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Abstract: This study examines the interference problem between screw dislocation and elliptical in-
clusion in one-dimensional hexagonal piezoelectric quasicrystals. The general solutions are obtained
using the complex variable function method and the conformal transformation technique. When
the screw dislocation is located outside or inside the elliptical inclusion, the perturbation method
and Laurent series expansion are employed to derive explicit analytical expressions for the complex
potentials in the elliptical inclusion and the matrix, respectively. Considering four types of far-field
force and electric loading conditions, analytical solutions for various specific cases are obtained by
using matrix operations. Expressions for the phonon field stress, phason field stress, and electric
displacement are given for special cases, including the absence of a dislocation, the presence of an
elliptical hole, and the interference between a screw dislocation and circular inclusion, as well as the
case of a circular hole. The design and analysis of quasicrystal inclusion structures can benefit from
the results of this work.

Keywords: piezoelectric quasicrystal; inclusion; dislocation; complex variable function method;
analytical solutions

1. Introduction

As a new type of functional and structural material, quasicrystals can be widely used
in engineering applications [1–6]. Different kinds of defects, such as dislocations, cracks,
and inclusions, greatly affect their properties and coupling behavior under loading [7–11].
Exploration of the mechanisms controlling the interaction between inclusions and dis-
locations in quasicrystal materials can improve our understanding of the deformation
strengthening and failure mechanisms of components. Therefore, it is important to study
the interference of dislocations and inclusions in quasicrystals under the piezoelectric effect.

For elastic materials, Eshelby [12] asserted that there are interior and exterior elastic
fields for ellipsoidal inclusions with eigenstrains. When the eigenstrain or external loading
is uniform, the elastic field inside the inclusion is also uniform, which is a classic axiom of
inclusion research. Smith [13] studied the interference between screw dislocations located in
a matrix and elliptical holes or rigid elliptical inclusions and obtained a complex solution for
the potential of a corresponding elastic field. Gong and Meguid [14] studied the interference
between dislocations and elastic elliptical inclusions, although they assessed the force of
dislocations at specific positions. Meguid and Zhong [15] analyzed the electric and elastic
fields of piezoelectric elliptical inclusions. Deng and Meguid [16] studied the electroelastic
coupling between elliptical inclusions and screw dislocations in piezoelectric materials.

The mechanics of quasicrystal materials with inclusions or dislocations have also
attracted the attention of scholars [17–23]. Using analytical continuation and conformal
mapping methods, Wang [24] studied Eshelb’s problem of two-dimensional (2D) inclusions
with arbitrary shapes contained in 2D decagonal quasicrystals on a plane or half-plane.
Shi [25] studied the problem of collinear periodic cracks/rigid inclusions in sliding modes
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in one-dimensional (1D) hexagonal quasicrystals. Using the displacement function method,
Gao and Ricoeurb [26] studied the 3D problem of ellipsoidal inclusions in an infinite
body of 2D quasicrystals. Yang et al. [27] used the generalized Stroh formula to obtain
the electroelastic field induced by straight dislocations parallel to the periodic axis of 1D
quasicrystals. Guo et al. [28] used a conformal mapping technique to analyze the problem
of elliptical inclusions in an infinite 1D hexagonal piezoelectric quasicrystal matrix. Li
and Liu [29] employed the Stroh formula to analyze the electroelasticity of icosahedral
quasicrystals with straight dislocations. Fan et al. [30] deduced a basic solution for extended
dislocations in 1D hexagonal piezoelectric quasicrystals. Lou et al. [31] studied a thin elastic
inclusion in infinite 1D hexagonal quasicrystals using a hypersingular integral equation.
Zhang et al. [32] studied the infinite bodies of 1D hexagonal piezoelectric quasicrystals with
ellipsoidal inclusions. By selecting a suitable potential function, the analytical solutions
for the electric displacement, phonon field stress, and phason field stress in a matrix and
inclusion were obtained. They also analyzed special cases for ellipsoidal voids and coin-
shaped cracks. Hu et al. [33] extended the Eshelby tensor from elastic isotropic inclusions
to piezoelectric quasicrystal inclusions. By introducing eigenstrain and Green’s function,
a simple explicit expression of the 1D Eshelby tensor was obtained. Other studies [34,35]
examined partially debonded circular inclusions and cylindrical inclusions in piezoelectric
quasicrystal materials. Zhai et al. [36] studied the planes of 2D decagonal quasicrystals
with rigid arc inclusions under the action of infinite tension and concentrated force.

The presence or evolution of inclusions has a strong perturbation effect on the sur-
rounding media that is counteracted by dislocations, microcracks, holes, and heterogeneous
materials in the matrix. This interaction can be used to analyze the relationship between
the material strength, modulus, plasticity, and toughness. It can also be used to better
understand the strengthening or hardening mechanism of a material and further explain
the failure mechanism to improve the processing and service performance of the material.
Hu et al. [37] used a complex variable function to study the interference between screw
dislocations and circular inclusions in 1D hexagonal quasicrystal materials and obtained
boundary conditions represented by the complex potential function and the analytical
expression between the stress field and the dislocation force. They also discussed how
different dislocation positions and material parameters affect the dislocation force and
equilibrium position. Li and Liu [38] studied the interactions between dislocations and
elliptical holes in icosahedral quasicrystals. Zhao [39] studied the interactions between
screw dislocations and wedge-shaped cracks in 1D hexagonal piezoelectric quasicrystal
bimaterials. Lv and Liu [40] used complex variable function theory and the conformal
transformation method to study the interaction between multiple parallel dislocations
and wedge-shaped cracks in 1D hexagonal piezoelectric quasicrystals and their collective
response to the applied generalized stress. Pi et al. [41] studied the interactions between
screw dislocations in 1D hexagonal piezoelectric quasicrystal bimaterials and two unequal
interfacial cracks with elliptical shapes.

Quasicrystal materials are characterized by a light weight, high brittleness, high
hardness, and low friction, and they are very sensitive to defects such as dislocations and
inclusions. These materials can be used to describe inclusions simplified as elliptical shapes
with various 2D scale ratios (circular and linear), including cracks and rigid line inclusions,
which can all be degenerated from elliptical inclusions. In addition, the function describing
an elliptical shape is relatively simple, and it is easier to perform various operations for
elliptical shapes than for arbitrary shapes to obtain a closed-form solution to a problem.
Therefore, this study investigates the interaction between screw dislocation and elliptical
inclusion in 1D hexagonal piezoelectric quasicrystals and reduces the problem to several
special cases, obtaining the analytical solutions for the corresponding problems.

2. Basic Equations

For a 1D hexagonal piezoelectric quasicrystal, the anti-plane phonon field displace-
ment uz and phason field displacement wz are coupled with the electric fields Ex and Ey
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in the plane and are irrelevant to the vertical co-ordinate z, i.e., uz = uz(x, y), w = w(x, y),
Ex = Ex(x, y), and Ey = Ey(x, y). The basic equation is as follows [8,28,30].

The equilibrium equation can be expressed as follows:

∂

∂x
Λ1 +

∂

∂y
Λ2 = 0, (1)

where:
Λ1 = [σzx Hzx Dx]

T,

Λ2 =
[
σzy Hzy Dy

]T,

Here, σmn(m = x, y, z; n = x, y, z) is the phonon field stress, Hmn is the phason field
stress, and Dn is the electric displacement.

The relationship between generalized strain and displacement expressed by the dis-
placement and electric potential is as follows:

[2εzx ωzx − Ex]
T = ∂

∂x [uz w φ]T = ∂
∂x u,

[
2εzy ωzy − Ey

]T
= ∂

∂y [uz w φ]T = ∂
∂y u,

(2)

where:
u = [uz w φ]T,

Here, εmn is the phonon field strain, ωmn is the phason field strain, uz is the phonon
field displacement, w is the phason field displacement, En is the electric field, and φ is the
electric potential.

If we ignore the effect of the generalized body force, then the generalized stress–strain
relationship of a 1D hexagonal piezoelectric quasicrystal is as follows:

Λ1 = D[εzx ωzx Ex]
T,

Λ2 = D
[
εzy ωzy Ey

]T,
(3)

where:

D =

 2C44 R3 −e15
2R3 K2 −d15
2e15 d15 λ11

,

Here, C44 is the elastic constant of the phonon field, R3 is the elastic constant of the
phason field, K2 is the coupling elastic constant of the phonon and phason fields, e15 and
d15 are the piezoelectric coefficients, and λ11 is the dielectric coefficient.

By substituting Equation (2) into Equation (3), the constitutive relation represented by
displacement and electric potential can be obtained as follows:

Λ1 = C
[

∂uz
∂x

∂w
∂x

∂φ
∂x

]T
= C ∂

∂x u,

Λ2 = C
[

∂uz
∂y

∂w
∂y

∂φ
∂y

]T
= C ∂

∂y u,

(4)

where:

C =

 C44 R3 e15

R3 K2 d15
e15 d15 −ε11

.
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Substituting Equation (4) into Equation (1) gives:

∂

∂x
Λ1 +

∂

∂y
Λ2 = C∇2u = 0, (5)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 is the 2D Laplace operator.
|C| 6= 0 and || are matrix determinants. Thus, Equation (5) can be written as:

∇2uz = 0, ∇2w = 0, ∇2φ = 0. (6)

If uz, w, and φ are selected as the real parts of the analytic function, Equation (6) can
be satisfied.

By introducing Ψ(t), Θ(t), and Φ(t) as analytic functions, one obtains:

u = C1[ReΨ(t) ReΘ(t) ReΦ(t)]T, (7)

Here, t = x + iy is the complex variable, and i2 = −1 and i are imaginary units.
Re represents the real part of the complex variable function. C1 is given in Appendix A
(Equation (A1)).

Substituting Equation (7) into Equation (4) yields:

Λ1 = 1
2 CC1[Ψ′(t) Θ′(t) Φ′(t)]T,

Λ2 = i
2 CC1[Ψ′(t) Θ′(t) Φ′(t)]T.

(8)

According to Equations (2) and (7), the electric field represented by the analytic
function Φ(t) is given by:

[
Ex Ey

]T
= − 1

ε11

[
∂

∂x
∂

∂y

]T
ReΦ(t) = − 1

2ε11
[1 i]TΦ′(t). (9)

Hence, the phonon field stress, phason field stress, electric displacement, and electric
field intensity can be expressed as follows:

Λ1 − iΛ2 = CC1[Ψ′(t) Θ′(t) Φ′(t)]T,

Ex − iEy = − 1
ε11

Φ′(t),
(10)

where the apostrophe ′ denotes the derivative of the analytic function with respect to
independent variable t.

