu, K. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater. Sci. Eng. A 2018, 715, 49–61. [Google Scholar] [CrossRef]
- 77.120.20, 77.150.20 (DIN EN 12438:2017); Magnesium and Magnesium Alloys—Magnesium Alloys for Casting Anodes. Beuth Verlag: Berlin, Germany, 2017.
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. SSP 2010, 160, 63–68. [Google Scholar] [CrossRef]
- DIN 50125:2022-08; Prüfung Metallischer Werkstoffe_-Zugproben. Beuth Verlag GmbH: Berlin, Germany, 2022.
- Dahle, A.K.; Lee, Y.C.; Nave, M.D.; Schaffer, P.L.; StJohn, D.H. Development of the as-cast microstructure on magnesium-aluminium alloys. J. Light Met. 2001, 1, 61–72. [Google Scholar] [CrossRef]
- Pawar, S.; Zhou, X.; Hashimoto, T.; Thompson, G.E.; Scamans, G.; Fan, Z. Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy. J. Alloys Compd. 2015, 628, 195–198. [Google Scholar] [CrossRef]
- Moses, M.; Ullmann, M.; Prahl, U. Influence of aluminum content on the microstructure, mechanical properties, and hot deformation behavior of Mg-Al-Zn alloys. Metals 2023, 13, 1599. [Google Scholar] [CrossRef]
- Arndt, F.; Berndorf, S.; Moses, M.; Ullmann, M.; Prahl, U. Microstructure and Hot Deformation Behaviour of Twin-Roll Cast AZ31 Magnesium Wire. Crystals 2022, 12, 173. [Google Scholar] [CrossRef]
- Kurz, G.; Pakulat, S.; Bohlen, J.; Letzig, D. Rolling Twin Roll Cast Magnesium Strips with Varied Temperature and Degree of Deformation. Mater. Today Proc. 2015, 2, S39–S44. [Google Scholar] [CrossRef]
- Beer, A.G.; Barnett, M.R. Microstructural Development during Hot Working of Mg-3Al-1Zn. Met. Mat. Trans. A 2007, 38, 1856–1867. [Google Scholar] [CrossRef]
- Sitdikov, O.; Kaibyshev, R. Dynamic Recrystallization in Pure Magnesium. Mater. Trans. 2001, 42, 1928–1937. [Google Scholar] [CrossRef]
- Barnett, M.R.; Keshavarz, Z.; Beer, A.G.; Ma, X. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008, 56, 5–15. [Google Scholar] [CrossRef]
- Prakash, P.; Uramowski, J.; Wells, M.A.; Williams, B.W. Influence of Initial Microstructure on the Hot Deformation Behavior of AZ80 Magnesium Alloy. J. Mater. Eng. Perform. 2023, 32, 2647–2660. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, J.; Zhang, W. Microstructural evolution and dynamic recrystallization model of extruded homogenized AZ31 magnesium alloy during hot deformation. Int. J. Mater. Res. 2023, 114, 793–810. [Google Scholar] [CrossRef]
- Zhi, C.; Ma, L.; Jia, W.; Huo, X.; Fan, Q.; Huang, Z.; Le, Q.; Lin, J. Dependence of deformation behaviors on temperature for twin-roll casted AZ31 alloy by processing maps. J. Mater. Res. Technol. 2019, 8, 5217–5232. [Google Scholar] [CrossRef]
- Gottstein, G. Physikalische Grundlagen der Materialkunde, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71104-9. [Google Scholar]
- Sherby, O.D.; Taleff, E.M. Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids. Mater. Sci. Eng. A 2002, 322, 89–99. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, S.; Bao, P.; Li, N.; Yao, S.; Zhang, M. Characteristics of hot tensile deformation and microstructure evolution of twin-roll cast AZ31B magnesium alloys. Trans. Nonferrous Met. Soc. China 2010, 20, 776–782. [Google Scholar] [CrossRef]
- Liu, W.Q.; Hu, X.S.; Wang, X.J.; Wu, K.; Zheng, M.Y. Evolution of microstructure, texture and mechanical properties of SiC/AZ31 nanocomposite during hot rolling process. Mater. Des. 2016, 93, 194–202. [Google Scholar] [CrossRef]
Alloy | Al | Zn | Mn | Mg |
---|---|---|---|---|
AZ31 DC | 2.8 | 0.7 | 0.3 | 96.2 |
AZ31 TRC | 2.6 | 1.1 | 0.4 | 95.9 |
AZ31 standard (DIN EN 12438) [37] | 2.5–3.5 | 0.6–1.4 | 0.2–1.0 | - |
Alloy | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation at Break (%) | Vicker Hardness HV10 | |
---|---|---|---|---|---|
HT | HT | HT | Cast/TRC | HT | |
AZ31 DC | 63 ± 7 | 192 ± 16 | 11 ± 1 | 49 ± 5 | 46 ± 2 |
AZ31 TRC | 115 ± 3 | 238 ± 3 | 18 ± 0 | 57 ± 3 | 53 ± 2 |
Alloy | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
Rolled (5 Passes) | Rolled (5 Passes) | Rolled (5 Passes) | |
AZ31 DC | 208 ± 3 | 283 ± 6 | 14 ± 0 |
AZ31 TRC | 223 ± 4 | 284 ± 2 | 21 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moses, M.; Ullmann, M.; Prahl, U. Twin-Roll Casting as a Grain Refinement Method and Its Influence on the Microstructure and Deformation Behavior of an AZ31 Magnesium Alloy Wire. Crystals 2023, 13, 1409. https://doi.org/10.3390/cryst13101409
Moses M, Ullmann M, Prahl U. Twin-Roll Casting as a Grain Refinement Method and Its Influence on the Microstructure and Deformation Behavior of an AZ31 Magnesium Alloy Wire. Crystals. 2023; 13(10):1409. https://doi.org/10.3390/cryst13101409
Chicago/Turabian StyleMoses, Marie, Madlen Ullmann, and Ulrich Prahl. 2023. "Twin-Roll Casting as a Grain Refinement Method and Its Influence on the Microstructure and Deformation Behavior of an AZ31 Magnesium Alloy Wire" Crystals 13, no. 10: 1409. https://doi.org/10.3390/cryst13101409
APA StyleMoses, M., Ullmann, M., & Prahl, U. (2023). Twin-Roll Casting as a Grain Refinement Method and Its Influence on the Microstructure and Deformation Behavior of an AZ31 Magnesium Alloy Wire. Crystals, 13(10), 1409. https://doi.org/10.3390/cryst13101409