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Abstract: The synthesis of 4-methyl/phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 4 and 7 has been
reported with ninhydrin via a reaction first with ethyl acetoacetate or ethyl benzoylacetate and then a
reaction of the resultant esters with hydrazine hydrate. The mechanism of hydrazinolysis and cycliza-
tion to obtain tetraazafluoranthen-3(2H)-ones is ambiguous, and the previously proposed mechanism
was not based on facts because the actual intermediates were not isolated. Herein, the important
intermediates involved in the hydrazinolysis–cyclization mechanistic pathway were isolated and
characterized using NMR and X-ray single-crystal analysis. The intermediates demonstrate that
the reaction carried out via two hydrazinolysis–cyclization reactions, the first of which includes the
condensation of one hydrazine molecule with two ketone groups and the second of which includes
the reaction of another hydrazine molecule with the ester and then condensation with the other ketone
group. The stability of hydrazide 11 enabled the hydrazine to reduce the carbonyl of the ketone group
to form 12 via a Wolff–Kishner-like reduction. The structure of the three intermediates was confirmed
using X-ray crystallographic analysis. It was found that the three fused ring systems deviated from
planarity to different extents, with their deviation from being coplanar reaching up to 5.3◦. The
possible non-covalent interactions which control the molecular packing of these intermediates were
elucidated with the aid of Hirshfeld analysis.

Keywords: single-crystal X-ray; tetraazafluoranthen-3(2H)-one; reaction mechanism; Hirshfeld
surface analysis

1. Introduction

A unique class of polycyclic aromatic chemical substances with potential applications
is the fluoranthenes (Benzo[j,k]fluorene), which consist of four fused aromatic heterocy-
cles [1–4]. Fluoranthenes have garnered a lot of interest due to their distinctive opto-
electronic characteristics and wide range of applications [5]. Despite the development
of numerous synthetic techniques for the production of fluoranthene derivatives, their
relatively low reactivity and selectivity make it difficult to functionalize the fluoranthene
structure at various positions [6].

A fluoranthene is a precursor structural component of many naturally occurring
fungal compounds, for example, daldinone E (fungus Daldinia sp.) [7] and hortein [8].
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Additionally, FLUN-550, a fluoranthene-based fluorescent probe for targeted labeling of
intracellular lipid droplets, was introduced. Fluoranthenes’ synthesis and modification
have recently attracted a lot of attention. The most widely utilized strategies for their
synthesis are the Diels–Alder reaction [9–12] and reactions that are catalyzed by transition
metals [13–24]. As the fluoranthene skeleton is a structure that is frequently present
in both fluorescent materials and natural products, it is of the utmost importance to
investigate for the development of an effective, straightforward approach for diversity-
oriented fluoranthene synthesis. However, current synthetic techniques call for harsh
reaction conditions, substrates with a confined application range, or both [25].

The majority of reported fluoranthenes have been produced using arylboronic acids
and 1,8-dichloronaphthalenes in the presence of Pd2(dba)3 as a catalyst at high temperatures
(155–175 ◦C). Fluoranthenes can be created through inter- and intramolecular C-H aryla-
tion. Selectively substituted fluoranthenes were produced through the Suzuki–Miyaura
reaction [26,27].

Koutentis et al. used both oxidative and nonoxidative cyclization methodology to
create fluoranthene aza derivatives [28]. In other methods, silica sulfuric acid has been
used as a reused solid catalyst for the one-pot synthesis of densely substituted pyrrole-
fused isocoumarins [29]. Azafluoranthenes have been synthesized through the reaction of
8-(alkynyl)-1-naphthaldehydes and isocyanoacetates via aldol condensation/[1 + 2 + 3].
By using widely available starting components, domino reaction promotes the sequential
synthesis of three new bonds and two rings in a single step. Additionally, this process
can be used to create benzo[c][2,6]naphthyridines and chromeno[4,3-c]pyridines in mild
yields [30]. Recent research by Boraei et al. has shown a simple and sustainable approach
to the creation of tatraazafluoranthenones by using β-ketoesters such as ethyl acetoacetate
and ethyl benzoylacetate with ninhydrin in green solvents such as water [31–33].