With Equation (8), the resultant force of phonon field stress and phason field stress
along the integral curve AB and the integral value of the normal component of electric
displacement can be calculated as follows:

Σ =
[∫ B

A
(
σzxdy− σzydx

)∫ B
A
(

Hzxdy− Hzydx
)∫ B

A
(

Dxdy− Dydx
)]T

= CC1

[
[ImΨ′(t)]BA [ImΘ′(t)]BA [ImΦ′(t)]BA

]T
,

(11)

where Im denotes the imaginary part of the complex variable function and [ ]BA is the
changing value of the function within the bracket along the integral curve from point A to
point B.
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3. Problem Description

Considering the presence of an elliptical inclusion in the 1D hexagonal piezoelectric
quasicrystal, the major axis of the elliptical inclusion is 2a, and the minor axis is 2b, as shown
in Figure 1. The area occupied by the matrix is ΩI, and that occupied by the inclusion is
ΩII. L is the elliptical interface between the elliptical inclusion and the matrix. Assume that
the matrix and the inclusion are well bonded at the interface. In the Cartesian co-ordinate
system (x, y, z), the atomic arrangement of the matrix and the inclusion is quasiperiodic
along the axis of z, while the atoms are arranged periodically on the x − y plane. The
generalized screw dislocation is located at an arbitrary point z0 in the matrix. The Burgers
vector is B =

[
0 0 bz b⊥ bφ

]T , which is linear and infinitely extended along the z-axis. bz is
the screw dislocation of the phonon field, b⊥ is the screw dislocation of the phason field,
and bφ is the dislocation of electric potential. The superscript ‘T’ indicates the transpose
of the vector or matrix. This paper considers two cases, where the dislocation is located
outside the inclusion and inside the inclusion. First, we consider the first case.
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Figure 1. Schematic diagram of a screw dislocation in a 1D hexagonal piezoelectric quasicrystal matrix.

The following mapping function [16] is introduced:

t = Ω(ζ) =
c
2

(
Rζ +

1
Rζ

)
, (12)

where:
Rζ = 1

c

(
t +
√

t2 − c2
)

, 1
Rζ = 1

c

(
t−
√

t2 − c2
)

, ζ = ξ + iη,

R =
√

a+b
a−b =

√
1+ε
1−ε , c =

√
a2 − b2 = a

√
1− ε2, ε = b

a ,

In Equation (12), the area ΩI on the t−plane is mapped as the external area ΓI of the
unit circle Γ1(ρ = 1) on the ζ−plane, and the area ΩII is mapped as the circular area ΓII
composed of circle Γ2(ρ = 1/R) and unit circle Γ1. Γ2 indicates cutting from x = −c to +c
on the z− plane when y = 0. Figure 2 presents the conformal mapping plane where the
screw dislocation is located in the matrix.
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Substituting Equation (12) into Equations (7) and (11) yields:

u = C1[ReΨ(ζ) ReΘ(ζ) ReΦ(ζ)]T, (13)

and:
Σ = CC1

[[
ImΨ′(ζ)

]B
A [Im Θ ′(ζ)]BA

[
ImΦ′(ζ)

]B
A

]T
, (14)

where:
[Ψ(ζ) Θ(ζ) Φ(ζ)]T = [Ψ(Ω(ζ)) Θ(Ω(ζ)) Φ(Ω(ζ))]T.

According to perturbation theory [42], the general solution of Equation (13) in the
matrix can be expressed as follows:

uI = CI
1


Re(Ψ0(ζ) + ΨI(ζ))

Re(Θ0(ζ) + ΘI(ζ))

Re(Φ0(ζ) + ΦI(ζ))

, ζ ∈ ΓI. (15)

The general solutions of the generalized displacement and electric potential within
the inclusion are:

uII = CII
1 [ReΨII(ζ) ReΘII(ζ) ReΦII(ζ)]

T, ζ ∈ ΓII. (16)

where CI
1 and CII

1 are given in Appendix A (Equation (A2)).
In the matrix, the resultant force of the phonon field stress and phason field stress

along the integral curve AB and the integral value of the normal component of electric
displacement can be represented as follows:

ΣI = CICI
1


[ImΨ0(ζ) + ImΨI(ζ)]

B
A

[ImΘ0(ζ) + ImΘI(ζ)]
B
A

[ImΦ0(ζ) + ImΦI(ζ)]
B
A

, ζ ∈ ΓI. (17)

Within the inclusion, the resultant force of the phonon field stress and phason field
stress along the integral curve AB and the integral value of the normal component of
electric displacement can be represented as follows:
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ΣII = CIICI
1

[
[ImΨII(ζ)]

B
A [ImΘII(ζ)]

B
A [ImΦII(ζ)]

B
A

]T
, ζ ∈ ΓII. (18)

where CI
1 and CII

1 can be found in Appendix A (Equation (A3)).
The subscripts (or superscripts) I and II indicate that the material constants and

physical quantities come from the area ΩI(ΓI) of the matrix and the area ΩII(ΓII) of the
inclusion, respectively. Ψ0(ζ), Θ0(ζ), and Φ0(ζ) represent the field potentials of the stress
and electric potential in the matrix without inclusion, which are not disturbed by inclusion.
The whole area can be analytically described, except for the singular point. ΨI(ζ), ΘI(ζ),
and ΦI(ζ) are the field potentials of the stress and electric potential resulting from the
influence of inclusion in the matrix. They are analytically described in area ΓI. ΨII(ζ),
ΘII(ζ), and ΦII(ζ), representing the field potentials of stress and electric potential within
the inclusion, are analytically described in area ΓII.

Assume the interface Γ1 is completely bonded, without any free charge and stress, and
the normal components of displacement, electric potential, stress, and electric displacement
passing through the elliptical interface are continuous. The condition of continuity can be
represented as follows:

uI = uII, ζ ∈ Γ1

(
ζ = σ = eiθ

)
, (19)

and:
ΣI = ΣII, ζ ∈ Γ1

(
ζ = σ = eiθ

)
. (20)

Substituting Equations (15) and (16) into Equation (19), one has:

CI
1


ReΨ0(σ) + ReΨI(σ)

ReΘ0(σ) + ReΘI(σ)

ReΦ0(σ) + ReΦI(σ)

 = CII
1


ReΨII(σ)

ReΘII(σ)

ReΦII(σ)

. (21)

Substituting Equations (17) and (18) into Equation (20) yields:

CICI
1


ImΨ0(σ) + ImΨI(σ)

ImΘ0(σ) + ImΘI(σ)

ImΦ0(σ) + ImΦI(σ)

 = CIICII
1


ImΨII(σ)

ImΘII(σ)

ImΦII(σ)

. (22)

Additionally, on the interface Γ2, the following conditions are satisfied:

[
ΨII

( σ

R

)
ΘII

( σ

R

)
ΦII

( σ

R

)]T
=

[
ΨII

(
σ

R

)
ΘII

(
σ

R

)
ΦII

(
σ

R

)]T
. (23)

On the t−plane, when y = 0, points σ/R and σ/R within the range from x = −c to
+c are the same point. Notably, both force and electric loads are uniform in the far field.
When the screw dislocation is located at point t0 = Ω(ζ0), then Ψ0(ζ), Θ0(ζ), and Φ0(ζ)
can be represented as follows:

[Ψ0(t) Θ0(t) Φ0(t)]
T = CI

2B
1

2πi
ln(t− t0) + [p0 g0 q0]

Tt. (24)

Substituting Equation (12) into Equation (24), one obtains:

[Ψ0(ζ) Θ0(ζ) Φ0(ζ)]
T = CI

2B
1

2πi
ln(Ω(ζ)−Ω(ζ0)) + [p0 g0 q0]

TΩ(ζ), (25)

where C2, CI
2, and CII

2 are provided in Appendix A (Equation (A4)).
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Here, p0, g0, and q0 are complex constants that can be determined by the force and
electric loading in the far field or are equivalent to far-field force and electric fields as follows:[

Ψ′0(∞) Θ′0(∞) Φ′0(∞)
]T

= [p0 g0 q0]
T. (26)

According to Ref. [43], there are four possible combinations of far-field force and
electric loading:

Combination 1: far-field phonon field strain ε∞
zxI and ε∞

zyI, far-field phason field strain
ω∞

zxI and ω∞
zyI, and far-field electric field intensity E∞

xI and E∞
yI .

According to Equation (15), one obtains:[
2ε∞

zxI ω∞
zxI E∞

xI
]T

= 1
2 CI

1[Ψ
′
0(∞) Θ′0(∞) −Φ′0(∞)]T,

[
2ε∞

zyI ω∞
zyI E∞

yI

]T
= i

2 CI
1[Ψ
′
0(∞) Θ′0(∞) −Φ′0(∞)]T.

(27)

Substituting Equation (26) into Equation (27) and performing matrix operations, one obtains:

[p0 g0 q0]
T =

(
CI

1

)−1[
2ε∞

zxI − 2iε∞
zyI ω∞

zxI − iω∞
zyI − E∞

xI + iE∞
yI

]T
.

Combination 2: far-field phonon field stress σ∞
zxI and σ∞

zyI, far-field phason field stress
H∞

zxI and H∞
zyI, and far-field electric field intensity D∞

xI and D∞
yI .

According to Equations (8) and (15), one gives:[
σ∞

zxI H∞
zxI D∞

xI
]T

= 1
2 CICI

1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T,

[
σ∞

zyI H∞
zyI D∞

yI

]T
= i

2 CICI
1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T.

(28)

Substituting Equation (26) into Equation (28) and performing matrix operations, the
following can be obtained:

[p0 g0 q0]
T =

(
CICI

1

)−1[
σ∞

zxI − iσ∞
zyI H∞

zxI − iH∞
zyI D∞

xI − iD∞
yI

]T
.

Combination 3: far-field phonon field strain ε∞
zxI and ε∞

zyI, far-field phason field strain
ω∞

zxI and ω∞
zyI, and far-field electric displacement D∞

xI and D∞
yI .

According to Equations (8) and (15), one obtains:[
2ε∞

zxI ω∞
zxI D∞

xI
]T

= 1
2 CI

3CI
1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T,

[
2ε∞

zyI ω∞
zyI D∞

yI

]T
= i

2 CI
3CI

1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T,

(29)

where C3 and CI
3 are provided in Appendix A (Equation (A5)).

Substituting Equation (26) into Equation (29) and performing matrix operations, the
following can be obtained:

[p0 g0 q0]
T =

(
CI

3CI
1

)−1[
2ε∞

zxI − 2iε∞
zyI ω∞

zxI − iω∞
zyI D∞

xI − iD∞
yI

]T
.

