First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys
Abstract
:1. Introduction
2. Calculation Method and Details
3. Results and Discussion
3.1. Lattice Constant
3.2. Enthalpy of Mixing
3.3. Solid Solution Strengthening
3.4. Elastic Properties
Structure | Source | Elastic Constants of Crystals (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C12 | C13 | C22 | C23 | C33 | C55 | C66 | ||||
Cu | Present | 184.5 | 116.7 | 77.1 | ||||||
Exp.at 4.2 K a | 176.2 | 124.9 | 81.8 | |||||||
Exp.at RT b | 170 | 122.5 | 75.8 | |||||||
Exp.at RT c | 168.1 | 121.5 | 75.1 | |||||||
Cal. d | 176 | 118.2 | 81.9 | |||||||
Cal. e | 183.5 | 125.9 | 80.9 | |||||||
Cu31Sn | Present Present (SBP) | 182.98 182.93 | 109.79 109.73 | 109.69 | 183.01 | 109.71 | 182.80 | 78.13 78.13 | 78.13 | 78.13 |
Cu30Sn2 | Present Present (SBP) | 158.44 158.27 | 130.77 129.82 | 128.96 | 159.97 | 129.74 | 156.39 | 61.33 61.34 | 61.35 | 61.35 |
Cu29Sn3 | Present Present (SBP) | 160.51 160.69 | 107.29 106.89 | 106.40 | 161.68 | 106.97 | 159.88 | 75.63 75.62 | 75.62 | 75.62 |
Structure | Source | Modulus | υ | GH/BH | C12-C44 | W/J·m−1 | AU | |||
---|---|---|---|---|---|---|---|---|---|---|
BH (GPa) | GH (GPa) | E (GPa) | ||||||||
Cu | Present | 139.7 | 55.7 | 147.5 | 0.32 | 0.40 | 39.6 | 0.367 | 0.83 | |
Exp.at 4.2 K | 142 | 51.5 | 137.8 | 0.34 | 0.36 | 1.80 | [40] | |||
Exp.at RT | 138.3 | 47.7 | 128.3 | 0.35 | 0.35 | 1.81 | [41] | |||
Exp.at RT | 137.0 | 47.1 | 126.7 | 0.35 | 0.34 | 1.84 | [42] | |||
Cal. | 137.4 | 54.0 | 143.3 | 0.33 | 0.39 | 1.42 | [43] | |||
Cal. | 145.1 | 53.5 | 142.9 | 0.34 | 0.37 | 1.40 | [44] | |||
Cu31Sn | Present | 134.13 | 57.63 | 151.23 | 0.31 | 0.43 | 31.60 | 0.387 | 0.72 | |
Cu30Sn2 | Present | 139.01 | 34.43 | 95.42 | 0.39 | 0.25 | 68.48 | 0.236 | 3.06 | |
Cu29Sn3 | Present | 124.81 | 49.99 | 132.31 | 0.32 | 0.40 | 31.27 | 0.349 | 1.40 |
3.5. Electronic Properties
3.6. Debye Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Modeling Method:Script
- 1:
- use strict;use Getopt::Long;
- use MaterialsScript qw(:all);
- my $disorderedStructure = $Documents{“Cu31Sn.xsd”};
- my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
- ($disorderedStructure,2,2,2);
- my $table = $results->StudyTable;
- print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations. “\n”;
- 2:
- use strict;
- use Getopt::Long;
- use MaterialsScript qw(:all);
- my $disorderedStructure = $Documents{“Cu30Sn2.xsd”};
- my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
- ($disorderedStructure,2,2,2);
- my $table = $results->StudyTable;
- print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations. “\n”;
- 3:
- use strict;
- use Getopt::Long;
- use MaterialsScript qw(:all);
- my $disorderedStructure = $Documents{“Cu29Sn3.xsd”};
- my $results = Tools->Disorder->StatisticalDisorder->GenerateSuperCells
- ($disorderedStructure,2,2,2);
- my $table = $results->StudyTable;
- print “Number of disorder configurations generated:”.$results->NumIrreducibleConfigurations. “\n”;
- Note:
- This script references the content of the following web site: https://zhuanlan.zhihu.com/p/50322042.
