New Polynuclear Coordination Compounds Based on 2–(Carboxyphenyl)iminodiacetate Anion: Synthesis and X-rays Crystal Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of the Complexes
2.2.1. Synthesis of [Cu2(cpida)(H2O)4][Cu(cpida)]·3H2O (1)
2.2.2. Synthesis of [Cu2(cpida)(H2O)4][Cu(cpida)]·H2O·1/2EtOH (2)
2.2.3. Synthesis of Na[Cu(cpida)] (3)
2.2.4. Synthesis of Na[Cu(cpida)]·2H2O (4)
2.3. X-ray Crystallography
3. Results and Discussion
3.1. Synthesis of the Complexes
3.2. Crystal Structure of [Cu2(cpida)(H2O)4][Cu(cpida)]·3H2O (1) and of [[Cu2(cpida)(H2O)4][Cu(cpida)]·H2O·1/2EtOH] (2)
3.3. Crystal structure of Na[Cu(cpida)] (3)
3.4. Crystal Structure of Na[Cu(cpida)]·2H2O (4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114–2133. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.B. Coordination polymers in adsorptive remediation of environmental contaminants. Coord. Chem. Rev. 2022, 470, 214694. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, D.T.C.; Van Tran, T. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. Sci. Total Environ. 2024, 906, 167295. [Google Scholar] [CrossRef]
- Dutta, M.; Bora, J.; Chetia, B. Overview on recent advances of magnetic metal–organic framework (MMOF) composites in removal of heavy metals from aqueous system. Environ. Sci. Pollut. Res. 2022, 30, 13867–13908. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal–Organic Frameworks: Opportunities for Catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502–7513. [Google Scholar] [CrossRef]
- Ma, Z.; Moulton, B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coord. Chem. Rev. 2011, 255, 1623–1641. [Google Scholar] [CrossRef]
- Kurmoo, M. Magnetic metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Xu, Q. Porous metal–organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351–3370. [Google Scholar] [CrossRef]
- Murray, L.J.; Dincă, M.; Long, J.R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
- Loukopoulos, E.; Kostakis, G.E. Review: Recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. [Google Scholar] [CrossRef]
- Pettinari, C.; Marchetti, F.; Mosca, N.; Tosi, G.; Drozdov, A. Application of metal–Organic frameworks. Polym. Int. 2017, 66, 731–744. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 2012, 14, 3001–3004. [Google Scholar] [CrossRef]
- Yusuf, V.F.; Malek, N.I.; Kailasa, S.K. Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507–44531. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Morsali, A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 2012, 256, 2921–2943. [Google Scholar] [CrossRef]
- Robson, R. Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): A personal view. Dalton Trans. 2008, 38, 5113–5131. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Zheng, Y.-J.; Ma, Z.-Z.; Ren, Y.-X.; Cao, J.; Wang, Z.-X.; Wang, J.-J. Zinc(II) and cadmium(II) complexes of long flexible bis(imidazole) and phenylenediacetate ligands, synthesis, structure, and luminescent property. Polyhedron 2018, 146, 180–186. [Google Scholar] [CrossRef]
- Khalaj, M.; Lalegani, A.; Akbari, J.; Ghazanfarpour-Darjani, M.; Lyczko, K.; Lipkowski, J. Synthesis and characterization of three new Cd(II) coordination polymers with bidentate flexible ligands: Formation of 3D and 1D structures. J. Mol. Struct. 2018, 1169, 31–38. [Google Scholar] [CrossRef]
- Chen, M.-L.; Zhou, Z.-H. Structural diversity of 1,3-propylenediaminetetraacetato metal complexes: From coordination monomers to coordination polymers and MOF materials. Inorg. Chim. Acta 2017, 458, 199–217. [Google Scholar] [CrossRef]
- Li, H.; Tian, H.; Guo, M.; He, F.Y.; Hu, C. Self-complementary self-assembly of 3D coordination framework involving d-block, s-block metal ions and flexible NTA3−ligand. Inorg. Chem. Commun. 2006, 9, 895–898. [Google Scholar] [CrossRef]
