A Coupled Approach to Compute the Dislocation Density Development during Czochralski Growth and Its Application to the Growth of High-Purity Germanium (HPGe)
Abstract
:1. Introduction
2. Numerical Model
2.1. Global Calculation Using Elmer
2.2. Local Calculation Using MACPLAS
3. Material Parameters
3.1. Germanium
3.2. Other Materials
4. Experimental Setup
5. Results and Discussion
5.1. Global Simulation (Elmer)
5.2. Local Simulation (MACPLAS)
- We use a quasi-transient approach for the global thermal calculation.
- For the stress calculation, was used in Equation (7) and not Lambropoulos’ approximation for growth in the direction.
- We used a simple AH model without considering glide planes [55].
- The AH model is a local model in the sense that dislocations do not propagate from one computational node to a neighbouring one.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Moskalyk, R. Review of germanium processing worldwide. Miner. Eng. 2004, 17, 393–402. [Google Scholar] [CrossRef]
- Curtolo, D.C.; Friedrich, S.; Friedrich, B. High Purity Germanium, a Review on Principle Theories and Technical Production Methodologies. J. Cryst. Process Technol. 2017, 7, 65–84. [Google Scholar] [CrossRef]
- Haller, E.E.; Hansen, W.L.; Goulding, F.S. Physics of ultra-pure germanium. Adv. Phys. 1981, 30, 93–138. [Google Scholar] [CrossRef]
- Moskovskih, V.A.; Kasimkin, P.V.; Shlegel, V.N.; Vasiliev, Y.V.; Gridchin, V.A.; Podkopaev, O.I. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals. J. Cryst. Growth 2014, 401, 767–771. [Google Scholar] [CrossRef]
- Cattadori, C.M.; Salamida, F. GERDA and LEGEND: Probing the Neutrino Nature and Mass at 100 meV and beyond. Universe 2021, 7, 314. [Google Scholar] [CrossRef]
- Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S.T.; et al. Background-free search for neutrinoless double-β decay of 76Ge with GERDA. Nature 2017, 544, 47. [Google Scholar] [CrossRef]
- Van den Bogaert, N.; Dupret, F. Dynamic global simulation of the Czochralski process II. Analysis of the growth of a germanium crystal. J. Cryst. Growth 1997, 171, 77–93. [Google Scholar] [CrossRef]
- Artemyev, V.V.; Smirnov, A.D.; Kalaev, V.V.; Mamedov, V.M.; Sidko, A.P.; Podkopaev, O.I.; Kravtsova, E.D.; Shimansky, A.F. Modeling of dislocation dynamics in germanium Czochralski growth. J. Cryst. Growth 2017, 468, 443–447. [Google Scholar] [CrossRef]
- Miller, W.; Abrosimov, N.; Fischer, J.; Gybin, A.; Juda, U.; Kayser, S.; Janicskó-Csáthy, J. Quasi-Transient Calculation of Czochralski Growth of Ge Crystals Using the Software Elmer. Crystals 2020, 10, 18. [Google Scholar] [CrossRef]
- Alexander, H.; Haasen, P. Dislocations and plastic flow in the diamond structure. In Solid State Physics; Seitz, F., Turnbull, D., Ehrenreich, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1969; Volume 22, pp. 27–158. [Google Scholar] [CrossRef]
- Gradwohl, K.P.; Roder, M.; Danilewsky, A.N.; Sumathi, R.R. Investigation of the dislocation structure in Czochralski germanium crystals grown in [211] and [110] growth direction. CrystEngComm 2021, 23, 4116–4124. [Google Scholar] [CrossRef]
- Gradwohl, K.P.; Miller, W.; Dropka, N.; Sumathi, R.R. Quantitative dislocation multiplication law for Ge single crystals based on discrete dislocation dynamics simulations. Comput. Mater. Sci. 2022, 211, 111537. [Google Scholar] [CrossRef]