Structures | Weighting | Configuration | E (eV/atom) | |
---|---|---|---|---|
Cu31Sn | 1 | 32 | baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | −45,867.723 |
Cu30Sn2 | 1 | 192 | baaaaaaaaaaabaaaaaaaaaaaaaaaaaaa | −44,485.574 |
2 | 192 | baaaaaaabaaaaaaaaaaaaaaaaaaaaaaa | −44,484.631 | |
3 | 16 | baaaaaabaaaaaaaaaaaaaaaaaaaaaaaa | −44,485.663 | |
4 | 48 | baabaaaaaaaaaaaaaaaaaaaaaaaaaaaa | −44,485.603 | |
5 | 48 | bbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | −44,485.427 | |
Cu29Sn3 | 1 | 256 | baaaaaaaaaaabaaaaaabaaaaaaaaaaaa | −43,103.560 |
2 | 768 | baaaaaaabaaaaaaaaaabaaaaaaaaaaaa | −43,102.542 | |
3 | 768 | baaaaaaabaaaaaaaabaaaaaaaaaaaaaa | −43,101.536 | |
4 | 256 | baaaaaaabaaaaaaabaaaaaaaaaaaaaaa | −43,100.554 | |
5 | 384 | baaaaaabbaaaaaaaaaaaaaaaaaaaaaaa | −43,102.624 | |
6 | 768 | baabaaaaaaaaaaaabaaaaaaaaaaaaaaa | −43,102.558 | |
7 | 192 | baabaaaaaaaabaaaaaaaaaaaaaaaaaaa | −43,103.594 | |
8 | 192 | baabaaaabaaaaaaaaaaaaaaaaaaaaaaa | −43,101.576 | |
9 | 32 | baababaaaaaaaaaaaaaaaaaaaaaaaaaa | −43,103.623 | |
10 | 384 | bbaaaaaaaaaaaaaaaaaaaaaabaaaaaaa | −43,102.360 | |
11 | 384 | bbaaaaaaaaaabaaaaaaaaaaaaaaaaaaa | −43,103.366 | |
12 | 384 | bbaaaaaabaaaaaaaaaaaaaaaaaaaaaaa | −43,101.419 | |
13 | 96 | bbaaaabaaaaaaaaaaaaaaaaaaaaaaaaa | −43,103.483 | |
14 | 96 | bbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | −43,103.230 |
Appendix A.2
Appendix A.3
Element | Pure | |||
---|---|---|---|---|
V0 (Å3/atom) | B0 (GPa) | B0′ | E0 (eV/atom) | |
Cu | 12.04 | 128.16 | 4.33 | −1476.515 |
Sn | 27.29 | 54.47 | 4.40 | −95.480 |
Appendix A.4
Structure | V (Å3/atom) | E (eV/atom) |
---|---|---|
Cu31Sn | 393.47 | −45,868.47 |
Cu30Sn2 | 405.02 | −44,487.20 |
Cu29Sn3 | 417.17 | −43,105.81 |
References
- Yang, L.; Kang, H. Measurements of mechanical properties of α-phase in Cu–Sn alloys by using instrumented nanoindentation. J. Mater. Res. 2012, 27, 192–196. [Google Scholar]
- Sun, J.; Ming, T.Y. Electrochemical behaviors and electrodeposition of Single-Phase Cu-Sn Alloy coating in [BMIM]Cl. Electrochim. Acta 2018, 297, 87–93. [Google Scholar]
- Liu, Y.; Wang, L. Electro-deposition preparation of self-standing Cu-Sn alloy anode electrode for lithium ion battery. J. Alloys Compd. 2019, 775, 818–825. [Google Scholar] [CrossRef]
- Singh, J.B.; Cai, W. Dry sliding of Cu–15 wt%Ni–8 wt%Sn bronze: Wear behaviour and microstructures. Wear 2007, 263, 830–841. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Ringer, S.P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 2017, 144, 365–375. [Google Scholar] [CrossRef]
- Wen, Y.F.; Sun, J. Elastic stability of face-centered cubic Fe-Cu random solid solution alloys based on special quasirandom structure model. Chin. J. Nonferrous Met. 2012, 22, 2522–2528. [Google Scholar]
- Wei, Z.; Liu, L. Structural, electronic and thermo-elastic properties of Cu6Sn5 and Cu5Zn8 intermetallic compounds: First-principles investigation. Intermetallics 2010, 18, 922–928. [Google Scholar]