- Liu, T.; Lü, J.; Shi, L.; Guo, Z.; Cao, R. Conformation control of a flexible 1,4-phenylenediacetate ligand in coordination complexes: A rigidity-modulated strategy. CrystEngComm 2008, 11, 583–588. [Google Scholar] [CrossRef]
- Liu, T.-F.; Lü, J.; Cao, R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm 2010, 12, 660–670. [Google Scholar] [CrossRef]
- Mateescu, A.; Gabriel, C.; Raptis, R.G.; Baran, P.; Salifoglou, A. pH—Specific synthesis, spectroscopic, and structural characterization of an assembly of species between Co(II) and N,N-bis(phosphonomethyl)glycine. Gaining insight into metal-ion phosphonate interactions in aqueous Co(II)–organophosphonate systems. Inorg. Chim. Acta 2007, 360, 638–648. [Google Scholar] [CrossRef]
- Zhang, Q.-Z.; Lu, C.-Z.; Yang, W.-B.; Yu, Y.-Q. A novel three-dimensional framework formed by polymeric aqua (nitrilotriacetato)-lanthanum: [La(C6H6NO6)H2O]n. Inorg. Chem. Commun. 2004, 7, 277–279. [Google Scholar] [CrossRef]
- Carballo, R.; Covelo, B.; El Fallah, M.S.; Ribas, J.; Vázquez-López, E.M. Supramolecular Architectures and Magnetic Behavior of Coordination Polymers from Copper(II) Carboxylates and 1,2-Bis(4-pyridyl)ethane as a Flexible Bridging Ligand. Cryst. Growth Des. 2007, 7, 1069–1077. [Google Scholar] [CrossRef]
- Hawes, C.S.; Chilton, N.F.; Moubaraki, B.; Knowles, G.P.; Chaffee, A.L.; Murray, K.S.; Batten, S.R.; Turner, D.R. Coordination polymers from a highly flexible alkyldiamine-derived ligand: Structure, magnetism and gas adsorption studies. Dalton Trans. 2015, 44, 17494–17507. [Google Scholar] [CrossRef]
- Lai, L.-Y.; Liu, Z.; Han, G.-C.; Chen, Z. Synthesis, Crystal Structure and Properties of Three Metal Complexes Based on a Flexible Schiff Base Ligand. J. Clust. Sci. 2015, 26, 1845–1855. [Google Scholar] [CrossRef]
- Li, H.-Y.; Cao, L.-H.; Wei, Y.-L.; Xu, H.; Zang, S.-Q. Construction of a series of metal–organic frameworks based on novel flexible ligand 4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride and selective d-block metal ions: Crystal structures and photoluminescence. CrystEngComm 2015, 17, 6297–6307. [Google Scholar] [CrossRef]
- Karmakar, A.; Oliver, C.L.; Roy, S.; Öhrström, L. The synthesis, structure, topology and catalytic application of a novel cubane-based copper(ii) metal–organic framework derived from a flexible amido tripodal acid. Dalton Trans. 2015, 44, 10156–10165. [Google Scholar] [CrossRef]
- Yu, M.; Xie, L.; Liu, S.; Wang, C.; Cheng, H.; Ren, Y.; Su, Z. Photoluminescent metal-organic framework with hex topology constructed from infinite rod-shaped secondary building units and single e,e-trans-1,4-cyclohexanedicarboxylic dianion. Inorg. Chim. Acta 2007, 360, 3108–3112. [Google Scholar] [CrossRef]
- Xie, Y.; Bai, F.; Xing, Y.; Wang, Z.; Zhao, H.; Shi, Z. Synthesis and Crystal Structure of Novel Coordination Polymers with Nitrilotripropionic Acid. Z. Anorg. Allg. Chem. 2010, 636, 1585–1590. [Google Scholar] [CrossRef]
- Huang, R.-W.; Li, B.; Zhang, Y.-Q.; Zhao, Y.; Zang, S.-Q.; Xu, H. Divalent cobalt, zinc, and copper coordination polymers based on a new bifunctional ligand: Syntheses, crystal structures, and properties. Inorg. Chem. Commun. 2014, 39, 106–109. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, H.; Zhang, S.; Cao, Y.; Chen, Y. The tunable coordination architectures of a flexible multicarboxylate N-(4-carboxyphenyl)iminodiacetic acid via different metal ions, pH values and auxiliary ligand. J. Solid State Chem. 2009, 182, 1889–1898. [Google Scholar] [CrossRef]
- Pan, Z.; Zheng, H.; Wang, T.; Song, Y.; Li, Y.; Guo, Z.; Batten, S.R. Hydrothermal Synthesis, Structures, and Physical Properties of Four New Flexible Multicarboxylate Ligands-Based Compounds. Inorg. Chem. 2008, 47, 9528–9536. [Google Scholar] [CrossRef]
- Braña, E.; Mendoza, C.; Vitoria, P.; González-Platas, J.; Domínguez, S.; Kremer, C. Trinuclear Cu(II) capsules self-assembled by nitrilotripropionate. Inorg. Chim. Acta 2014, 417, 192–200. [Google Scholar] [CrossRef]