- Bános, N.; Friedrich, J.; Müller, G. Simulation of dislocation density: Global modeling of bulk crystal growth by a quasi-steady approach of the Alexander–Haasen concept. J. Cryst. Growth 2008, 310, 501–507. [Google Scholar] [CrossRef]
- Gao, B.; Nakano, S.; Kakimoto, K. Highly efficient and stable implementation of the Alexander–Haasen model for numerical analysis of dislocation in crystal growth. J. Cryst. Growth 2013, 369, 32–37. [Google Scholar] [CrossRef]
- Lu, S.; Chen, H.; Hang, W.; Wang, R.; Yuan, J.; Pi, X.; Yang, D.; Han, X. Numerical analysis of the dislocation density in the n-type 4H-SiC. CrystEngComm 2023, 25, 3718–3725. [Google Scholar] [CrossRef]
- Miyazaki, N.; Okuyama, S. Development of finite element computer program for dislocation density analysis of bulk semiconductor single crystals during Czochralski growth. J. Cryst. Growth 1998, 183, 81–88. [Google Scholar] [CrossRef]
- Miyazaki, N.; Kuroda, Y.; Sakaguchi, M. Dislocation density analyses of GaAs bulk single crystal during growth process (effects of crystal anisotropy). J. Cryst. Growth 2000, 218, 221–231. [Google Scholar] [CrossRef]
- Gallien, B.; Albaric, M.; Duffar, T.; Kakimoto, K.; M’Hamdi, M. Study on the usage of a commercial software (Comsol-Multiphysics®) for dislocation multiplication model. J. Cryst. Growth 2017, 457, 60–64. [Google Scholar] [CrossRef]
- Pendurti, S. Modeling Dislocation Generation in High Pressure Czochralski Growth of InP Single Crystals. Ph.D. Thesis, State University of New York, Stony Brook, NY, USA, 2003. [Google Scholar]
- Mamedov, V.; STR Group—Soft-Impact, Ltd., St. Petersburg, Russia. Private communication.
- Wang, G.; Guan, Y.; Mei, H.; Mei, D.; Yang, G.; Govani, J.; Khizar, M. Dislocation density control in high-purity germanium crystal growth. J. Cryst. Growth 2014, 393, 54–58. [Google Scholar] [CrossRef]
- Abrosimov, N.; Czupalla, M.; Dropka, N.; Fischer, J.; Gybin, O.; Irmscher, K.; Janicskó-Csáthy, J.; Juda, U.; Kayser, S.; Miller, W.; et al. Technology Development of High Purity Germanium Crystals for Radiation Detectors. J. Cryst. Growth 2020, 532, 125396. [Google Scholar] [CrossRef]
- Sumathi, R.R.; Gybin, A.; Gradwohl, K.P.; Palleti, P.C.; Pietsch, M.; Irmscher, K.; Dropka, N.; Juda, U. Development of Large-Diameter and Very High Purity Ge Crystal Growth Technology for Devices. Cryst. Res. Technol. 2023, 58, 2200286. [Google Scholar] [CrossRef]
- MACPLAS: MAcroscopic Crystal PLAsticity Simulator. Available online: https://github.com/aSabanskis/MACPLAS (accessed on 1 September 2023).
- Sabanskis, A.; Dadzis, K.; Gradwohl, K.P.; Wintzer, A.; Miller, W.; Juda, U.; Sumathi, R.R.; Virbulis, J. Parametric numerical study of dislocation density distribution in Czochralski-grown germanium crystals. J. Cryst. Growth 2023, 622, 127384. [Google Scholar] [CrossRef]
- Available online: https://www.csc.fi/web/elmer (accessed on 1 September 2023).
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Available online: https://github.com/nemocrys/objectgmsh (accessed on 1 September 2023). [CrossRef]
- Available online: https://github.com/nemocrys/pyelmer (accessed on 1 September 2023).
- Available online: https://github.com/nemocrys/opencgs (accessed on 1 September 2023).