- An, R.; Wang, C. Determination of the Elastic Properties of Cu3Sn Through First-Principles Calculations. J. Electron. Mater. 2008, 37, 477–482. [Google Scholar]
- Davis, J.R. ASM Specialty Handbook: Copper and Copper Alloys; ASM International: Almere, The Netherlands, 2001. [Google Scholar]
- Scudino, S.; Unterdoerfer, C. Additive manufacturing of Cu-10Sn bronze. Mater. Lett. 2015, 156, 202–204. [Google Scholar] [CrossRef]
- Ping, H.; Xiao, F.R. Influence of hot pressing temperature on the microstructure and mechanical properties of 75% Cu–25% Sn alloy. Mater. Des. 2014, 53, 38–42. [Google Scholar]
- Payne, M.C.; Teter, M.P. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045. [Google Scholar] [CrossRef]
- Ming, X.; Wang, X.L. First-principles study of pressure-induced magnetic transition in siderite FeCO3. J. Alloys Compd. 2011, 510, L1–L4. [Google Scholar] [CrossRef]
- Varadachari, C.; Ghosh, A. Theoretical Derivations of a Direct Band Gap Semiconductor of SiC Doped with Ge. J. Electron. Mater. 2014, 44, 167–176. [Google Scholar]
- Ullrich, C.A.; Kohn, W. Degeneracy in Density Functional Theory: Topology in the v and n Spaces. Phys. Rev. Lett. 2002, 89, 156401. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, T. Research progress on intermetallic compounds and solid solutions of Mg alloys based on first-principlescalculation. Chongqing Daxue Xuebao/J. Chongqing Univ. 2018, 41, 30–44. [Google Scholar]
- Straumanis, M.E.; Yu, L.S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Crystallogr. 2014, 25, 676–682. [Google Scholar] [CrossRef]
- Uesugi, T.; Higashi, K. First-principles studies on lattice constants and local lattice distortions in solid solution aluminum alloys. Comput. Mater. Sci. 2013, 67, 1–10. [Google Scholar] [CrossRef]
- Sidot, E.; Kahn-Harari, A. The lattice parameter of α-bronzes as a function of solute content: Application to archaeological materials. Mater. Sci. Eng. A 2005, 393, 147–156. [Google Scholar] [CrossRef]
- Liu, T.; Chong, X.Y. Changes of alloying elements on elasticity and solid solution strengthening of α-Ti alloys: A comprehensive high-throughput first-principles calculations. Rare Met. 2022, 41, 2719–2731. [Google Scholar] [CrossRef]
- Mxw, A.; Hong, Z.B. Solid-solution strengthening effects in binary Ni-based alloys evaluated by high-throughput calculations. Mater. Des. 2020, 198, 109359. [Google Scholar]
- Petrman, V.; Houska, J. Trends in formation energies and elastic moduli of ternary and quaternary transition metal nitrides. J. Mater. Sci. 2013, 48, 7642–7651. [Google Scholar] [CrossRef]
- Cottrell, A. Effect of solute atoms on the behavior of dislocations. In Report of a Conference on Strength of Solids; The Physical Society London: London, UK, 1948; pp. 30–36. [Google Scholar]
- Fleischer, R.L. Substitutional solution hardening. Acta Metall. 1963, 11, 203–209. [Google Scholar] [CrossRef]
- Suzuki, H. Segregation of Solute Atoms to Stacking Faults. J. Phys. Soc. Jpn. 1962, 17, 322–325. [Google Scholar] [CrossRef]