Combination 4: far-field phonon field stress σ∞
zxI and σ∞

zyI, far-field phason field stress
H∞

zxI and H∞
zyI, and far-field electric field intensity E∞

xI and E∞
yI .

According to Equations (8) and (15), one obtains:
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[
σ∞

zxI H∞
zxI E∞

xI
]T

= 1
2 CI

4CI
1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T,

[
σ∞

zyI H∞
zyI E∞

yI

]T
= i

2 CI
4CI

1[Ψ
′
0(∞) Θ′0(∞) Φ′0(∞)]T,

(30)

where C4 and CI
4 are provided in Appendix A (Equation (A6)).

Substituting Equation (26) into Equation (30) yields:

[p0 g0 q0]
T =

(
CI

4CI
1

)−1[
σ∞

zxI − iσ∞
zyI H∞

zxI − iH∞
zyI E∞

xI − iE∞
yI

]T
.

Using the mapping function (12), the following relation exists:

ln(1− ζ) = −
∞

∑
k=1

ζk

k
, |ζ| < 1.

Equation (25) can be expanded into the general form of a Laurent series.


Ψ0(ζ)

Θ0(ζ)

Φ0(ζ)

 =



∞
∑

k=0

(
ak0ζk+1 + bk0

1
ζk+1

)
∞
∑

k=0

(
ck0ζk+1 + dk0

1
ζk+1

)
∞
∑

k=0

(
ek0ζk+1 + fk0

1
ζk+1

)


, 1 ≤ |ζ| < |ζ0|. (31)

The constant terms of the corresponding field potential and rigid displacement are
ignored. Coefficients ak0, bk0, ck0, dk0, ek0, and fk0 can be represented as follows:

ak0 =


− bzCI

44
2πi

1
ζ0

+ p0c
2 R, k = 0,

− 1
k+1

bzCI
44

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
bk0 =


− bzCI

44
2πi

1
R2ζ0

+ p0c
2R , k = 0,

− 1
k+1

bzCI
44

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · · ,

ck0 =


− b⊥KI

2
2πi

1
ζ0

+ g0c
2 R, k = 0,

− 1
k+1

b⊥KI
2

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
dk0 =


− b⊥KI

2
2πi

1
R2ζ0

+ g0c
2R , k = 0,

− 1
k+1

b⊥KI
2

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · · ,

ek0 =


− bϕεI

11
2πi

1
ζ0

+ q0c
2 R, k = 0,

− 1
k+1

bϕεI
11

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
fk0 =


− bϕεI

11
2πi

1
R2ζ0

+ q0c
2R , k = 0,

− 1
k+1

bϕεI
11

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · · .

(32)

Then, it is necessary to determine the complex potentials Ψj, Θj, and Φj(j = I, II) so
that they can meet the conditions of continuity (19), (20) and (23).

On the ζ−plane, ΨI(ζ), ΘI(ζ), and ΦI(ζ) are analytic functions in area ΓI, and ΨII(ζ),
ΘII(ζ), and ΦII(ζ) are analytic functions in area ΓII; thus, they can be represented by the
Laurent expansion as follows:

[ΨI(ζ) ΘI(ζ) ΦI(ζ)]
T =

[
∞

∑
k=0

bI
k

1
ζk+1

∞

∑
k=0

dI
k

1
ζk+1

∞

∑
k=0

f I
k

1
ζk+1

]T

, ζ ∈ ΓI, (33)

and:
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 ΨII(ζ)

ΘII(ζ)

ΦII(ζ)

 =



∞
∑

k=0

(
aII

k ζk+1 + bII
k

1
ζk+1

)
∞
∑

k=0

(
cII

k ζk+1 + dII
k

1
ζk+1

)
∞
∑

k=0

(
eII

k ζk+1 + f II
k

1
ζk+1

)


, ζ ∈ ΓII. (34)

Substituting Equation (34) into Equation (23) yields:[
aII

k cII
k eII

k

]T
= R2(k+1)

[
bII

k dII
k f II

k

]T
.

Thus, Equation (34) is rephrased as follows:

 ΨII(ζ)

ΘII(ζ)

ΦII(ζ)

 =



∞
∑

k=0
aII

k

(
ζk+1 + 1

R2k+2ζk+1

)
∞
∑

k=0
cII

k

(
ζk+1 + 1

R2k+2ζk+1

)
∞
∑

k=0
eII

k

(
ζk+1 + 1

R2k+2ζk+1

)


, ζ ∈ ΓII. (35)

where ζ = σ = 1/σ is on the unit circle Γ1. According to Equations (31), (33) and (35),
Equation (21) can be represented as follows:

CI
1


aI

k0 + b
I
k0 + b

I
k

cI
k0 + d

I
k0 + d

I
k

eI
k0 + f

I
k0 + f

I
k

 = CII
1


aII

k + 1
R2k+2 aII

k

cII
k + 1

R2k+2 cII
k

eII
k + 1

R2k+2 eII
k

.

According to the theory of analytic function, Ψ(ζ), Θ(ζ), and Φ(ζ) are analytic func-
tions in area ΓI, and Ψ

(
1/ζ

)
, Θ
(
1/ζ

)
, and Φ

(
1/ζ

)
are analytic functions in area ΓII. There-

fore, if Γ0 represents the internal area of the circle Γ2, Γ0 + ΓII indicates the entire area inside
the unit circle, and [θ1(ζ) θ2(ζ) θ3(ζ)]

T can be represented as follows:

 θ1(ζ)

θ2(ζ)

θ3(ζ)

 = CI
1



∞
∑

k=0
b

I
kζk+1

∞
∑

k=0
d

I
kζk+1

∞
∑

k=0
f

I
kζk+1


−CII

1



∞
∑

k=0
aII

k ζk+1

∞
∑

k=0
cII

k ζk+1

∞
∑

k=0
eII

k ζk+1


−CII

1



∞
∑

k=0
aII

k
ζk+1

R2k+2

∞
∑

k=0
cII

k
ζk+1

R2k+2

∞
∑

k=0
eII

k
ζk+1

R2k+2



+CI
1



∞
∑

k=0

(
aI

k0 + b
I
k0

)
ζk+1

∞
∑

k=0

(
cI

k0 + d
I
k0

)
ζk+1

∞
∑

k=0

(
eI

k0 + f
I
k0

)
ζk+1


, ζ ∈ Γ0 + ΓII,

(36a)

 θ1(ζ)

θ2(ζ)

θ3(ζ)

 = CII
1



∞
∑

k=0
aII

k
1

R2k+2ζk+1

∞
∑

k=0
cII

k
1

R2k+2ζk+1

∞
∑

k=0
eII

k
1

R2k+2ζk+1


+ CII

1



∞
∑

k=0
aII

k
1

ζk+1

∞
∑

k=0
cII

k
1

ζk+1

∞
∑

k=0
eII

k
1

ζk+1


−CI

1



∞
∑

k=0
bI

k
1

ζk+1

∞
∑

k=0
dI

k
1

ζk+1

∞
∑

k=0
f I
k

1
ζk+1


(36b)
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−CI
1



∞
∑

k=0

(
aI

k0 + bI
k0

)
1

ζk+1

∞
∑

k=0

(
cI

k0 + dI
k0

)
1

ζk+1

∞
∑

k=0

(
eI

k0 + f I
k0

)
1

ζk+1


, ζ ∈ ΓI .

Equations (36a) and (36b) are holomorphic and single-valued on the whole plane.
Thus, [θ1(ζ) θ2(ζ) θ3(ζ)]

T ≡ 0 can be obtained according to the Liouville theorem. With
this result, the following can be obtained from Equation (36a,b): bI

k

dI
k

f I
k

 = D3

 aI
k0

cI
k0

eI
k0

+ D4

 aI
k0

cI
k0

eI
k0

−
 bI

k0

dI
k0

f I
k0

. (37)

Similarly, we can obtain the following based on the condition of continuity in Equation (20): aII
k

cII
k

eII
k

 = D5

 aI
k0

cI
k0

eI
k0

+ D6

 aI
k0

cI
k0

eI
k0

, (38)

where Di(i = 1, 2, · · · , 6) is given in Appendix A (Equation (A7)).
Let

D3 =

 Ik2 Kk2 Mk2
Ik4 Kk4 Mk4
Ik6 Kk6 Mk6

, D4 =

 Jk2 Lk2 Nk2
Jk4 Lk4 Nk4
Jk6 Lk6 Nk6

, D5 =

 Ik1 Kk1 Mk1
Ik3 Kk3 Mk3
Ik5 Kk5 Mk5

, D6 =

 Jk1 Lk1 Nk1
Jk3 Lk3 Nk3
Jk5 Lk5 Nk5

. (39)

The next step is to determine the coefficients of the expanded complex series. For a
given k, six systems of linear equations with six unknowns aII

k , cII
k , eII

k , bI
k, dI

k, and f I
k can be

obtained according to Equations (37) and (38). These unknown coefficients to be solved are
represented by specific coefficients ak0, bk0, ck0, dk0, ek0, and fk0: aII

k

cII
k

eII
k

 =

 Ik1ak0 + Kk1ck0 + Mk1ek0 + Jk1ak0 + Lk1ck0 + Nk1ek0

Ik3ak0 + Kk3ck0 + Mk3ek0 + Jk3ak0 + Lk3ck0 + Nk3ek0

Ik5ak0 + Kk5ck0 + Mk5ek0 + Jk5ak0 + Lk5ck0 + Nk5ek0

, (40)

and:  bI
k

dI
k

f I
k

 =

 Ik2ak0 + Kk2ck0 + Mk2ek0 + Jk2ak0 + Lk2ck0 + Nk2ek0 − bk0

Ik4ak0 + Kk4ck0 + Mk4ek0 + Jk4ak0 + Lk4ck0 + Nk4ek0 − dk0

Ik6ak0 + Kk6ck0 + Mk6ek0 + Jk6ak0 + Lk6ck0 + Nk6ek0 − fk0

. (41)

By substituting Equation (32) into Equations (40) and (41), all coefficients in the series
expansion Equations (33) and (34), i.e., ΨI(ζ), ΘI(ζ), ΦI(ζ), ΨII(ζ), ΘII(ζ), and ΦII(ζ), can
be determined. Then, the problem is solved.

4. Typical Case of Dislocation Located Outside Inclusion

In special cases, the series solutions (33) and (34) can be given in a simpler form or
their expressions can be obtained by summing. In this section, we address and discuss
some special cases: without considering the dislocation or electric field, considering the
interference between the screw dislocation and elliptical hole, considering the interference
between the screw dislocation and circular inclusion, and considering the interference
between the screw dislocation and circular hole.
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4.1. No Dislocation

Without considering dislocation, i.e., the Burgers vector B = [0 0 0 0 0]T , the problem
degenerates into a 1D hexagonal piezoelectric quasicrystal with an elliptical inclusion.