In this study, we successfully isolated three pivotal intermediates, which unequivocally
contribute to the validation of the reaction mechanism leading to the final product formation.
Single-crystal diffraction analysis and chemical insights are also explored.

2. Materials and Methods
2.1. General

“Melting points were determined in open capillaries on a Temp-melt II melting point
apparatus and the values are uncorrected. Thin layer chromatography (TLC) was carried
out on silica gel 60 F254 Aluminum plates (E. Merck, layer thickness 0.2 mm). The spots
detected by UV lamp. The 1H, 13C-NMR spectra recorded on Bruker 400 MHz-NMR
spectrometer operating at 400 and 101 MHz respectively using DMSO-d6 and CDCl3 as
solvent, at the Microanalytical units of Suhag and Mansora University, Egypt. Elemental
analysis performed on a Flash EA-1112 instrument”.

2.2. Procedures

The synthesis of 4-Methyl/phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-ones 4 and 7 from
nihydrin is described in [32,33].

2.3. Synthesis of the Intermediates Indeno[1,2-c]Pyridazine-4-Carboxylate 8 and 9

Separately to ethyl 3a,8b-dihydroxy-2-methyl-4-oxo-3a,8b-dihydro-4H-indeno[1,2-
b]furan-3-carboxylate 3 (10 mmol, 2.9 g)/ethyl 2-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-
inden-2-yl)-3-oxo-3-phenylpropanoate 6 (10 mmol, 3.5 g) in MeOH (5 mL), NH2NH2,H2O
(0.3 mL) was added drop-wise, and the mixture was continuously stirred at room tempera-
ture for one hour. The solid product was filtered off and collected and then purified via
crystallization from MeOH (8) and n-hexane (9).

2.4. Ethyl 3-Methyl-5-Oxo-5H-Indeno[1,2-c]Pyridazine-4-Carboxylate 8

Yield 59%, 1.58 g, m.p. 125–126 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.05 (d, J = 7.5 Hz,
1H), 7.81 (dd, J = 13.3, 7.1 Hz, 2H), 7.64 (t, J = 7.3 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 1.39 (t,
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J = 7.1 Hz, 3H); 13C NMR (101 MHz, DMSO) δ 188.72, 163.97, 160.33, 156.50, 141.79, 137.14,
134.64, 132.94, 125.84, 125.75, 125.46, 122.23, 63.01, 20.14, 14.29; elemental analysis calc. for
[C15H12N2O3]: C, 67.16; H, 4.51; N, 10.44; found: C, 67.27; H, 4.55; N, 10.35.

2.5. Ethyl 5-Oxo-3-Phenyl-5H-Indeno[1,2-c]Pyridazine-4-Carboxylate 10

Yield 53%, 1.74 g, m.p. 95–96 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 7.5 Hz, 1H),
7.88 (d, J = 7.5 Hz, 1H), 7.82–7.76 (m, 3H), 7.61 (td, J = 7.5, 0.8 Hz, 1H), 7.55–7.53 (m, 3H),
4.45 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 188.33, 163.88,
160.29, 157.89, 141.46, 136.69, 135.39, 134.61, 132.60, 130.34, 128.83, 128.64, 126.52, 126.47,
125.41, 122.79, 63.00, 13.81; elemental analysis calc. for [C20H14N2O3]: C, 72.72; H, 4.27; N,
8.48; found: C, 72.88; H, 4.25; N, 8.40.

2.6. Synthesis of 5-Oxo-3-Phenyl-5H-Indeno[1,2-c]Pyridazine-4-Carbohydrazide 11

To ethyl 2-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-3-oxo-3-phenylpropanoate
6 (10.0 mmol, 3.5 g) in MeOH (5 mL), NH2NH2, H2O (1.0 mL) was added drop-wise, and
the mixture was continuously stirred at room temperature overnight. The solid product
was filtered off and collected and then purified via crystallization from DMF/MeOH.