- Cottrell, A.H.; Hunter, S.C. CXI. Electrical interaction of a dislocation and a solute atom. Philos. Mag. 1953, 44, 1064–1067. [Google Scholar] [CrossRef]
- Friedel, J. Hardness of a Crystal Containing Uniformly Distributed Impurities or Precipitates. Dislocations 1964, 20, 368–384. [Google Scholar]
- Uesugi, T.; Takigawa, Y. Deformation Mechanism of Nanocrystalline Al-Fe Alloys by Analysis from Ab-Initio Calculations. Mater. Sci. Forum 2006, 503–504, 209–214. [Google Scholar] [CrossRef]
- Sms, A.; Kyk, A. Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Mater. Sci. Eng. A 2020, 796, 140054. [Google Scholar]
- Shi, J.G.; Liu, P. Selective Laser Melting Experiment of Cu10Sn Alloy. Ind. Technol. Innov. 2018, 5, 7–11. [Google Scholar]
- Mao, Z.; Zhang, D.Z. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze. Mater. Sci. Eng. A 2018, 721, 125–134. [Google Scholar] [CrossRef]
- Page, Y.L.; Saxe, P. Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials From ab Initio Calculations of Stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Jy, A.; Po, A. First-Principles Study of the Effect of Aluminum Content on the Elastic Properties of Cu-Al Alloys. Mater. Today Commun. 2022, 31, 103399. [Google Scholar]
- Browaeys, J.T.; Chevrot, S. Decomposition of the elastic tensor and geophysical applications. Geophys. J. R. Astron. Soc. 2010, 159, 667–678. [Google Scholar] [CrossRef]
- Moakher, M.; Norris, A.N. The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry. J. Elast. 2006, 85, 215–263. [Google Scholar] [CrossRef]
- Waller, I. Dynamical Theory of Crystal Lattices by M. Born and K. Huang. Acta Crystallogr. 1956, 9, 837–838. [Google Scholar] [CrossRef]
- Chung, D.H.; Buessem, W.R. The Voigt-Reuss-Hill Approximation and Elastic Moduli of Polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J. Appl. Phys. 1967, 38, 2535–2540. [Google Scholar] [CrossRef]
- Overton, W.C.; Gaffney, J. Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper. Phys. Rev. 1955, 98, 969–977. [Google Scholar] [CrossRef]
- Chang, Y.A.; Himmel, L. Temperature Dependence of the Elastic Constants of Cu, Ag, and Au above Room Temperature. J. Appl. Phys. 1966, 37, 3567–3572. [Google Scholar] [CrossRef]
- Schmunk, R.E.; Smith, C.S. Elastic constants of copper-nickel alloys. Acta Metall. 1960, 8, 396–401. [Google Scholar] [CrossRef]
- Cheng, L.; Shuai, Z. Insights into structural and thermodynamic properties of the intermetallic compound in ternary Mg–Zn–Cu alloy under high pressure and high temperature. J. Alloys Compd. 2014, 597, 119–123. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, L. Structural, Elastic, and Electronic Properties of Al-Cu Intermetallics from First-Principles Calculations. J. Electron. Mater. 2009, 38, 356–364. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y. First-Principles Calculations on the Enhancing Effect of Zr on the Mechanical and Thermodynamic Properties of Ir–Rh Alloys. Trans. Indian Inst. Met. 2023, 76, 1809–1817. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 2009, 45, 823–843. [Google Scholar] [CrossRef]