In the matrix, one has:

Λ1I − iΛ2I = − 1
2 CICI

1
(

R2D3 − E
) p0

g0
q0

 t√
t2−c2 −

1
2 CICI

1R2D4

 p0
g0
q0

 t√
t2−c2

+ 1
2 CICI

1
(

R2D3 + E
) p0

g0
q0

+ 1
2 CICI

1R2D4

 p0
g0
q0

, t ∈ ΩI,

ExI − iEyI = R2

2εI
11
(p0 I06 + g0K06 + q0M06 + p0 J06 + g0L06 + q0N06)

(
t√

t2−c2 − 1
)

− q0
2εI

11

(
t√

t2−c2 + 1
)

, t ∈ ΩI.

In the inclusion, one obtains:

Λ1II − iΛ2II = CIICII
1 D5[p0 g0 q0]

T + CIICII
1 D6[p0 g0 q0]

T,

ExII − iEyII = − 1
εII

11
(I05 p0 + K05g0 + M05q0 + J05 p0 + L05g0 + N05q0).

where Di(i = 3, 4, 5, 6) is provided in Appendix A (Equation (A8)).
It can be discerned that the phonon field stress, phason field stress, electric field

intensity, and electric displacement in the elliptical inclusion are uniform.

4.2. Interference between the Screw Dislocation and Elliptical Hole

The elliptical inclusion can be reduced to an elliptical hole, i.e., CII
44 = RII

3 = KII
2 =

dII
15 = eII

15 = 0 and εII
11 = ε0.

The coefficients aII
k , bI

k, cII
k , dI

k, eII
k , and f I

k can be represented as follows:


bI

k

dI
k

f I
k

 =


− 4R2k+2(R4k+4+1)(RI

3dI
15−eI

15KI
2)M4

εI
11(M1

2R4k+4−M2
2)(R4k+4−1)

4R2k+2(R4k+4+1)(RI
3eI

15−CI
44dI

15)M4

εI
11(M1

2R4k+4−M2
2)(R4k+4−1)

4R2k+2ε0(RI
3

2−CI
44KI

2)M3

M1
2R4k+4−M2

2

eI
k0 −


bI

k0

dI
k0

f I
k0



+


aI

k0 +
2CI

44ε0(RI
3dI

15−KI
2eI

15)(2ε0 M5R4k+4+M1R8k+8+M2)
εI

11(M1
2R4k+4−M2

2)(R4k+4−1)
eI

k0

cI
k0 +

2KI
2ε0(RI

3eI
15−CI

44dI
15)(2ε0 M5R4k+4+M1R8k+8+M2)

εI
11(M1

2R4k+4−M2
2)(R4k+4−1)

eI
k0

−M1 M2(R4k+4−1)
M1

2R4k+4−M2
2 eI

k0

,

(42)

and: 
aII

k

cII
k

eII
k

 =


0
0

2R4k+4ε0 M1 M3
εI

11(M1
2R4k+4−M2

2)
eI

k0

+


0
0

2R2k+2ε0 M2 M3
εI

11(M1
2R4k+4−M2

2)
eI

k0

. (43)

where Mi(i = 1, 2, · · · , 5) is provided in Appendix A (Equation (A9)).
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If Equation (32) is substituted into Equations (42) and (43), all coefficients in the series
expansion Equations (33) and (34), i.e., ΨI(ζ), ΘI(ζ), ΦI(ζ), ΨII(ζ), ΘII(ζ), and ΦII(ζ), can
be determined. Then, the problem is solved.

Equation (43) shows that the phonon field stress and phason field stress in the elliptical
hole are equal to zero.

4.3. Interference between the Screw Dislocation and Circular Inclusion

The elliptical inclusion can be reduced to a circular hole, i.e., a = b.
In the matrix, the expressions of the phonon field stress, phason field stress, electric

field intensity, and electric displacement are as follows:

Λ1I − iΛ2I = CICI
1

 p0
g0
q0

+ 1
2πi C

ICI
1

 bzCI
44

b⊥KI
2

bϕεI
11

 1
t−t0
−CICI

1

 J02 p0 + L02g0 + N02q0
J04 p0 + L04g0 + N04q0
J06 p0 + L06g0 + N06q0

 a2

t2

+ i
2π CICI

1


bzCI

44 J02 + b⊥KI
2L02 + bϕεI

11N02

bzCI
44 J04 + b⊥KI

2L04 + bϕεI
11N04

bzCI
44 J06 + b⊥K I

2L06 + bϕεI
11N06

 a2

t(t0t−a2)
, t ∈ ΩI,

ExI − iEyI = − 1
εI

11
q0 −

bϕ

2πi
1

t−t0
+ 1

εI
11
(J06 p0 + L06g0 + N06q0)

a2

t2

− i
2π

1
εI

11

(
bzCI

44 J06 + b⊥KI
2L06 + bϕεI

11N06
) a2

t(t0t−a2)
, t ∈ ΩI.

In the circular inclusion, one has:

Λ1II − iΛ2II = − i
2π CIICII

1


bzCI

44 I01 + b⊥KI
2K01 + bϕεI

11M01

bzCI
44 I03 + b⊥KI

2K03 + bϕεI
11M03

bzCI
44 I05 + b⊥KI

2K05 + bϕεI
11M05

 1
t−t0

+ 1
a CIICII

1


I01 p0 + K01g0 + M01q0

I03 p0 + K03g0 + M03q0

I05 p0 + K05g0 + M05q0

, t ∈ ΩII,

ExII − iEyII = i
2π

1
εII

11

(
bzCI

44 I05 + b⊥KI
2K05 + bϕεI

11M05
) 1

t−t0

− 1
aεII

11
(I05 p0 + K05g0 + M05q0), t ∈ ΩII.

Clearly, the phonon field stress, phason field stress, and electric field intensity within
the inclusion all show typical screw dislocation behavior, i.e., a singularity of 1/(t− t0) at
point t = t0.

4.4. Interference between Screw Dislocation and Circular Hole

If the circular inclusion reduces into a circular hole, then a = b, CII
44 = RII

3 = KII
2 =

dII
15 = eII

15 = 0, and εII
11 = ε0.

In the matrix, the expressions of the phonon field stress, phason field stress, electric
field intensity, and electric displacement are as follows:

Λ1I − iΛ2I = CICI
1

 p0
g0
q0

+ 1
2πi C

ICI
1

 bzCI
44

b⊥KI
2

bϕεI
11

 1
t−t0
− a2q0Nk6CICI

1

 0
0
1

 1
t2 , t ∈ ΩI,
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ExI − iEyI = −
1

εI
11

(
q0 +

bϕεI
11

2πi
1

t− t0
− a2q0Nk6

1
t2

)
, t ∈ ΩI.

In the circular hole, the expressions of the phonon field stress, phason field stress,
electric field intensity, and electric displacement are as follows:

Λ1II − iΛ2II = CIICII
1 [0 0 Mk5q0]

T, t ∈ ΩII,

ExII − iEyII = − 1
εII

11
Mk5q0, t ∈ ΩII.

where Mk5 and Nk6 are provided in Appendix A (Equation (A10)).
Apparently, the phonon field stress, phason field stress, and electric field intensity

in the matrix are all affected by the dislocation, equivalent far-field phonon field, phason
field, and electric field. The phonon field stress and phason field stress in the circular
hole are equal to zero, and the electric field strength is affected by the equivalent far-field
electric field q0 rather than dislocation. In addition, the electric field strength and electric
displacement in the circular hole are uniform.

4.5. No Electric Field

Without considering the electric field, the problem reduces to the interference between
screw dislocation and elliptical inclusion in the matrix in a 1D hexagonal quasicrystal. The
elastic constants of the 1D hexagonal quasicrystal are shown in Appendix B (Equations
(A11) and (A12)).

By substituting the elastic constants of the 1D hexagonal quasicrystal, the series
expansion coefficients of ΨI(ζ), ΘI(ζ), ΨII(ζ), and ΘII(ζ) are as follows:

 ΨI(ζ)

ΘI(ζ)

 = − 1
2πi


∞
∑

k=0

1
k+1

(
bzCI

44

(
Ik2

ζk+1
0

+ Jk2

ζ
k+1
0

+ 1
(R2ζ0)

k+1

)
+ b⊥KI

2

(
Kk2
ζk+1

0
+ Lk2

ζ
k+1
0

))
1

ζk+1

∞
∑

k=0

1
k+1

(
bzCI

44

(
Ik4

ζk+1
0

+ Jk4

ζ
k+1
0

+ 1
(R2ζ0)

k+1

)
+ b⊥KI

2

(
Kk4
ζk+1

0
+ Lk4

ζ
k+1
0

))
1

ζk+1



+ c
2

 R(I02 p0 + J02 p0 + K02g0 + L02g0)−
p0
R

R(I04 p0 + J04 p0 + K04g0 + L04g0)−
g0
R

 1
ζ , ζ ∈ ΓI.

 ΨII(ζ)

ΘII(ζ)

 = − 1
2πi


∞
∑

k=0

1
k+1

(
bzCI

44

(
Ik1

ζk+1
0

+ Jk1

ζ
k+1
0

)
+ b⊥KI

2

(
Kk1
ζk+1

0
+ Lk1

ζ
k+1
0

))(
ζk+1 + 1

(R2ζ)
k+1

)
∞
∑

k=0

1
k+1

(
bzCI

44

(
Ik3

ζk+1
0

+ Jk3

ζ
k+1
0

)
+ b⊥KI

2

(
Kk3
ζk+1

0
+ Lk3

ζ
k+1
0

))(
ζk+1 + 1

(R2ζ)
k+1

)


+


(

I01
p0c
2 R + J01

p0c
2 R + Kk1

g0c
2 R + Lk1

g0c
2 R
)(

ζ + 1
R2ζ

)
(

Ik3
p0c
2 R + Jk3

p0c
2 R + Kk3

g0c
2 R + Lk3

g0c
2 R
)(

ζ + 1
R2ζ

)
, ζ ∈ ΓII.

Then, the problem is solved.