Yield 46%, 1.44 g, m.p. >300 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 1H NMR (400 MHz,
DMSO-d6) δ 9.80 (s, 1H), 8.19 (d, J = 7.4 Hz, 1H), 7.93–7.86 (m, 2H), 7.81–7.79 (m, 2H), 7.72
(t, J = 7.5 Hz, 1H),7.60–7.50 (m, 3H), 4.62 (br, 2H); 13C NMR (101 MHz, DMSO) δ 189.03,
161.99, 160.49, 158.81, 141.33, 137.28, 136.29, 134.88, 133.22, 130.64, 130.29, 129.07, 129.04,
129.00, 128.15, 127.16, 125.54, 122.40; elemental analysis calc. for [C18H12N4O2]: C, 68.35; H,
3.82; N, 17.71; found: C, 68.39; H, 3.91; N, 17.73.

2.7. Synthesis of 3-Phenyl-5H-Indeno[1,2-c]Pyridazine-4-Carbohydrazide 12

To ethyl 2-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-3-oxo-3-phenylpropanoate
6 (10.0 mmol, 3.5 g) in MeOH (10 mL), NH2NH2, H2O (4.0 mL) was added dropwise, and
the mixture was refluxed for 30 min. The formed precipitate was filtered and identified as
7 with 30% yield, 0.89 g. After recrystallization from DMF, the filtrate was left on reflux for
a further 3 hrs, dried, washed and recrystallized from EtOH to give 12.

Yield 49%, 1.54 g, m.p. 241–242 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 9.89 (s, 1H), 8.26
(d, J = 6.5 Hz, 1H), 7.80–7.78 (m, 3H), 7.63–7.61 (m, 2H), 7.54–7.53 (m, 3H), 4.63 (s, 2H),
4.13 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 164.44, 161.77, 154.87, 144.04, 139.57, 137.30,
137.18, 131.23, 130.93, 129.63, 129.17, 128.95, 128.46, 126.55, 121.70, 34.07; elemental analysis
calc. for [C18H14N4O]: C, 71.51; H, 4.67; N, 18.53; found: C, 71.63; H, 4.71; N, 18.50.

2.8. X-ray Structure Determination

The crystal structures of 8, 10, 11 and 12 were determined according to the method
described in the Supplementary Data [34–37]. The crystal data are presented in Table 1.
Crystal Explorer 17.5 software was used for Hirshfeld calculations [38].

Table 1. Crystal data.

8 10 11 12

CCDC 2297471 2297472 2297470 2299618
Empirical formula C15H12N2O3 C20H14N2O3 C18H12N4O2 C18H14N4O

fw 268.27 330.33 316.32 302.33
Temp (K) 120(2) 120(2) 120(2) 120(2)

λ(Å) 1.54184 1.54184 1.54184 1.54184
Cryst syst Monoclinic Monoclinic Monoclinic Orthorhombic

Space group P21/c P21/n P21/c P212121
a (Å) 15.3400(4) 16.89752(13) 14.9862(2) 5.04710(10)
b (Å) 5.02920(10) 5.76627(4) 4.86410(10) 12.5114(3)
c (Å) 16.7042(4) 17.97633(13) 20.3991(3) 22.2915(5)
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Table 1. Cont.

8 10 11 12

β (deg) 100.545(2) 113.9469(9) 101.697(2) 90
V (Å3) 1266.93(5) 1600.77(2) 1456.10(4) 1407.63(5)

Z 4 4 4 4
ρcalc (Mg/m3) 1.406 1.371 1.443 1.427

µ(Mo Kα) (mm−1) 0.825 0.766 0.804 0.745
No. of reflns. 14014 35632 17874 10944
Unique reflns. 2666 3465 3050 2929

Completeness to θ = 67.684◦ 100% 100% 100% 100%
GOOF (F2) 1.054 1.053 1.047 1.046

Rint 0.0361 0.0237 0.0295 0.0462
R1

a (I ≥ 2σ) 0.0346 0.0358 0.0397 0.0332
wR2

b (I ≥ 2σ) 0.0863 0.0927 0.1041 0.0768
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