- Enders-Seidlitz, A.; Pal, J.; Dadzis, K. Development and validation of a thermal simulation for the Czochralski crystal growth process using model experiments. J. Cryst. Growth 2022, 593, 126750. [Google Scholar] [CrossRef]
- Hurle, D.T.J. Analytical representation of the shape of the meniscus in Czochralski growth. J. Cryst. Growth 1983, 63, 13–17. [Google Scholar] [CrossRef]
- Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.P.; Turcksin, B.; Wells, D. The deal.II library, version 8.5. J. Numer. Math. 2017, 25, 137–145. [Google Scholar] [CrossRef]
- Sabanskis, A.; Dadzis, K.; Menzel, R.; Virbulis, J. Application of the Alexander–Haasen Model for Thermally Stimulated Dislocation Generation in FZ Silicon Crystals. Crystals 2022, 12, 174. [Google Scholar] [CrossRef]
- Rhim, W.K.; Ishikawa, T. Thermophysical Properties of Molten Germanium Measured by a High-Temperature Electrostatic Levitator. Int. J. Thermophys. 2000, 21, 429–443. [Google Scholar] [CrossRef]
- Chathoth, S.M.; Damaschke, B.; Samwer, K.; Schneider, S. Thermophysical properties of Si, Ge, and Si–Ge alloy melts measured under microgravity. Appl. Phys. Lett. 2008, 93, 071902. [Google Scholar] [CrossRef]
- Nishi, T.; Shibata, H.; Ohta, H. Thermal Diffusivities and Conductivities of Molten Germanium and Silicon. Mater. Trans. 2003, 44, 2369–2374. [Google Scholar] [CrossRef]
- Takasuka, E.; Tokizaki, E.; Terashima, K.; Kimura, S. Emissivity of liquid germanium in visible and near infrared region. J. Appl. Phys. 1997, 82, 2590–2594. [Google Scholar] [CrossRef]
- Skinner, L.; Barnes, A.C. An oscillating coil system for contactless electrical conductivity measurements of aerodynamically levitated melts. Rev. Sci. Instrum. 2006, 77, 123904. [Google Scholar] [CrossRef]
- Sato, Y.; Nishizuka, T.; Tachikawa, T.; Hoshi, M.; Yamamura, T.; Yamamura, T. Viscosity and density of molten germanium. High Temp. High Press. 2000, 32, 252–260. [Google Scholar] [CrossRef]
- Artemyev, V.K.; Folomeev, V.I.; Ginkin, V.P.; Kartavykh, A.V.; Mil’vidskii, M.G.; Rakov, V.V. The mechanism of Marangoni convection influence on dopant distribution in Ge space-grown single crystals. J. Cryst. Growth 2001, 223, 29–37. [Google Scholar] [CrossRef]
- den Bogaert, N.V.; Dupret, F. Dynamic global simulation of the Czochralski process I. Principles of the method. J. Cryst. Growth 1997, 171, 65–76. [Google Scholar] [CrossRef]
- Allen, F.G. Emissivity at 0.65 Micron of Silicon and Germanium at High Temperatures. J. Appl. Phys. 1957, 28, 1510–1511. [Google Scholar] [CrossRef]
- Hellwege, K.H.; Madelung, O. (Eds.) Landolt-Börnstein; Springer: Berlin, Germany, 1984; Volume 22a. [Google Scholar]
- Haasen, P. Dislocations in Semiconductors. J. Phys. Colloques 1966, 27, C3-30–C3-38. [Google Scholar] [CrossRef]
- Schaumburg, H. Velocity Measurements on Screw- and 60o-Dislocations in Germanium. Phys. Status Solidi (B) 1970, 40, K1–K4. [Google Scholar] [CrossRef]
- Reeber, R.R.; Wang, K. Thermal expansion and lattice parameters of group IV semiconductors. Mater. Chem. Phys. 1996, 46, 259–264. [Google Scholar] [CrossRef]
- Schunk. Data Sheet Schunk Carbon Group; Schunk Kohlenstofftechnik GmbH: Heuchelheim, Germany, private communication.