5. Dislocation Located within an Inclusion

Now let us consider the second case: a generalized screw dislocation with Burgers
vector B =

[
0 0 bz b⊥ bφ

]T is located at point t = t0 in the elliptical inclusion, as shown in
Figure 3.
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The perturbation technique [42] can be employed to represent the displacement in the
matrix as follows:

uI = CI
1[ReΨI(ζ) ReΘI(ζ) ReΦI(ζ)]

T, ζ ∈ ΓI. (44)

In the inclusion, the displacement can be expressed as follows:

uII = CII
1 [ReΨII(ζ) ReΘII(ζ) ReΦII(ζ)]

T, ζ ∈ ΓII. (45)

In the matrix, the complex potentials of stress are:

ΣI = CICI
1

[
[ImΨI(ζ)]

B
A [ImΘI(ζ)]

B
A [ImΦI(ζ)]

B
A

]T
, ζ ∈ ΓI. (46)

In the inclusion, the complex potentials of stress are:

ΣII = CIICI
1

[
[ImΨII(ζ)]

B
A [ImΘII(ζ)]

B
A [ImΦII(ζ)]

B
A

]T
, ζ ∈ ΓII. (47)

In area ΓI , complex potentials ΨI(ζ), ΘI(ζ), and ΦI(ζ) are analytic functions, while, in
area ΓII, the analytic functions include ΨII(ζ), ΘII(ζ), and ΦII(ζ).

Substituting Equations (44) and (45) into Equation (19) yields:

CI
1[ReΨI(σ) ReΘI(σ) ReΦI(σ)]

T = CII
1 [ReΨII(σ) ReΘII(σ) ReΦII(σ)]

T.

Substituting Equations (46) and (47) into Equation (20) yields:

CICI
1

 ImΨI(σ)

ImΘI(σ)

ImΦI(σ)

 = CIICII
1

 ImΨII(σ)

ImΘII(σ)

ImΦII(σ)

.

In the matrix, the complex potential can be expanded to the Laurent series as follows:

 ΨI(ζ)

ΘI(ζ)

ΦI(ζ)

 =



∞
∑

k=0

(
aI

k0ζk+1 + bI
k0

1
ζk+1

)
∞
∑

k=0

(
cI

k0ζk+1 + dI
k0

1
ζk+1

)
∞
∑

k=0

(
eI

k0ζk+1 + f I
k0

1
ζk+1

)


+



∞
∑

k=0
bI

k
1

ζk+1

∞
∑

k=0
dI

k
1

ζk+1

∞
∑

k=0
f I
k

1
ζk+1


, ζ ∈ ΓI. (48)
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In the inclusion, the complex potentials are expanded to the Laurent series as follows:

 ΨII(ζ)

ΘII(ζ)

ΦII(ζ)

 =



∞
∑

k=0

(
aII

k0ζk+1 + bII
k0

1
ζk+1

)
∞
∑

k=0

(
cII

k0ζk+1 + dII
k0

1
ζk+1

)
∞
∑

k=0

(
eII

k0ζk+1 + f II
k0

1
ζk+1

)


+



∞
∑

k=0

(
aII

k ζk+1 + bII
k

1
ζk+1

)
∞
∑

k=0

(
cII

k ζk+1 + dII
k

1
ζk+1

)
∞
∑

k=0

(
eII

k ζk+1 + f II
k

1
ζk+1

)


, ζ ∈ ΓII. (49)

The constant terms of the corresponding potential field and rigid displacement are
ignored. Coefficients aI

k0, bI
k0, cI

k0, dI
k0, eI

k0, and f I
k0 can be represented as follows:

aI
k0 =


− bzCI

44
2πi

1
ζ0

+ p0c
2 R, k = 0,

− 1
k+1

bzCI
44

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
bI

k0 =


− bzCI

44
2πi

1
R2ζ0

+ p0c
2R , k = 0,

− 1
k+1

bzCI
44

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · ·

cI
k0 =


− b⊥KI

2
2πi

1
ζ0

+ g0c
2 R, k = 0,

− 1
k+1

b⊥KI
2

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
dI

k0 =


− b⊥KI

2
2πi

1
R2ζ0

+ g0c
2R , k = 0,

− 1
k+1

b⊥KI
2

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · · ,

eI
k0 =


− bϕεI

11
2πi

1
ζ0

+ q0c
2 R, k = 0,

− 1
k+1

bϕεI
11

2πi
1

ζk+1
0

, k = 1, 2, · · · ,
f I
k0 =


− bϕεI

11
2πi

1
R2ζ0

+ q0c
2R , k = 0,

− 1
k+1

bϕεI
11

2πi
1

R2k+2ζk+1
0

, k = 1, 2, · · · .

(50)

Coefficients aII
k0, bII

k0, cII
k0, dII

k0, eII
k0, and f II

k0 can be represented as follows:

aII
k0 = − 1

k+1
bzCII

44
2πi

1
ζk+1

0
, k = 0, 1, 2, · · · , bII

k0 = − 1
k+1

bzCII
44

2πi
1

R2k+2ζk+1
0

, k = 0, 1, 2, · · · ,

cII
k0 = − 1

k+1
b⊥KII

2
2πi

1
ζk+1

0
, k = 0, 1, 2, · · · , dII

k0 = − 1
k+1

b⊥KII
2

2πi
1

R2k+2ζk+1
0

, k = 0, 1, 2, · · · ,

eII
k0 = − 1

k+1
bϕεII

11
2πi

1
ζk+1

0
, k = 0, 1, 2, · · · , f II

k0 = − 1
k+1

bϕεII
11

2πi
1

R2k+2ζk+1
0

, k = 0, 1, 2, · · · .

(51)

Then, complex potentials Ψj, Θj, and Φj(j = I, II) need to be determined so that they
can meet the conditions of continuity in Equations (19), (20) and (23).

Substituting Equation (49) into Equation (23) yields:
[
aII

k0 + aII
k cII

k0 + cII
k eII

k0 + eII
k
]T

=

R2(k+1)[bII
k0 + bII

k dII
k0 + dII

k f II
k0 + f II

k
]T.

Thus, Equation (49) is rephrased as follows:

 ΨII(ζ)

ΘII(ζ)

ΦII(ζ)

 =



∞
∑

k=0

(
aII

k0 + aII
k
)(

ζk+1 + 1
R2k+2ζk+1

)
∞
∑

k=0

(
cII

k0 + cII
k
)(

ζk+1 + 1
R2k+2ζk+1

)
∞
∑

k=0

(
eII

k0 + eII
k
)(

ζk+1 + 1
R2k+2ζk+1

)


, ζ ∈ ΓII. (52)

According to Equations (48) and (52), there is ζ = σ = 1/σ on the unit circle Γ1.
With Equation (19), on the elliptical interface, the conditions of continuity for displace-

ment and potential can be represented as follows:

CI
1


aI

k0 + b
I
k0 + b

I
k

cI
k0 + d

I
k0 + d

I
k

eI
k0 + f

I
k0 + f

I
k

 = CII
1

 aII
k0 + aII

k

cII
k0 + cII

k

eII
k0 + eII

k

+
1

R2k+2 CII
1

 aII
k0 + aII

k

cII
k0 + cII

k

eII
k0 + eII

k

.
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According to the theory of analytic function, in area ΓI, Ψ(ζ), Θ(ζ), and Φ(ζ) are ana-
lytic functions, and, in area ΓII, Ψ

(
1/ζ

)
, Θ
(
1/ζ

)
, and Φ

(
1/ζ

)
serve as analytic functions.

If Γ0 represents the internal area of the circle Γ2, then Γ0 + ΓII represents the entire
area inside the unit circle. We can obtain a function vector defined in the whole area
[θ1(ζ) θ2(ζ) θ3(ζ)]

T:


θ1(ζ)

θ2(ζ)

θ3(ζ)

 = CI
1



∞
∑

k=0
b

I
kζk+1

∞
∑

k=0
d

I
kζk+1

∞
∑

k=0
f

I
kζk+1


+ CI

1



∞
∑

k=0

(
aI

k0 + b
I
k0

)
ζk+1

∞
∑

k=0

(
cI

k0 + d
I
k0

)
ζk+1

∞
∑

k=0

(
eI

k0 + f
I
k0

)
ζk+1


−CII

1



∞
∑

k=0
aII

k
ζk+1

R2k+2

∞
∑

k=0
cII

k
ζk+1

R2k+2

∞
∑

k=0
eII

k
ζk+1

R2k+2



−CII
1



∞
∑

k=0
aII

k0ζk+1

∞
∑

k=0
cII

k0ζk+1

∞
∑

k=0
eII

k0ζk+1


−CII

1



∞
∑

k=0
aII

k0
ζk+1

R2k+2

∞
∑

k=0
cII

k0
ζk+1

R2k+2

∞
∑

k=0
eII

k0
ζk+1

R2k+2


−CII

1



∞
∑

k=0
aII

k ζk+1

∞
∑

k=0
cII

k ζk+1

∞
∑

k=0
eII

k ζk+1


, ζ ∈ Γ0 + ΓII,

(53a)

 θ1(ζ)

θ2(ζ)

θ3(ζ)

 = CII
1



∞
∑

k=0

aII
k

R2k+2ζk+1

∞
∑

k=0

cII
k

R2k+2ζk+1

∞
∑

k=0

eII
k

R2k+2ζk+1


+ CII

1



∞
∑

k=0

aII
k

ζk+1

∞
∑

k=0

cII
k

ζk+1

∞
∑

k=0

eII
k

ζk+1


−CI

1



∞
∑

k=0

bI
k

ζk+1

∞
∑

k=0

dI
k

ζk+1

∞
∑

k=0

f I
k

ζk+1



+CII
1



∞
∑

k=0

aII
k0

R2k+2ζk+1

∞
∑

k=0

cII
k0

R2k+2ζk+1

∞
∑

k=0

eII
k0

R2k+2ζk+1


+ CII

1



∞
∑

k=0

aII
k0

ζk+1

∞
∑

k=0

cII
k0

ζk+1

∞
∑

k=0

eII
k0

ζk+1


−CI

1



∞
∑

k=0

aI
k0+bI

k0
ζk+1

∞
∑

k=0

cI
k0+dI

k0
ζk+1

∞
∑

k=0

eI
k0+ f I

k0
ζk+1


, ζ ∈ ΓI .