3. Results and Discussion

Previously, we reported a simple efficient method for the synthesis of 4-methyl/phenyl-
1,2,5,6-tetraazafluoranthen-3(2H)-one 4 and 7 from ninhydrin through a reaction first with
ethyl acetoacetate or ethyl benzoylacetate and then a reaction of the resultant esters with
hydrazine hydrate [32,33] (Scheme 1).
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According to the reported mechanism for tetraazafluoranthen-3(2H)-one 4 formation
that was suggested theoretically and initially proposed, ethyl acetoacetate was condensed
with ninhydrin to afford ethyl indeno[1,2-b]furan-3-carboxylate 3. Subsequently, the car-
bonyl was attached via two moles of hydrazine, the furan ring of which was cleaved, and
four molecules of water, and ethanol was kicked out. During this process, recyclization oc-
curred to form tetraazafluoranthen-3-one [32] (Scheme 2). However, the real steps involved
in the mechanism allowing the final products to be obtained in that reaction are unclear.
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Scheme 2. Proposed mechanism of the formation of tetraazafluoranthen-3-one 4 [32].

Herein, the important intermediates in this reaction are identified. Ethyl 3-methyl-5-
oxo-5H-indeno[1,2-c]pyridazine-4-carboxylate 8 was obtained from the reaction of ethyl
3a,8b-dihydroxy-2-methyl-4-oxo-3a,8b-dihydro-4H-indeno[1,2-b]furan-3-carboxylate 3 with
hydrazine hydrate after stirring for only one hour (Scheme 3). The isolation of this in-
termediate proves that the first hydrazine molecule attacked the keto group and furan
ring to form 3-methyl/phenyl-5-oxo-5H-indeno[1,2-c]pyridazine-4-carboxylate 8, whereas
the second hydrazine molecule attacked the ester group and then cyclized to afford
tetraazafluoranthen-3-one 4. Trials for the separation of hydrazide 9 via either reduc-
ing the duration of the reaction or reducing the amount of hydrazine failed. It seems that as
long as hydrazide 9 is formed, it is converted to 4. The structures of 8 were confirmed based
on NMR, in which the ethyl ester protons were found at 1.39 ppm for CH3 and 4.49 ppm for
OCH2, and the respective ethyl carbons were detected at 14.29 ppm (CH3) and 63.01 ppm
(OCH2). The carbonyl carbon of the ketone group was observed at 188.72 ppm, while the
carbonyl carbon of the ester was found at 163.97 ppm.

In a further study to identify the intermediates included through tetraazafluoranthen-
3-one’s formation, ethyl 2-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-3-oxo-3-
phenylpropanoate 6 was reacted with hydrazine hydrate through stirring at room tempera-
ture for one hour to give ethyl 5-oxo-3-phenyl-5H-indeno[1,2-c]pyridazine-4-carboxylate 10,
which reacted with another hydrazine molecule to give the hydrazide 5-oxo-3-phenyl-5H-
indeno[1,2-c]pyridazine-4-carbohydrazide 11. Separation of the intermediate hydrazide
11 confirmed that the second hydrazine molecule attacked the ester group and then the
carbonyl group of the indene moiety to form the cyclized tetraazafluoranthen-3-one 7;
furthermore, in the presence of hydrazine and ethanol, the carbonyl of the indenone moiety
was subjected to a Wolff–Kishner-like reduction to give 12. This reduction reflects the role
of phenyl group in the stability of hydrazide 11 over hydrazide 9, which has a methyl group
(Scheme 4). The NMR of ester 10 displayed ethyl protons of the ester group at 1.31 ppm
(CH3) and 4.45 ppm (OCH2), whereas the respective carbons appeared at 13.81 ppm and
63.00 ppm. The carbonyl carbons of the ester and ketone groups appeared at 163.88 and
188.33 ppm, respectively. The NMR of hydrazide 11 displayed the hydrzino group protons
(NHNH2), which appeared at 9.80 ppm for NH and 4.62 ppm for NH2. The carbonyl
carbon of the ketone group was observed at 189.03 ppm, while the carbonyl carbon of the
hydrazide group was found at 161.99 ppm. Hydrazide 12 displayed the –NHNH2 group
protons at 9.89 ppm and 4.63 ppm, respectively. The methylene protons formed by the
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reduction were found at 4.13 ppm. 13C NMR displayed the carbonyl carbon of the ester
group at 164.44 ppm and the methylene carbon resulted from the reduction at 34.07 ppm.
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The X-ray structure of 11 is shown in Figure 1. Relevant bond distances and angles
are given in Table S1 (Supplementary Data). 11 crystallized in the monoclinic crystal
system and centrosymmetric P21/c space group, where a = 14.9862(2) Å, b = 4.86410(10) Å,
c = 20.3991(3) and β = 101.697(2)◦. One molecule of 11 is the asymmetric formula. The
structure of the fused ring system comprised three rings, A, B and C, which were not
perfectly coplanar. The mean planes of rings B and C formed angles of 2.74◦ and 4.24◦ with
respect to the plane of ring A. The phenyl ring D and the fused ring system C were twisted
around one another at a 39.76◦ angle.