- Qu, D.; Li, C. Structural, electronic, and elastic properties of orthorhombic, hexagonal, and cubic Cu3Sn intermetallic compounds in Sn–Cu lead-free solder. J. Phys. Chem. Solids 2019, 138, 109253. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Yong, L. Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy. Intermetallics 2018, 101, 152–164. [Google Scholar] [CrossRef]
- Shuvalov, L.A. Electrical Properties of Crystals; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Ma, L.; Duan, Y. Phase stability, anisotropic elastic properties and electronic structures of C15-type Laves phases ZrM2 (M = Cr, Mo and W) from first-principles calculations. Philos. Mag. 2017, 97, 2406–2424. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Yan, M.F. First-principles investigation of structural, mechanical and electronic properties for Cu–Ti intermetallics. Comput. Mater. Sci. 2016, 123, 70–78. [Google Scholar] [CrossRef]
- Wei, Y.A.; Yz, A. Investigation on elastic properties and electronic structure of dilute Ir-based alloys by first-principles calculations. J. Alloys Compd. 2021, 850, 156548. [Google Scholar]
- Segall, M.; Shah, R. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B Condens. Matter 1996, 54, 16317. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Duan, Y. Structural properties, electronic structures and optical properties of WB2 with different structures: A theoretical investigation. Ceram. Int. 2018, 44, 11438–11447. [Google Scholar] [CrossRef]
- Anderson, O. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Reffas, M.; Bouhemadou, A. Ab initio study of structural, elastic, electronic and optical properties of spinel SnMg2O4. Phys. B Condens. Matter 2010, 405, 4079–4085. [Google Scholar] [CrossRef]
- Schreiber, E.; Anderson, O.L.; Soga, N.; Bell, J.F. Elastic Constants and Their Measurement. J. Appl. Mech. 1975, 42, 747–748. [Google Scholar] [CrossRef]
- Cahill, D.G.; Pohl, R.O. Heat flow and lattice vibrations in glasses. Solid State Commun. 1989, 70, 927–930. [Google Scholar] [CrossRef]
- Fine, M.E. Elastic constants versus melting temperature in metals. Scr. Metall. 1984, 18, 951–956. [Google Scholar] [CrossRef]
- Murray, J.L. The CuTi (Copper-Titanium) system. J. Phase Equilibria 1983, 4, 81–95. [Google Scholar]
- Lebedev-Stepanov, P.V. Plasma frequency approach to estimate the Debye temperature of the ionic crystals and metal alloys. J. Phys. Chem. Solids 2014, 75, 903–910. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.J. First-principles calculations of the structural, elastic and thermodynamic properties of tetragonal copper-titanium intermetallic compounds. J. Alloys Compd. 2016, 687, 984–989. [Google Scholar] [CrossRef]
Number of Sn Atoms | Structure | Mass Ratio of Sn Contents (wt.%) | Atomic Ratio of Sn Contents (at%) |
---|---|---|---|
0 | Cu | 0 | 0 |
1 | Cu31Sn | 5.864 | 3.125 |
2 | Cu30Sn2 | 11.075 | 6.250 |
3 | Cu29Sn3 | 16.195 | 9.375 |