(53b)

With Equations (20), (48) and (52), on the elliptical interface, the conditions of continuity
for the normal components of stress and electric displacement can be ex-pressed as follows:

CI
1CI

1


b

I
k0 + b

I
k − aI

k0

d
I
k0 + d

I
k − cI

k0

f
I
k0 + f

I
k − eI

k0

 =
1

R2k+2 CIICII
1

aII
k0 + aII

k

cII
k0 + cII

k

eII
k0 + eII

k

−ClIICII
1

aII
k0 + aII

k

cII
k0 + cII

k

eII
k0 + eII

k

·
Similarly, from the conditions of continuity for stress and electric displacement, a

function vector equation [θ4(ζ) θ5(ζ) θ6(ζ)]
T defined in the whole area can also be obtained

as follows:

 θ4(ζ)

θ5(ζ)

θ6(ζ)

 = CICI
1



∞
∑

k=0

(
b

I
k0 + b

I
k − aI

k0

)
ζk+1

∞
∑

k=0

(
d

I
k0 + d

I
k − cI

k0

)
ζk+1

∞
∑

k=0

(
f

I
k0 + f

I
k − eI

k0

)
ζk+1


(54a)
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−CIICII
1



∞
∑

k=0

(
1

R2k+2

(
aII

k0 + aII
k

)
−
(
aII

k0 + aII
k
))

ζk+1

∞
∑

k=0

(
1

R2k+2

(
cII

k0 + cII
k

)
−
(
cII

k0 + cII
k
))

ζk+1

∞
∑

k=0

(
1

R2k+2

(
eII

k0 + eII
k

)
−
(
eII

k0 + eII
k
))

ζk+1


, ζ ∈ Γ0 + ΓII,

 θ4(ζ)

θ5(ζ)

θ6(ζ)

 = −CICI
1



∞
∑

k=0

(
aI

k0 − bI
k0 − bI

k

)
1

ζk+1

∞
∑

k=0

(
cI

k0 − dI
k0 − dI

k

)
1

ζk+1

∞
∑

k=0

(
eI

k0 − f I
k0 − f I

k

)
1

ζk+1



+CIICII
1



∞
∑

k=0

((
aII

k0 + aII
k

)
− 1

R2k+2

(
aII

k0 + aII
k
)) 1

ζk+1

∞
∑

k=0

((
cII

k0 + cII
k

)
− 1

R2k+2

(
cII

k0 + cII
k
)) 1

ζk+1

∞
∑

k=0

((
eII

k0 + eII
k

)
− 1

R2k+2

(
eII

k0 + eII
k
)) 1

ζk+1


, ζ ∈ ΓI .

(54b)

Equations (53a), (53b), (54a) and (54b) are holomorphic and single-valued on the whole plane.
[θ1(ζ) θ2(ζ) θ3(ζ)]

T ≡ 0 can be obtained according to the Liouville theorem. With this
result, we can obtain the following from Equations (53a) and (53b): bI

k

dI
k

f I
k

 = D3

 aI
k0

cI
k0

eI
k0

+ D4

 aI
k0

cI
k0

eI
k0

−
 bI

k0

dI
k0

f I
k0

. (55)

[θ4(ζ) θ5(ζ) θ6(ζ)]
T ≡ 0 can also be obtained according to the Liouville theorem. With

this result, we can obtain the following from Equations (54a) and (54b): aII
k

cII
k

eII
k

 = D5

 aI
k0

cI
k0

eI
k0

+ D6

 aI
k0

cI
k0

eI
k0

−
 aII

k0

cII
k0

eII
k0

, (56)

The next step is to determine the coefficients of the expanded complex series. For the
given k, six systems of linear equations with six unknowns aII

k , cII
k , eII

k , bI
k, dI

k, and f I
k can

be obtained according to Equations (55) and (56). These unknown coefficients that can be
solved are represented by specific coefficients aI

k0, bI
k0, cI

k0, dI
k0, eI

k0, and f I
k0: aII

k

cII
k

eII
k

 =

 Ik1aI
k0 + Jk1aI

k0 + Kk1cI
k0 + Lk1cI

k0 + Mk1eI
k0 + Nk1eI

k0 − aII
k0

Ik3aI
k0 + Jk3aI

k0 + Kk3cI
k0 + Lk3cI

k0 + Mk3eI
k0 + Nk3eI

k0 − cII
k0

Ik5aI
k0 + Jk5aI

k0 + Kk5cI
k0 + Lk5cI

k0 + Mk5eI
k0 + Nk5eI

k0 − eII
k0

, (57)

and:  bI
k

dI
k

f I
k

 =

 Ik2aI
k0 + Jk2aI

k0 + Kk2cI
k0 + Lk2cI

k0 + Mk2eI
k0 + Nk2eI

k0 − bI
k0

Ik4aI
k0 + Jk4aI

k0 + Kk4cI
k0 + Lk4cI

k0 + Mk4eI
k0 + Nk4eI

k0 − dI
k0

Ik6aI
k0 + Jk6aI

k0 + Kk6cI
k0 + Lk6cI

k0 + Mk6eI
k0 + Nk6eI

k0 − f I
k0

. (58)

By substituting Equations (50) and (51) into Equations (57) and (58), all coefficients of ΨI(ζ),
ΘI(ζ), ΦI(ζ), ΨII(ζ), ΘII(ζ), and ΦII(ζ) can be determined. Then, the problem is solved.
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6. Typical Case of Dislocation Located within an Inclusion

In some special cases, the series solutions in Equations (48) and (49) can be provided
in a simpler form or their expressions can be obtained by summing. In this section,
special cases such as not considering a dislocation, considering an elliptical hole, and not
considering the electric field are solved and discussed.

6.1. Elliptical Hole

If an elliptical inclusion reduces into an elliptical hole, then CII
44 = RII

3 = KII
2 = dII

15 =

eII
15 = 0, B = [0 0 0 0 0]T , and εII

11 = ε0.
In the matrix, the following can be obtained:

ΛI
1 − iΛI

2 = CICI
1

 p0
g0
q0

 t+
√

t2−c2√
t2−c2 + R2CICI

1

 p0
g0
q0

 t−
√

t2−c2√
t2−c2

+
εI

11
ε0

CICI
1

 0
0

(M05q0 + N05q0) + (M05q0 + N05q0)R2

 t−
√

t2−c2√
t2−c2 ,

EI
x − iEI

y = − 1
εI

11

(
q0

t+
√

t2−c2√
t2−c2 + R2q0

t−
√

t2−c2√
t2−c2

)
− 1

ε0

(
(M05q0 + N05q0) + (M05q0 + N05q0)R2) t−

√
t2−c2√

t2−c2 .

In the elliptical hole, one has:

ΛII
1 − iΛII

2 = CIICII
1 [0 0 M05 q0 + N05q0]

T,

EII
x − iEII

y = − 1
ε0
(M05q0 + N05q0).

where M05 and N05 are provided in Appendix C (Equation (A13)).
The phonon field stress and phason field stress in the elliptical hole are equal to zero,

and the electric field intensity and electric displacement are uniform.

6.2. Interference between Screw Dislocation and Circular Inclusion

An elliptical inclusion can be reduced to a circular hole, i.e., a = b.
In the matrix, the exact solutions for the phonon field stress, phason field stress, electric

field intensity, and electric displacement are as follows:

Λ1I − iΛ2I = CICI
1

 p0

g0

q0

+ 1
2πi C

ICI
1

 bzCI
44

b⊥KI
2

bϕεI
11

 1
t−t0
−CICI

1

 J02 p0 + L02g0 + N02q0

J04 p0 + L04g0 + N04q0

J06 p0 + L06g0 + N06q0

 a2

t2

+ 1
2πi C

ICI
1

 bzCI
44 J02 + b⊥KI

2L02 + bϕεI
11N02

bzCI
44 J04 + b⊥KI

2L04 + bϕεI
11N04

bzCI
44 J06 + b⊥KI

2L06 + bϕεI
11N06

 a2

t(t0t−a2)
, t ∈ ΩI,

ExI − iEyI = − 1
εI

11
q0 −

bϕ

2πi
1

t−t0
+ 1

εI
11
(J06 p0 + L06g0 + N06q0)

a2

t2

− 1
2πi

1
εI

11

(
bzCI

44 J06 + b⊥KI
2L06 + bϕεI

11N06
) a2

t(t0t−a2)
, t ∈ ΩI.
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The exact solutions for each field in the circular inclusion are:

Λ1II − iΛ2II = 1
2πi C

IICII
1

 bzCI
44 I01 + b⊥KI

2K01 + bϕεI
11M01

bzCI
44 I03 + b⊥KI

2K03 + bϕεI
11M03

bzCI
44 I05 + b⊥KI

2K05 + bϕεI
11M05

 1
t−t0

+CIICII
1

 I01 p0 + K01g0 + M01q0

I03 p0 + K03g0 + M03q0

I05 p0 + K05g0 + M05q0

, t ∈ ΩII,

ExII − iEyII = − 1
2πi

1
εII

11

(
bzCI

44 I05 + b⊥KI
2K05 + bϕεI

11M05
) 1

t−t0

− 1
εII

11
(I05 p0 + K05g0 + M05q0), t ∈ ΩII.

Clearly, the phonon field stress, phason field stress, and electric field intensity within
the inclusion all show typical screw dislocation behavior, i.e., the singularity of 1/(t− t0)
at point t = t0.

6.3. Circular Hole

An inclusion can be reduced to a circular hole, i.e., CII
44 = RII

3 = KII
2 = dII

15 = eII
15 = 0,

B = [0 0 0 0 0]T , and εII
11 = ε0. Next, it is necessary to solve the problem of a 1D hexagonal

piezoelectric quasicrystal with a circular hole.
In area ΩI, the expressions of complex potentials ΨI(t), ΘI(t), and ΦI(t) can be ob-

tained as follows: ΨI(t)
ΘI(t)
ΦI(t)

 = t

p0

g0

q0

+


0

0

Nk6
a2q0

t

, t ∈ ΩI.

In area ΩII, the expressions of complex potentials ΨII(t), ΘII(t), and ΦII(t) can be
obtained as follows: ΨII(t)

ΘII(t)
ΦII(t)

 =

 0

0

Mk5q0t

, t ∈ ΩII.

where Mk5 and Nk6 are provided in Appendix C (Equation (A14)).
It is obvious that, in the circular hole, both the phonon field stress and phason field

stress are zero, the electric potential is a linear function of the independent variable t, and
the electric field is uniform.

6.4. No Electric Field

Without considering the electric field, the problem reduces to the interference between
an elliptical inclusion and a screw dislocation in a 1D hexagonal quasicrystal, and the
dislocation is located in the inclusion.

In the matrix, the following can be obtained:

[
ΨI(ζ)
ΘI(ζ)

]
=


∞
∑

k=0

(
aI

k0ζk+1 +
bI

k0
ζk+1

)
∞
∑

k=0

(
cI

k0ζk+1 +
dI

k0
ζk+1

)
+


∞
∑

k=0

Ik2aI
k0+Kk2cI

k0+Jk2aI
k0+Lk2cI

k0−bI
k0

ζk+1

∞
∑

k=0

Ik4aI
k0+Kk4cI

k0+Jk4aI
k0+Lk4cI

k0−dI
k0

ζk+1

, ζ ∈ ΓI.
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In the inclusion, one has:

[
ΨII(ζ)
ΘII(ζ)

]
=


∞
∑

k=0

(
Ik1aI

k0 + Kk1cI
k0 + Jk1aI

k0 + Lk1cI
k0

)(
ζk+1 + 1

(R2ζ)
k+1

)
∞
∑

k=0

(
Ik3aI

k0 + Kk3cI
k0 + Jk3aI

k0 + Lk3cI
k0

)(
ζk+1 + 1

(R2ζ)
k+1

)
, ζ ∈ ΓII.