The crystal structure of 11 is controlled by the N3-H3...O2, N4-H4A...O1 and N4-
H4B...N4 contacts shown in Figure 2A. The respective H. . .A distances are 1.93(2), 2.52(2)
and 2.16(2) Å, while the D. . .A distances are 2.8614(16), 3.0425(16) and 3.1152(16) Å, respec-
tively. An illustration of the hydrogen bonding scheme is shown in Figure 2B. Additionally,
one weak C7-H7. . .N1 interaction with a C7. . .N1 distance of 3.3167(18) Å was removed
from the packing scheme for more clarity.

In Figure 3, the X-ray structure of 8 is shown. As indicated by the crystallographic
parameters, 8 is also crystallized in the same crystallographic system and with the same
space group as 11 (Table 1). In the case of compound 8, the values a = 15.3400(4) Å,
b = 5.02920(10) Å, c = 16.7042(4) Å and β =100.545(2)◦ are different. The asymmetric unit
contains one molecule of 8, while z = 4. In this case, the three rings, A, B and C, are also not
fully coplanar with each other. The angles between rings B and C with the central ring A
are 2.17◦ and 1.15◦, respectively. As a result, the fused ring system is more planar than that
found for 11.
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Table 2. Hydrogen bonds for 11, 8, 10 and 12 (Å and ◦) a.

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) Symm. Code

11

N3-H3...O2#1 0.94(2) 1.93(2) 2.8614(16) 175.0(19) x, y + 1, z
N4-H4A...O1#2 0.98(2) 2.52(2) 3.0425(16) 113.3(15) −x + 1, y − 1/2, −z + 3/2
N4-H4B...N4#2 1.01(2) 2.16(2) 3.1152(16) 157.7(19) −x + 1, y − 1/2, −z + 3/2

8

C13. . .H13C. . .O1 0.98 2.6368 3.331(2) 128 1 − x, −1/2 + y,1.5 − z
10

C4-H4...N1 0.95 2.44 3.3764(14) 167 1 − x, −y, 1 − z
C4-H4...N2 0.95 2.6 3.4325(14) 146 1 − x, −y, 1 − z

C14-H14...O1 0.95 2.58 3.3447(15) 137 −1/2 + x, 3/2 − y, −1/2 + z
C19-H19B...O2 0.99 2.44 3.4061(14) 165 x, 1 + y, z
C20-H20C...O1 0.98 2.58 3.3182(19) 132 x, 1 + y, z

12

N11-H11...O11 0.89(3) 2.06(3) 2.852(3) 147(2) −1 + x, y, z
N12-H12A...O11 0.89(3) 2.34(3) 3.174(3) 156(2) −1/2 + x, 3/2 − y, 1 − z
C11-H11B...O11 0.99 2.36 3.317(3) 163 −1 + x, y, z

