Flux Growth and Characterization of Bulk InVO4 Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Flux Composition
2.2. Single Crystal Growth
2.3. Sample Characterization
3. Results and Discussion
3.1. Characterization with X-ray Powder Diffraction and EDX
3.2. Characterization with XANES
3.3. EXAFS (Extended X-ray Absorption Fine Structure)
3.4. UV-vis-NIR spectroscopy Absorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Touboul, M.; Melghit, K.; Bénard, P.; Louër, D. Crystal Structure of a Metastable Form of Indium Orthovanadate, InVO4-I. J. Solid State Chem. 1995, 118, 93–98. [Google Scholar] [CrossRef]
- Touboul, M.; Tolédano, P. Structure du vanadate d’indium: InVO4. Acta Cryst. B 1980, 36, 240–245. [Google Scholar] [CrossRef]
- Touboul, M.; Ingrain, D. Synthèses et propriétés thermiques de InVO4 et TlVO4. J. Less Common Met. 1980, 71, 55–62. [Google Scholar] [CrossRef]
- Errandonea, D.; Gomis, O.; Garcia-Domene, B.; Pellicer-Porres, J.; Katari, V.; Achary, S.N.; Tyagi, A.K.; Popescu, C. New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium. Inorg. Chem. 2013, 52, 12790–12798. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Appalakondaiah, S.; Vaitheeswaran, G. High pressure structural, electronic, and optical properties of polymorphic InVO4 phases. J. Appl. Phys. 2016, 119, 085702. [Google Scholar] [CrossRef]
- Errandonea, D. High pressure crystal structures of orthovanadates and their properties. J. Appl. Phys. 2020, 128, 040903. [Google Scholar] [CrossRef]
- Botella, P.; Errandonea, D.; Garg, A.B.; Rodriguez-Hernandez, P.; Muñoz, A.; Achary, S.N.; Vomiero, A. High-pressure characterization of the optical and electronic properties of InVO4, InNbO4, and InTaO4. SN Appl. Sci. 2019, 1, 389. [Google Scholar] [CrossRef]
- Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, W.; Shi, P.; Liu, D.; Liu, M.; Jing, W.; Tian, B.; Ye, Z.; Jiang, Z. Preparation and thermal volatility characteristics of In2O3/ITO thin film thermocouple by RF magnetron sputtering. AIP Adv. 2017, 7, 115025. [Google Scholar] [CrossRef]
- Lamoreaux, R.H.; Hildenbrand, D.L.; Brewer, L. High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, AI, Ga, In, TI, Si, Ge, Sn, Pb, Zn, Cd and Hg. J. Phys. Chem. Ref. Data 1987, 16, 419–443. [Google Scholar] [CrossRef]
- Nakamura, S.; Maljuk, A.; Maruyama, Y.; Nagao, M.; Watauchi, S.; Hayashi, T.; Anzai, Y.; Furukawa, Y.; Ling, C.D.; Deng, G.; et al. Growth of LiCoO2 single crystals by the TSFZ method. Cryst. Growth Des. 2019, 19, 415–420. [Google Scholar] [CrossRef]
- Bosacka, M.; Filipek, E.; Paczesna, A. Unknown phase equilibria in the ternary oxide V2O5-CuO-In2O3 system in subsolidus area. J. Therm. Anal. Calorim. 2016, 125, 1161–1170. [Google Scholar] [CrossRef]
- Nobe, Y.; Takashima, H.; Katsumata, T. Decoloration of yttrium orthovanadate laser host crystals by annealing. Opt. Lett. 1994, 19, 1216–1218. [Google Scholar] [CrossRef] [PubMed]
- Voloshyna, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.T. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals. Nucl. Instrum. Methods Phys. Res. A 2012, 664, 299–303. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J.; Roisnel, T. FullProf.98 and WinPLOTR: New Windows95/NT Applications for Diffraction. IUCr Com. Powder Diffr. Newsl. 1998, 20, 35–36. [Google Scholar]
- Calvo, C.; Faggiani, R. α-Cupric vanadate. Acta Crystallogr. Sect. B 1975, 31, 603–605. [Google Scholar] [CrossRef]
- Caliebe, W.A.; Murzin, V.; Kalinko, A.; Görlitz, M. High-flux XAFS-beamline P64 at PETRA III. AIP Conf. Proc. 2019, 2054, 060031. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchr. Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Denis, S.; Baudrin, E.; Touboul, M.; Tarascon, J.-M. Synthesis and electrochemical properties vs Li of amorphous vanadates of general formula RVO4 (R = In, Cr, Al, Fe, Y). J. Electrochem. Soc. 1997, 144, 4099–4109. [Google Scholar] [CrossRef]
- Vitova, T.; Mangold, S.; Paulmann, C.; Gospodinov, M.; Marinova, V.; Mihailova, B. X-ray absorption spectroscopy of Ru-doped relaxor ferroelectrics with a perovskite-type structure. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 144112. [Google Scholar] [CrossRef]