Thus, the problem mentioned above is solved, and the complex potentials ΨI(ζ),
ΘI(ζ), ΨII(ζ), and ΘII(ζ) are irrelevant to the coefficients aII

k0, bII
k0, cII

k0, and dII
k0.

7. Conclusions

This study uses a complex variable function and the conformal transformation tech-
nique to investigate the interference between screw dislocation and elliptical inclusion in
1D hexagonal piezoelectric quasicrystals. The anti-plane elastic equation of a 1D hexagonal
piezoelectric quasicrystal is represented in matrix form, which simplifies the expression.
The unknown variables are solved by applying matrix operations. For the dislocation in
the matrix or inclusion, a general series solution for a corresponding field in the matrix
and inclusion is given using the perturbation method. Special cases are addressed and
discussed, such as the absence of dislocation, the interference between an elliptical hole, a
screw dislocation, and a circular inclusion, the presence of a circular hole, and the absence
of an electric field. The results show that the electric potential inside a circular hole is a
linear function of the independent variable. Regarding the interference between a screw
dislocation and circular inclusion, the phonon field stress, phason field stress, and electric
field intensity in the inclusion show typical screw dislocation behavior, i.e., a 1/(t− t0)
singularity at point t = t0. The results of this study can reveal the mechanism of the
interaction between inclusion and dislocation, providing an important theoretical basis for
exploring the strengthening and hardening mechanisms of quasicrystal components.
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Appendix A

C1 =


1

C44
0 0

0 1
K2

0
0 0 1

ε11

, (A1)

CI
1 =


1

CI
44

0 0

0 1
KI

2
0

0 0 1
εI

11

, CII
1 =


1

CII
44

0 0

0 1
KII

2
0

0 0 1
εII

11

. (A2)

CI =

CI
44 RI

3 eI
15

RI
3 KI

2 dI
15

eI
15 dI

15 −εI
11

, CII =

CII
44 RII

3 eII
15

RII
3 KII

2 dII
15

eII
15 dII

15 −εII
11

. (A3)
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C2 =

C44 0 0
0 K2 0
0 0 ε11

, CI
2 =

CI
44 0 0
0 KI

2 0
0 0 εI

11

, CII
2 =

CII
44 0 0
0 KII

2 0
0 0 εII

11

, (A4)

C3 =

 1 0 0
0 1 0

e15 d15 −ε11

, CI
3 =

 1 0 0
0 1 0

eI
15 dI

15 −εI
11

. (A5)

C4 =

C44 R3 e15
R3 K2 d15
0 0 −1

, CI
4 =

CI
44 RI

3 eI
15

RI
3 KI

2 dI
15

0 0 −1

. (A6)

Appendix B

D1 = 1
R2k+2

((
CICI

1

)−1
CIICII

1 −
(

CI
1

)−1
CII

1

)
,

D2 =
(

CI
1

)−1
CII

1 +
(

CICI
1

)−1
CIICII

1 ,

D3 = − 4
R2k+2

(
CI

1

)−1
CII

1
(
D2

1 −D2
2
)−1
(

CICI
1

)−1
CIICII

1 ,

D4 = −
(

2
(

CI
1

)−1
CII

1
(
D2

1 −D2
2
)−1
(

1
R2k+2 D1 + D2

)
+ E

)
,

D5 = −2
(
D2

1 −D2
2
)−1D2,

D6 = −2
(
D2

1 −D2
2
)−1D1,

(A7)

Here, E is the third-order identity matrix.

D3 =

 I02 K02 M02
I04 K04 M04
I06 K06 M06

, D4 =

 J02 L02 N02
J04 L04 N04
J06 L06 N06

,

D5 =

 I01 K01 M01
I03 K03 M03
I05 K05 M05

, D6 =

 J01 L01 N01
J03 L03 N03
J05 L05 N05

.

(A8)

M1 =
(
ε0 + εI

11
)(

RI
3

2 − CI
44KI

2
)
+ 2RI

3dI
15eI

15 − CI
44dI

15
2 − KI

2eI
15

2,

M2 =
(
ε0 − εI

11
)(

RI
3

2 − CI
44KI

2
)
− 2RI

3dI
15eI

15 + CI
44dI

15
2 + KI

2eI
15

2,

M3 =
(

RI
3

2 − CI
44KI

2
)
εI

11 + 2RI
3dI

15eI
15 − CI

44dI
15

2 − KI
2eI

15
2,

M4 = RI
3

2ε2
0CI

44 − CI
44

2ε2
0KI

2,

M5 = RI
3

2 − CI
44KI

2.

(A9)

Mk5 =
2ε0(dI

15dI
15CI

44+CI
44KI

2εI
11−RI

3RI
3εI

11−2eI
15RI

3dI
15+eI

15eI
15KI

2)
εI

11(dI
15dI

15CI
44+CI

44KI
2εI

11−RI
3RI

3εI
11−RI

3RI
3ε0−2eI

15RI
3dI

15+eI
15eI

15KI
2)

,

Nk6 =
4RI

3RI
3ε0

dI
15dI

15CI
44+CI

44KI
2εI

11−RI
3RI

3εI
11−RI

3RI
3ε0−2eI

15RI
3dI

15+eI
15eI

15KI
2
.

(A10)
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The elastic constant of a 1D hexagonal quasicrystal can be represented by a matrix as follows:

C =

[
C44 R3
R3 K2

]
, CI =

[
CI

44 RI
3

RI
3 KI

2

]
, CII =

[
CII

44 RII
3

RII
3 KII

2

]
, (A11)

C1 =

[
1

C44
0

0 1
K2

]
, CI

1 =

 1
CI

44
0

0 1
KI

2

, CII
1 =

 1
CII

44
0

0 1
KII

2

. (A12)

Appendix C

M05 =
M1

M2
, N05 =

N1

N2
, M2 = N2, (A13)

where:

M1 = −2R4ε0
((

RI
3

2 − CI
44KI

2
)
εI

11 − CI
44
(
dI

15
2 + KI

2ε0
)
+ RI

3
2ε0 + 2RI

3dI
15eI

15 − eI
15

2KI
2
)

∗
((

RI
3

2 − CI
44KI

2
)
εI

11 + 2RI
3dI

15eI
15 − eI

15
2KI

2 − CI
44dI

15
2)

∗
(

RI
3

2εI
11 + 2RI

3dI
15eI

15 −
(
dI

15
2 + εI

11KI
2
)
CI

44 − eI
15

2KI
2
)2,

N1 = −2R2ε0
((

CI
44KI

2 − RI
3

2)εI
11 + CI

44
(
dI

15
2 − KI

2ε0
)
+ RI

3
2ε0 − 2RI

3dI
15eI

15 + eI
15

2KI
2
)

∗
((

RI
3

2 − CI
44KI

2
)
εI

11 + 2RI
3dI

15eI
15 − eI

15
2KI

2 − CI
44dI

15
2)

∗
(

RI
3

2εI
11 + 2RI

3dI
15eI

15 −
(
dI

15
2 + εI

11KI
2
)
CI

44 − eI
15

2KI
2
)2,

M2 = εI
11
((

RI
3

2 − CI
44KI

2
)
εI

11 + 2RI
3dI

15eI
15 − eI

15
2KI

2 − CI
44dI

15
2)2

∗
((

dI
15

2 + εI
11KI

2 − ε0KI
2
)
CI

44 + RI
3

2ε0 − RI
3

2εI
11 − 2RI

3dI
15eI

15 + eI
15

2KI
2
)2

−R4εI
11
((

RI
3

2 − CI
44KI

2
)
εI

11 −
(
dI

15
2 + ε0KI

2
)
CI

44 + RI
3

2ε0 + 2RI
3dI

15eI
15 − eI

15
2KI

2
)2

∗
(

RI
3

2εI
11 + 2RI

3dI
15eI

15 −
(
dI

15
2 + εI

11KI
2
)
CI

44 − eI
15

2KI
2
)2.

Mk5 =
2ε0(dI

15dI
15CI

44+CI
44KI

2εI
11−RI

3RI
3εI

11−2eI
15RI

3dI
15+eI

15eI
15KI

2)
εI

11(dI
15dI

15CI
44+CI

44KI
2εI

11−RI
3RI

3εI
11−RI

3RI
3ε0−2eI

15RI
3dI

15+eI
15eI

15KI
2)

,

Nk6 =
4RI

3RI
3ε0

dI
15dI

15CI
44+CI

44KI
2εI

11−RI
3RI

3εI
11−RI

3RI
3ε0−2eI

15RI
3dI

15+eI
15eI

15KI
2
.

(A14)

References
1. Tsai, A.P.; Guo, J.Q.; Abe, E.; Takakura, H.; Sato, T.J. A stable binary quasicrystal. Nature 2000, 408, 537–538. [CrossRef]
2. Wang, N.; Chen, H.; Kuo, K.H. Two-dimensional quasicrystal with eightfold rotational symmetry. Phys. Rev. Lett. 1987, 59,

1010–1013. [CrossRef]
3. Fu, X.; Mu, X.; Zhang, J.; Zhang, L.; Gao, Y. Green’s functions of two-dimensional piezoelectric quasicrystal in half-space and

biomaterials. Appl. Math. Mech. (Engl. Ed.) 2023, 44, 237–254. [CrossRef]
4. Ahn, S.J.; Moon, P.; Kim, T.H.; Kim, H.W.; Shin, H.C.; Kim, E.H.; Cha, H.W.; Kahng, S.J.; Kim, P.; Koshino, M.; et al. Dirac electrons

in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786. [CrossRef]
5. Zhang, M.; Guo, J.; Li, Y. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modified couple-stress

theory. Appl. Math. Mech. (Engl. Ed.) 2022, 43, 371–388. [CrossRef]
6. Mu, X.; Xu, W.; Zhu, Z.; Zhang, L.; Gao, Y. Multi-field coupling solutions of functionally graded two-dimensional piezoelectric

quasicrystal wedges and spaces. Appl. Math. Model. 2022, 109, 251–264. [CrossRef]
7. Yu, J.; Guo, J. Analytical solution for a 1D hexagonal quasicrystal strip with two collinear mode-III cracks perpendicular to the

strip boundaries. Crystals 2023, 13, 661. [CrossRef]

https://doi.org/10.1038/35046202
https://doi.org/10.1103/PhysRevLett.59.1010
https://doi.org/10.1007/s10483-023-2955-9
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1007/s10483-022-2818-6
https://doi.org/10.1016/j.apm.2022.04.018
https://doi.org/10.3390/cryst13040661