a Donor (D) and acceptor (A).
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In 8, the packing is controlled by weak C-H. . .O contacts (Table 2 and Figure 4A). The
donor–acceptor distance of the C13. . .H13C. . .O1 interaction is 3.331(2) Å. The packing
view for the crystal structure of 8 is shown in Figure 4B.
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In Figure 5, the X-ray structure of 10 is shown. Similar to the other two compounds,
compound 10 is also crystallized in the monoclinic crystal system with the lattice parameters
a = 16.89752(13), b = 5.76627(4) Å, c = 17.97633(13) Å and β = 113.9469(9)◦. The asymmetric
unit contains one molecule of 10. In this case, the three rings, A, B and C, are also not fully
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coplanar with each other. The angles between rings B and C with the central ring A are
5.32◦ and 5.27◦, respectively, showing the maximum deviation from planarity in this case.
The phenyl ring D and the fused ring C deviate significantly by 43.07◦, which is also a
larger difference than that found in 11.
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The crystal structure of 10 is controlled by the weak C-H. . .N and C-H. . .O interactions
shown in Figure 6. The corresponding hydrogen bond parameters are listed in Table 2.
There are three C-H. . .O interactions: C14-H14...O1, C19-H19B...O2 and C20-H20C...O1.
The D. . .A distances are 3.3447(15), 3.4061(14) and 3.3182(19) Å, respectively. On the other
hand, the two less important C-H. . .N interactions are the C4-H4...N1 and C4-H4...N2
contacts, where the C4. . .N1/N2 distances are 3.3764(14) and 3.4325(14) Å, respectively.
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Figure 6. The O. . .H/N. . .H interactions (A) and packing structure (B) for 10.

The structure of 12 showing atom numbering is presented in Figure 7. It crystallized
in the orthorhombic system (a = 5.04710(10) Å, b = 12.5114(3) and c = 22.2915(5) Å) and
centrosymmetric P212121 space group. The crystal density is 1.427 Mg/m3 and the unit cell
volume is 1407.63(5) Å3. In this compound, the mean planes of rings B and C make angles
of 2.42◦ and 2.31◦ with respect to the plane of ring A. The phenyl ring D and the fused ring
system C showed a twist of 31.26◦.
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The crystal structure of 12 is stabilized by the intermolecular N12-H12A...O11, and N11-
H11...O11 hydrogen bonds are important for the molecular packing of 12. The H12A...O11
and H11...O11 distances are 2.852(3) and 3.174(3) Å, respectively. Also, the weak C11-
H11B...O11 interaction is also important for molecular packing. For this interaction, the
C11...O11 distance is 3.317(3) Å (Table 2). An illustration of these intramolecular hydrogen
bonding interactions, along with the packing scheme, is shown in Figure 8.
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Hirshfeld Surface Analysis
The possible contacts in the crystal structure of 11 were analyzed using the dnorm

Hirshfled map shown in Figure 9. The structure of this crystal is stabilized by short
N4. . .H4B, N1. . .H7, N2. . .H7, O1. . .H4A and O2. . .H3 hydrogen bonds. The respective
hydrogen-to-acceptor distances are 2.158, 2.244, 2.61, 2.509 and 1.855 Å. Also, C13. . .H4
(2.655 Å) and C6. . .H5 (2.717 Å) interactions were detected and found to be important
for the crystal structure stability (Table 3). Additionally, the packing of molecules was
found to be controlled by other short, non-covalent interactions such as C1. . .O2 (3.050 Å)
and C2. . .O2 (2.929 Å). All these short contacts appeared in the dnorm map as red spots,
indicating short contacts compared to the vdWs radii sum of the interacting atoms.

Table 3. Short contacts in 11.

Contact Distance Contact Distance

C1. . .O2 3.050 O1. . .H4A 2.509
C2. . .O2 2.929 O2. . .H3 1.855

N4. . .H4B 2.158 C13. . .H4 2.655
N1. . .H7 2.244 C6. . .H5 2.717
N2. . .H7 2.610
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The fingerprint plot is not only important for identifying and decomposing all inter-
molecular contacts but also for predicting their importance in the molecular packing. The 
H…H (37.4%), C…H (16.7%), N…H (15.3%), O…H (14.2%) and C…C (10.4%) contacts had 
the largest contribution (Figure 10). Other less common contacts, such as C…O (3.5%), 
C…N (1.6%), O…O (0.5%), N…N (0.2%) and N…O (0.2%), were also detected. Only the 
O…H, N…H, C…H and C…O interactions appeared as sharp spikes in the decomposed 
fingerprint (FP) plots, which is considered as further evidence for their importance in mo-
lecular packing (Figure S9; Supplementary Data). 

Figure 9. The dnorm Hirshfeld surface of 11: (A) O. . .H, (B) N. . .H, (C) C. . .H, (D) C. . .O.