- Moroe, S.; Woodfield, P.L.; Kimura, K.; Kohno, M.; Fukai, J.; Fuji, M.; Shinzato, K.; Takata, Y. Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature. Int. J. Thermophys. 2011, 32, 1887–1917. [Google Scholar] [CrossRef]
- Sakoda, N.; Hisatsugu, T.; Furusato, K.; Shinzato, K.; Kohno, M.; Takata, Y. Viscosity measurements of hydrogen at high temperatures up to 573 K by a curved vibrating wire method. J. Chem. Thermodyn. 2015, 89, 22–26. [Google Scholar] [CrossRef]
- Wagner, S. IEEE standard test procedures for high-purity germanium crystals for radiation detectors. IEEE Std 1160 1993, 1993, 20–21. [Google Scholar]
- Abrosimov, N.V.; Lüdge, A.; Riemann, H.; Schröder, W. Lateral photovoltage scanning (LPS) method for the visualization of the solid-liquid interface of Si1−xGex single crystals. J. Cryst. Growth 2002, 237–239, 356–360. [Google Scholar] [CrossRef]
- Foroushani, S.; Wintzer, A.; Dadzis, K. Heating efficiency and energy saving potential of a model crystal growth furnace. In Proceedings of the Deutsche Kristallzüchtungstagung (DKT 2023), Augsburg, Germany, 15–17 March 2023. [Google Scholar] [CrossRef]
- Lambropoulos, J.C. The isotropic assumption during the Czochralski growth of single semiconductors crystals. J. Cryst. Growth 1987, 84, 349–358. [Google Scholar] [CrossRef]
- Sumino, K.; Yonenaga, I. Dislocation Dynamics and Mechanical Behaviour of Elemental and Compound Semiconductors. Phys. Status Solid (A) 1993, 138, 573–581. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Nikanorov, S.P.; Kardashev, B.K. Elasticity and Dislocation Inelasticity of Crystals; Nauka Publishing House: Moscow, Russia, 1985. [Google Scholar]
- Ge—Germanium. Mechanical Properties, Elastic Constants, Lattice Vibrations. Available online: http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html (accessed on 1 September 2023).
Density | 5534 | |||
Heat capacity | 358 (@ ) | [35] | ||
Thermal expansion | [36] | |||
Thermal conductivity | 48 (@ ) | [37] | ||
Emissivity | 0.2 | [38] | ||
Electrical conductivity | [39] | |||
Dynamic viscosity | (@ ) | [40] | ||
Prandtl number | Pr | 0.05 | ||
Marangoni coefficient | [41] | |||
Latent heat | [42] | |||
Laplace constant | m |
Density | 5370 (@) | |||
Heat capacity | 418 (@ ) | [42] | ||
Thermal expansion | ||||
Thermal conductivity | ||||
17 | ||||
Emissivity | 0.55 | [43] | ||
Electrical conductivity | [44] | |||
Elastic constants | Pa | |||
Pa | ||||
Pa | ||||
Peierls energy | Q | eV | 1.62 | [45,46] |
Prefactor in Equation (2) | K | [12] | ||
Prefactor in Equation (3) | [12] | |||
Exponent in Equation (2) | l | 1 | [12] | |
Exponent in Equation (3) | m | 1 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, W.; Sabanskis, A.; Gybin, A.; Gradwohl, K.-P.; Wintzer, A.; Dadzis, K.; Virbulis, J.; Sumathi, R. A Coupled Approach to Compute the Dislocation Density Development during Czochralski Growth and Its Application to the Growth of High-Purity Germanium (HPGe). Crystals 2023, 13, 1440. https://doi.org/10.3390/cryst13101440
Miller W, Sabanskis A, Gybin A, Gradwohl K-P, Wintzer A, Dadzis K, Virbulis J, Sumathi R. A Coupled Approach to Compute the Dislocation Density Development during Czochralski Growth and Its Application to the Growth of High-Purity Germanium (HPGe). Crystals. 2023; 13(10):1440. https://doi.org/10.3390/cryst13101440
Chicago/Turabian StyleMiller, Wolfram, Andrejs Sabanskis, Alexander Gybin, Kevin-P. Gradwohl, Arved Wintzer, Kaspars Dadzis, Jānis Virbulis, and Radhakrishnan Sumathi. 2023. "A Coupled Approach to Compute the Dislocation Density Development during Czochralski Growth and Its Application to the Growth of High-Purity Germanium (HPGe)" Crystals 13, no. 10: 1440. https://doi.org/10.3390/cryst13101440
APA StyleMiller, W., Sabanskis, A., Gybin, A., Gradwohl, K. -P., Wintzer, A., Dadzis, K., Virbulis, J., & Sumathi, R. (2023). A Coupled Approach to Compute the Dislocation Density Development during Czochralski Growth and Its Application to the Growth of High-Purity Germanium (HPGe). Crystals, 13(10), 1440. https://doi.org/10.3390/cryst13101440