Crystals 2023, 13, 1419 24 of 25

8. Loboda, V.; Komarov, O.; Bilyi, D.; Lapusta, Y. An analytical approach to the analysis of an electrically permeable interface crack
in a 1D piezoelectric quasicrystal. Acta Mech. 2020, 231, 3419–3433. [CrossRef]

9. Dang, H.; Lv, S.; Fan, C.; Lu, C.; Ren, J.; Zhao, M. Analysis of anti-plane interface cracks in one-dimensional hexagonal quasicrystal
coating. Appl. Math. Model. 2020, 81, 641–652. [CrossRef]

10. Hu, K.; Yang, W.; Fu, J.; Chen, Z.; Gao, C.-F. Analysis of an anti-plane crack in a one-dimensional orthorhombic quasicrystal strip.
Math. Mech. Solids 2022, 27, 2467–2479. [CrossRef]

11. Ma, Y.; Zhou, Y.; Yang, J.; Zhao, X.; Ding, S. Interface crack behaviors disturbed by Love waves in a 1D hexagonal quasicrystal
coating-substrate structure. ZAMP Z. Angew. Math. Phys. 2023, 74, 61. [CrossRef]

12. Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal
Society of London. Ser. A Math. Phys. Sci. 1957, 241, 375–396.

13. Smith, E. The interaction between dislocations and inhomogeneities—I. Int. J. Eng. Sci. 1968, 6, 129–143. [CrossRef]
14. Gong, S.; Meguid, S. A screw dislocation interacting with an elastic elliptical inhomogeneity. Int. J. Eng. Sci. 1994, 32,

1221–1228. [CrossRef]
15. Meguid, S.; Zhong, Z. Electroelastic analysis of a piezoelectric elliptical inhomogeneity. Int. J. Solids Struct. 1997, 34,

3401–3414. [CrossRef]
16. Deng, W.; Meguid, S. Analysis of a screw dislocation inside an elliptical inhomogeneity in piezoelectric solids. Int. J. Solids Struct.

1999, 36, 1449–1469. [CrossRef]
17. Gutkin, M.; Ovid’Ko, I. Edge dislocations in nanoquasicrystalline materials. Nanostruct. Mater. 1998, 10, 493–501. [CrossRef]
18. Wang, J.; Mancini, L.; Wang, R.; Gastaldi, J. Phonon- and phason-type spherical inclusions in icosahedral quasicrystals. J. Phys.

Condens. Matter 2003, 15, L363–L370. [CrossRef]
19. Wang, X.; Schiavone, P. Dislocations, imperfect interfaces and interface cracks in anisotropic elasticity for quasicrystals. Math.

Mech. Complex Syst. 2013, 1, 1–17. [CrossRef]
20. Li, L.; Li, X.; Li, L. Study on effective electroelastic properties of one-dimensional hexagonal piezoelectric quasicrystal containing

randomly oriented inclusions. Mod. Phys. Lett. B 2023, 37, 2350043. [CrossRef]
21. Hu, Z.; Feng, X.; Mu, X.; Song, G.; Zhang, L.; Gao, Y. Eshelby tensors and effective stiffness of one-dimensional orthorhombic

quasicrystal composite materials containing ellipsoidal particles. Arch. Appl. Mech. 2023, 93, 3275–3295. [CrossRef]
22. Fan, T.Y. Application I—Some dislocation and interface problems and solutions in one-and two-dimensional quasicrystals. In

Mathematical Theory of Elasticity of Quasicrystals and Its Applications; Springer: Singapore, 2016; pp. 109–135.
23. Wang, X.; Schiavone, P. Two non-elliptical decagonal quasicrystalline inclusions with internal uniform hydrostatic phonon

stresses. ZAMM-J. Appl. Math. Mech. Z. Angew. Math. Mech. 2018, 98, 2027–2034. [CrossRef]
24. Wang, X. Eshelby’s problem of an inclusion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Int. J. Eng. Sci.

2004, 42, 1911–1930. [CrossRef]
25. Shi, W.C. Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal

quasicrystal. Appl. Math. Comput. 2009, 215, 1062–1067.
26. Gao, Y.; Ricoeur, A. Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag.

2012, 92, 4334–4353. [CrossRef]
27. Yang, L.-Z.; Gao, Y.; Pan, E.; Waksmanski, N. Electric-elastic field induced by a straight dislocation in one-dimensional quasicrys-

tals. Acta Phys. Pol. A 2014, 126, 467–470. [CrossRef]
28. Guo, J.; Zhang, Z.; Xing, Y. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites.

Philos. Mag. 2016, 96, 349–369. [CrossRef]
29. Li, L.; Liu, G. Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects. Appl. Math. Mech. 2018, 39,

1259–1266. [CrossRef]
30. Fan, C.; Chen, S.; Xu, G.; Zhang, Q. Fundamental solution for extended dislocation in one-dimensional piezoelectric quasicrystal

and application to fracture analysis. ZAMM-Z. Angew. Math. Mech. 2019; 99, e201800232.
31. Lou, F.; Cao, T.; Qin, T.; Xu, C. Plane analysis for an inclusion in 1D hexagonal quasicrystal using the hypersingular integral

equation method. Acta Mech. Solida Sin. 2019, 32, 249–260. [CrossRef]
32. Zhang, Z.; Ding, S.; Li, X. A spheroidal inclusion within a 1D hexagonal piezoelectric quasicrystal. Arch. Appl. Mech. 2020, 90,

1039–1058. [CrossRef]
33. Hu, Z.M.; Zhang, L.L.; Gao, Y. Eshelby tensors for one-dimensional piezoelectric quasicrystal materials with ellipsoidal inclusions.

In Proceedings of the 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Zhengzhou,
China, 16–19 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 474–479.

34. Hu, K.Q.; Meguid, S.A.; Zhong, Z.; Gao, C.-F. Partially debonded circular inclusion in one-dimensional quasicrystal material with
piezoelectric effect. Int. J. Mech. Mater. Des. 2020, 16, 749–766. [CrossRef]

35. Hu, K.; Meguid, S.A.; Wang, L.; Jin, H. Electro-elastic field of a piezoelectric quasicrystal medium containing two cylindrical
inclusions. Acta Mech. 2021, 232, 2513–2533. [CrossRef]

36. Zhai, T.; Ma, Y.; Ding, S.; Zhao, X. Circular inclusion problem of two-dimensional decagonal quasicrystals with interfacial rigid
lines under concentrated force. ZAMM-Z. Angew. Math. Mech. 2021, 101, e202100081. [CrossRef]

37. Hu, Y.Q.; Xia, P.; Wei, K.X. The interaction between a dislocation and circular inhomogeneity in 1D hexagonal quasicrystals. Appl.
Mech. Mater. 2010, 34–35, 429–434. [CrossRef]

https://doi.org/10.1007/s00707-020-02721-8
https://doi.org/10.1016/j.apm.2020.01.024
https://doi.org/10.1177/10812865211073814
https://doi.org/10.1007/s00033-023-01947-5
https://doi.org/10.1016/0020-7225(68)90012-8
https://doi.org/10.1016/0020-7225(94)90033-7
https://doi.org/10.1016/S0020-7683(96)00221-1
https://doi.org/10.1016/S0020-7683(98)00047-X
https://doi.org/10.1016/S0965-9773(98)00089-0
https://doi.org/10.1088/0953-8984/15/24/102
https://doi.org/10.2140/memocs.2013.1.1
https://doi.org/10.1142/S0217984923500434
https://doi.org/10.1007/s00419-023-02438-9
https://doi.org/10.1002/zamm.201800106
https://doi.org/10.1016/j.ijengsci.2004.07.002
https://doi.org/10.1080/14786435.2012.706717
https://doi.org/10.12693/APhysPolA.126.467
https://doi.org/10.1080/14786435.2015.1132852
https://doi.org/10.1007/s10483-018-2363-9
https://doi.org/10.1007/s10338-018-0072-0
https://doi.org/10.1007/s00419-020-01657-8
https://doi.org/10.1007/s10999-020-09500-2
https://doi.org/10.1007/s00707-021-02955-0
https://doi.org/10.1002/zamm.202100081
https://doi.org/10.4028/www.scientific.net/AMM.34-35.429


Crystals 2023, 13, 1419 25 of 25

38. Li, L.H.; Liu, G.T. Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals. Philos. Mag. Lett. 2013, 93,
142–151. [CrossRef]

39. Li, L.H.; Zhao, Y. Interaction of a screw dislocation with interface and wedge-shaped cracks in one-dimensional hexagonal
piezoelectric quasicrystals bimaterial. Math. Probl. Eng. 2019, 2019, 1037297. [CrossRef]

40. Lv, X.; Liu, G.-T. Exact solutions for interaction of parallel screw dislocations with a wedge crack in one-dimensional hexagonal
quasicrystal with piezoelectric effects. Math. Probl. Eng. 2020, 2020, 4797413. [CrossRef]

41. Pi, J.; Zhao, Y.; Li, L. Interaction between a screw dislocation and two unequal interface cracks emanating from an elliptical hole
in one dimensional hexagonal piezoelectric quasicrystal bi-material. Crystals 2022, 12, 314. [CrossRef]

42. Hwu, C.; Yen, W.J. On the anisotropic elastic inclusions in plane elastostatics. J. Appl. Mech. 1993, 60, 626–632. [CrossRef]
43. Pak, Y.E. Force on a piezoelectric screw dislocation. J. Appl. Mech. 1990, 57, 863–869. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/09500839.2012.752883
https://doi.org/10.1155/2019/1037297
https://doi.org/10.1155/2020/4797413
https://doi.org/10.3390/cryst12030314
https://doi.org/10.1115/1.2900850
https://doi.org/10.1115/1.2897653

	Introduction 
	Basic Equations 
	Problem Description 
	Typical Case of Dislocation Located Outside Inclusion 
	No Dislocation 
	Interference between the Screw Dislocation and Elliptical Hole 
	Interference between the Screw Dislocation and Circular Inclusion 
	Interference between Screw Dislocation and Circular Hole 
	No Electric Field 

	Dislocation Located within an Inclusion 
	Typical Case of Dislocation Located within an Inclusion 
	Elliptical Hole 
	Interference between Screw Dislocation and Circular Inclusion 
	Circular Hole 
	No Electric Field 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