The fingerprint plot is not only important for identifying and decomposing all inter-
molecular contacts but also for predicting their importance in the molecular packing. The
H. . .H (37.4%), C. . .H (16.7%), N. . .H (15.3%), O. . .H (14.2%) and C. . .C (10.4%) contacts
had the largest contribution (Figure 10). Other less common contacts, such as C. . .O (3.5%),
C. . .N (1.6%), O. . .O (0.5%), N. . .N (0.2%) and N. . .O (0.2%), were also detected. Only the
O. . .H, N. . .H, C. . .H and C. . .O interactions appeared as sharp spikes in the decomposed
fingerprint (FP) plots, which is considered as further evidence for their importance in
molecular packing (Figure S9; Supplementary Data).
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nificantly shorter than the vdWs radii sum of the interacting atoms. Hence, these non-
covalent interactions have great significance in the molecular packing of 10. Also, these 

Figure 10. All contacts in the studied compounds.

In the case of the crystal structure of 8, the dnorm Hirshfeld map shown in Figure 11
indicates the importance of the O1. . .H13C (2.575 Å), C5. . .H4 (2.747 Å), C4. . .H5 (2.762 Å),
H3. . .H3 (1.911 Å), C8. . .O2 (2.853Å) and C9. . .O2 (3.200 Å) interactions. Also, these
interactions have the characteristic features of short significant contacts in both dnorm
maps and fingerprint plots (Figure S10; Supplementary Data). It is clear that there were
no important N. . .H contacts detected in this case. Also, the percentages of all possible
contacts in 8 were obtained from the FP plots, and the results are presented graphically in
Figure 10. The H. . .H (40.0%), O. . .H (16.7%), N. . .H (14.5%) and C. . .H (12.8%) contacts
are the most common in this crystal structure. Other minor contacts, such as C. . .C (7.5%),
C. . .O (4.6%), O. . .O (2.5%), N. . .N (0.8%) and C. . .N (0.6%), were also observed.
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For 10, the dnorm Hirshfeld surface is shown in Figure 12. There are four types of
strong intermolecular interactions: O...H, N...H, C...H and C...O contacts. The O1. . .H14
(2.488 Å), O2. . .H19B (2.349 Å), O1. . .H20C (2.516 Å), N2. . .H4 (2.493 Å), N1. . .H4 (2.315 Å),
C13. . .H1 (2.76 Å) and C7. . .O3 (3.115 Å) contacts are non-covalent interactions with dis-
tances significantly shorter than the vdWs radii sum of the interacting atoms. Hence, these
non-covalent interactions have great significance in the molecular packing of 10. Also,
these interactions have the characteristic spikes and wings of short, significant contacts
(Figure S11; Supplementary Data). In addition, the percentages of all possible contacts in
10 are presented in Figure 10. The H. . .H (40.0%), O. . .H (16.6%), N. . .H (10.5%) and C. . .H
(19.0%) contacts are the most common in this crystal structure. Other minor contacts, such
as C. . .C (7.4%), C. . .O (4.6%), N. . .N (0.6%) and C. . .N (1.3%), were also observed.
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For 12, the supramolecular structure is controlled by a number of non-covalent in-
teractions, which are the O...H, N...H, C...H, C...C, C...N and H...H contacts. Only the
O...H, N...H, C...H and C...C contacts appeared as red spots in the dnorm map and are
considered important for the molecular packing of compound 12 (Figure 13). The red
spots in the dnorm map were found to correspond to the O11. . .H12A (2.231 Å), O11. . .H11
(1.965 Å), O11. . .H11B (2.268 Å), C3. . .H4 (2.619 Å), N13. . .H11A (2.461 Å) and C4. . .C7
(3.275 Å) contacts. Also, these interactions have the characteristic spikes and wings of short,
significant contacts (Figure S12; Supplementary Data). In addition, the percentages of all
possible contacts in 12 are presented in Figure 10. The H. . .H (43.8%), C. . .H (22.6%), N. . .H
(14.1%) and O. . .H (9.1%) contacts are the most common, while C. . .C (6.9%) and C. . .C
(3.6%) are minor contacts.
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The curvedness and shape index maps presented in Figure S13 (Supplementary Data),
which show the characteristic features of π-π interactions. In the curvedness map, there is a
green flat area, while in the shape index map, there are red/blue triangles; this provides
significant evidence of π-π interactions. The %C. . .C interactions were 10.4, 7.5, 7.4 and
6.9% in compounds 11, 8, 10 and 12, respectively. Generally, the C. . .C contacts had slightly
longer distances and twice the vdWs radii sum of carbon for all the studied systems,
revealing weak π-π stacking interactions. The most important π-π stacking interactions
for the studied systems, including the shortest C. . .C/C. . .N contacts and their interaction
distances in Å, are shown in Figure S14 (Supplementary Data).