Structure | Source | a (Å) | b (Å) | c (Å) | α (deg) | β (deg) | γ (deg) | ) | |
---|---|---|---|---|---|---|---|---|---|
Cu | Exp· at 25 °C | 3.615 | - | - | 90 | - | - | [20] | |
Present | 3.629 | - | - | 90 | - | - | |||
Error | 0.387% | - | - | - | - | - | |||
Cu31Sn | Present | 3.664 | - | - | 90 | - | - | −3.25 | |
Cu30Sn2 | Present | 3.700 | - | - | 90 | - | - | −2.69 | |
Cu29Sn3 | Present | 3.736 | - | - | 90 | - | - | −1.79 |
Species | Atom | Charge Number | AMC | Bond | BP | Length (Å) | |||
---|---|---|---|---|---|---|---|---|---|
s | p | d | Total | ||||||
Cu31Sn | Cu(1) | 0.51 | 0.77 | 9.72 | 11.01 | −0.01 | Cu-Cu(12) | 0.27 | 2.50443 |
Cu(12) | 0.51 | 0.78 | 9.72 | 11.01 | −0.01 | Cu-Cu(48) | 0.23 | 2.5588 | |
Cu(3) | 0.51 | 0.81 | 9.72 | 11.03 | −0.03 | Cu-Cu(12) | 0.2 | 2.57028 | |
Cu(12) | 0.53 | 0.81 | 9.73 | 11.06 | −0.06 | Cu-Cu(24) | 0.21 | 2.57028 | |
Cu(3) | 0.51 | 0.74 | 9.73 | 10.98 | 0.02 | Cu-Cu(24) | 0.19 | 2.59082 | |
Sn(1) | 0.65 | 2.42 | 0 | 3.08 | 0.92 | Cu-Cu(24) | 0.21 | 2.59218 | |
Cu-Cu(12) | 0.19 | 2.61121 | |||||||
Cu-Cu(24) | 0.16 | 2.67706 | |||||||
Cu–Sn(12) | 0.17 | 2.67706 | |||||||
Cu30sn2 | Cu(24) | 0.53 | 0.82 | 9.73 | 11.07 | −0.07 | Cu-Cu(8) | 0.26 | 2.54638 |
Cu(6) | 0.51 | 0.77 | 9.73 | 11 | 0 | Cu-Cu(16) | 0.26 | 2.54639 | |
Sn(2) | 0.71 | 2.42 | 0 | 3.13 | 0.87 | Cu-Cu(44) | 0.26 | 2.54828 | |
Cu-Cu(26) | 0.2 | 2.61677 | |||||||
Cu-Cu(22) | 0.2 | 2.61678 | |||||||
Cu–Sn(8) | 0.18 | 2.68531 | |||||||
Cu-Cu(45) | 0.16 | 2.68531 | |||||||
Cu-Cu(12) | 0.18 | 2.68532 | |||||||
Cu-Cu(4) | 0.16 | 2.68532 | |||||||
Cu–Sn(3) | 0.18 | 2.68533 | |||||||
Cu29sn3 | Cu(12) | 0.54 | 0.85 | 9.74 | 11.13 | −0.13 | Cu-Cu(12) | 0.24 | 2.56039 |
Cu(10) | 0.52 | 0.82 | 9.73 | 11.07 | −0.07 | Cu-Cu(24) | 0.26 | 2.56039 | |
Cu(3) | 0.5 | 0.71 | 9.74 | 10.96 | 0.04 | Cu-Cu(12) | 0.23 | 2.62491 | |
Cu(1) | 0.5 | 0.66 | 9.75 | 10.92 | 0.08 | Cu-Cu(59) | 0.21 | 2.64287 | |
Sn(3) | 0.79 | 2.46 | 0 | 3.25 | 0.75 | Cu-Cu(48) | 0.19 | 2.67471 | |
Cu–Sn(12) | 0.14 | 2.72284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, Y.; Zhou, R.; Wang, X.; Wang, Q.; Xie, L.; Li, Z.; Xu, B. First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys. Crystals 2023, 13, 1532. https://doi.org/10.3390/cryst13111532
Zhang L, Li Y, Zhou R, Wang X, Wang Q, Xie L, Li Z, Xu B. First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys. Crystals. 2023; 13(11):1532. https://doi.org/10.3390/cryst13111532
Chicago/Turabian StyleZhang, Lingzhi, Yongkun Li, Rongfeng Zhou, Xiao Wang, Qiansi Wang, Lingzhi Xie, Zhaoqiang Li, and Bin Xu. 2023. "First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys" Crystals 13, no. 11: 1532. https://doi.org/10.3390/cryst13111532
APA StyleZhang, L., Li, Y., Zhou, R., Wang, X., Wang, Q., Xie, L., Li, Z., & Xu, B. (2023). First-Principles Study of the Effect of Sn Content on the Structural, Elastic, and Electronic Properties of Cu–Sn Alloys. Crystals, 13(11), 1532. https://doi.org/10.3390/cryst13111532