- Bearden, J.A.; Burr, A.F. Reevaluation of X-ray Atomic Energy Levels. Rev. Mod. Phys. 1967, 39, 125. [Google Scholar] [CrossRef]
- Tsoukalou, A.; Abdala, P.M.; Armutlulu, A.; Willinger, E.; Fedorov, A.; Müller, C.R. Operando X-ray Absorption Spectroscopy Identifies a Monoclinic ZrO2:In Solid Solution as the Active Phase for the Hydrogenation of CO2 to Methanol. ACS Catal. 2020, 10, 10060–10067. [Google Scholar] [CrossRef]
- Chaurand, P.; Rose, J.; Briois, V.; Salome, M.; Proux, O.; Nassif, V.; Olivi, L.; Susini, J.; Hazemann, J.-L.; Bottero, J.-Y. New Methodological Approach for the Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag. J. Phys. Chem. B 2007, 111, 5101–5110. [Google Scholar] [CrossRef]
- Nga, T.T.T.; Huang, Y.-C.; Chen, J.-L.; Chen, C.-L.; Lin, B.-H.; Yeh, P.-H.; Du, C.-H.; Chiou, J.-W.; Pong, W.-F.; Arul, K.T.; et al. Effect of Ag-Decorated BiVO4 on Photoelectrochemical Water Splitting: An X-ray Absorption Spectroscopic Investigation. Nanomaterials 2022, 12, 3659. [Google Scholar] [CrossRef] [PubMed]
- Newville, M. Fundamentals of XAFS; Revision 1.7; University of Chicago: Chicago, IL, USA, 2004. [Google Scholar]
- Rehr, J.J.; de Leon, J.M.; Zabinsky, S.I.; Albers, R.C. Theoretical X-ray Absorption Fine Structure Standards. J. Am. Chem. Soc. 1991, 113, 5135–5140. [Google Scholar] [CrossRef]
- Ye, J.; Zou, Z.; Arakawa, H.; Oshikiri, M.; Shimoda, M.; Matsushita, A.; Shishido, T. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+). J. Photochem. Photobiol. A 2002, 148, 79–83. [Google Scholar] [CrossRef]
- Ye, J.; Zou, Z.; Oshikiri, M.; Matsushita, A.; Shimoda, M.; Imai, M.; Shishido, T. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett. 2002, 356, 221–226. [Google Scholar] [CrossRef]
- Oshikiri, M.; Boero, M.; Ye, J.; Zou, Z.; Kido, G. Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phys. 2002, 117, 7313. [Google Scholar] [CrossRef]
- Enache, C.S.; Lloyd, D.; Damen, M.R.; Schoonman, J.; van de Krol, R. Photo-electrochemical Properties of Thin-Film InVO4 Photoanodes: The Role of Deep Donor States. J. Phys. Chem. C 2009, 113, 19351–19360. [Google Scholar] [CrossRef]
- Oshikiri, M.; Boero, M.; Ye, J.; Aryasetiwan, F.; Kido, G. The electronic structure of the thin films of InVO4 and TiO2 by first principles calculations. Thin Solid Films 2003, 445, 168–174. [Google Scholar] [CrossRef]
Cu2V2O7 | InVO4 | Parameter |
---|---|---|
Fdd2 (#43) Cu2V2O7-type | Cmcm (#64) CrVO4-type | Space group, Prototype |
8.3631(0) | 5.7329(8) | a, Å |
20.6495(6) | 8.5010(8) | b, Å |
6.4497(6) | 6.5590(3) | c, Å |
1113.837(0.000) | 319.664(0.014) | V, Å3 |
114 | 73 | Reflections measured |
16.1 | 4.64 | Weighted profile R-factor (Rwp) |
6.76 | 1.94 | Expected R factor (Rexp) |
5.69 | 5.69 | Goodness of fit (χ2) |
2.87 | 97.13 | Content in the sample, wt.% |
EXAFS Calc. | Str. Model | Distance (in Å) | |
---|---|---|---|
Rf = 0.036 | 2.11(4) | 2.1184 | In–O1(×4) |
2.22(6) | 2.2219 | In–O2 (×2) | |
3.29(2) | 3.2795 | In–In | |
3.53(9) | 3.4985 | In–V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voloshyna, O.; Gorbunov, M.V.; Mikhailova, D.; Maljuk, A.; Seiro, S.; Büchner, B. Flux Growth and Characterization of Bulk InVO4 Crystals. Crystals 2023, 13, 1439. https://doi.org/10.3390/cryst13101439
Voloshyna O, Gorbunov MV, Mikhailova D, Maljuk A, Seiro S, Büchner B. Flux Growth and Characterization of Bulk InVO4 Crystals. Crystals. 2023; 13(10):1439. https://doi.org/10.3390/cryst13101439
Chicago/Turabian StyleVoloshyna, Olesia, Mikhail V. Gorbunov, Daria Mikhailova, Andrey Maljuk, Silvia Seiro, and Bernd Büchner. 2023. "Flux Growth and Characterization of Bulk InVO4 Crystals" Crystals 13, no. 10: 1439. https://doi.org/10.3390/cryst13101439
APA StyleVoloshyna, O., Gorbunov, M. V., Mikhailova, D., Maljuk, A., Seiro, S., & Büchner, B. (2023). Flux Growth and Characterization of Bulk InVO4 Crystals. Crystals, 13(10), 1439. https://doi.org/10.3390/cryst13101439