4. Conclusions

We concluded that the two most important intermediates in the hydrazinolysis–
cyclization process of tetraazafluoranthen-3(2H)-one synthesis were isolated and character-
ized. This fact unambiguously proves that the reaction includes the two hydrazinolysis–
cyclization reactions: firstly, condensation of hydrazine with two ketone groups, and
then the reaction of hydrazine with the ester followed by condensation with the other
ketone group. Hydrazide 11 was stable enough to be reduced by hydrazide to give 12.
Structures were confirmed using NMR and single-crystal analysis. X-ray single-crystal
structure determinations combined with Hirshfeld topology analysis were used to analyze
the structure of the studied compounds. Compounds 11 and 10 have common significant
non-covalent interactions, which are the O. . .H, N. . .H, C. . .H and C. . .O contacts, while
the supramolecular structure of compound 8 is controlled by O. . .H, C. . .H, C. . .O and
H. . .H contacts, where no important N. . .H interactions were detected. The percentage of
the O. . .H contacts is the highest in the case of 8 (16.7%) and 10 (16.6%). The C. . .H contacts
contributed to 16.7, 12.8 and 19.0% of all non-covalent interactions occurring in 11, 8 and
10, respectively, while the %C. . .O interactions accounted for 3.5, 4.6 and 4.6%, respectively.
Both 11 and 10 showed important N. . .H interactions, whose percentages were 15.3 and
10.5%, respectively. The N. . .H contacts were less important in the case of 8, while the
H. . .H contacts were found to have great significance. For 12, the O...H, N...H, C...H and
C...C contacts were the most important. Their percentages were 9.1, 14.1, 22.6 and 6.9%,
respectively. All compounds showed weak π-π stacking interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13111537/s1. Figure S1. 1H NMR of 8; Figure S2. 13C NMR of 8;
Figure S3. 1H NMR of 10; Figure S4. 13C NMR of 10; Figure S5. 1H NMR of 11; Figure S6. 13C NMR of
11; Figure S7. 1H NMR of 12; Figure S8. 13C NMR of 12; Figures S9–S12: Fingerprint plots for the short
interactions in 11, 8, 10 and 12; Figure S13. Shape index and curvedness maps for the studied systems;
Figure S14. The most important π-π stacking C. . .C/C. . .N contacts and their interaction distances in Å
for the studied systems; X-ray structure determination; Table S1. Bond lengths (Å) and angles (°) for 11,
8, 10 and 12.

Author Contributions: Conceptualization, E.E.S., A.T.A.B., A.A.M.S. and A.B.; methodology, E.E.S.,
A.A.M.S. and A.T.A.B.; software, S.M.S. and M.H.; validation, E.E.S., A.T.A.B. and A.B.; formal

https://www.mdpi.com/article/10.3390/cryst13111537/s1
https://www.mdpi.com/article/10.3390/cryst13111537/s1


Crystals 2023, 13, 1537 16 of 17

analysis, E.E.S. and A.T.A.B.; investigation, A.T.A.B.; resources, A.T.A.B. and A.B.; data curation,
M.S.; writing—original draft preparation, A.T.A.B.; writing—review and editing, E.E.S., A.T.A.B.,
A.B., S.M.S., M.H. and A.A.M.S.; visualization, A.T.A.B. and A.B.; supervision, A.T.A.B.; project
administration, A.B.; funding acquisition, M.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to extend their sincere appreciation to the Researchers Supporting
Project (RSP2023R64), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feng, X.; Pisula, W.; Müllen, K. Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization. Pure Appl. Chem.

2009, 81, 2203–2224. [CrossRef]
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