- Martínez, S.; Veiga, N.; Torres, J.; Kremer, C.; Mendoza, C. Polynuclear complexes in solution: An experimental and theoretical study on the interaction of nitrilotripropionate anion with metal ions. Inorg. Chim. Acta 2018, 483, 53–60. [Google Scholar] [CrossRef]
- Braña, E.; Quiñone, D.; Martínez, S.; Grassi, J.; Carrera, I.; Torres, J.; González-Platas, J.; Seoane, G.; Kremer, C.; Mendoza, C. New polynuclear compounds based on N-benzyliminodipropionic acid: Solution studies, synthesis, and X-ray crystal structures. J. Coord. Chem. 2016, 69, 3650–3663. [Google Scholar] [CrossRef]
- Bera, M.; Musie, G.T.; Powell, D.R. Zinc(II) mediated cyclization and complexation of an unsymmetrical dicarboxyamine ligand: Synthesis, spectral and crystal structures characterizations. Inorg. Chem. Commun. 2008, 11, 293–299. [Google Scholar] [CrossRef]
- Palanisami, N.S.K.K.; Gopalakrishnan, T.; Moon, I.-S. A mixed Ni(II) ionic complex containing V-shaped water trimer: Synthesis, spectral, structural and thermal properties of {[Ni(2,2′-bpy)3][Ni(2-cpida)(2,2′ -bpy)]} (ClO4).3H2O. J. Chem. Sci. 2015, 127, 873–876. [Google Scholar] [CrossRef]
- Tomita, T.; Kyuno, E.; Tsuchiya, R. The Chromium(III) Complexes with Anthranilicdiacetic Acid. Bull. Chem. Soc. Jpn. 1969, 42, 947–951. [Google Scholar] [CrossRef]
- Chatterjee, C.; Singh, R.S.; Phulambrikar, A.; Das, S. Synthesis and spectral characterization of cobalt(III) complexes of N-(o-carboxyphenyl)iminodiacetic acid. J. Chem. Soc. Dalton Trans. 1988, 1988, 159–162. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, F.; Zhou, K.; Chen, L.; Wu, M.; Hong, M. Effects of Temperature and Anion on the Copper(II) Complexes based on 2-(Carboxyphenyl)iminodiacetic Acid and 1,10-Phenanthroline. Z. Anorg. Und Allg. Chem. 2015, 641, 1998–2004. [Google Scholar] [CrossRef]
- Nallasamy, P.; Senthilkumar, K.; Mohan, G.; Moon, I.-S. Structural and luminescent properties of a tetranuclear cage-type cadmium(II) carboxylate cluster containing a V-shaped water trimer. J. Coord. Chem. 2016, 69, 1005–1013. [Google Scholar] [CrossRef]
- Murugesu, M.; Anson, C.E.; Powell, A.K. Engineering of ferrimagnetic Cu12-cluster arrays through supramolecular interactions. Chem. Commun. 2002, 10, 1054–1055. [Google Scholar] [CrossRef] [PubMed]
- Murugesu, M.; King, P.; Clérac, R.; Anson, C.E.; Powell, A.K. A novel nonanuclear CuIIcarboxylate-bridged cluster aggregate with an S = 7/2 ground spin state. Chem. Commun. 2004, 6, 740–741. [Google Scholar] [CrossRef]
- Murugesu, M.; Clérac, R.; Anson, C.E.; Powell, A.K. Polycopper(II) aggregates as building blocks for supramolecular magnetic structures. J. Phys. Chem. Solids 2004, 65, 667–676. [Google Scholar] [CrossRef]
- McCowan, C.S.; Groy, T.L.; Caudle, M.T. Synthesis, Structure, and Preparative Transamination of Tetrazinc Carbamato Complexes Having the Basic Zinc Carboxylate Structure. Inorg. Chem. 2002, 41, 1120–1127. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Das, A.; Mukherjee, G.; Cantoni, A.; Bocelli, G.; Chaudhuri, S.; Ribas, J. Synthesis, X-ray crystal structures, physicochemical and magnetic studies on copper(II) N-(2-carboxyphenyl) iminodiacetate polymers. Polyhedron 2004, 23, 1081–1088. [Google Scholar] [CrossRef]
- Yong, G.-P.; Qiao, S.; Wang, Z.-Y.; Cui, Y. Five-, seven-, and eight-coordinate Cd(II) coordination polymers built by anthranilic acid derivatives: Synthesis, structures and photoluminescence. Inorg. Chim. Acta 2005, 358, 3905–3913. [Google Scholar] [CrossRef]
- Chu, Q.; Liu, G.-X.; Okamura, T.-A.; Huang, Y.-Q.; Sun, W.-Y.; Ueyama, N. Structure modulation of metal–organic frameworks via reaction pH: Self-assembly of a new carboxylate containing ligand N-(3-carboxyphenyl)iminodiacetic acid with cadmium(II) and cobalt(II) salts. Polyhedron 2008, 27, 812–820. [Google Scholar] [CrossRef]
- Yong, G.; Wang, Z.; Cui, Y. Synthesis, structural characterization and properties of copper(II) and zinc(II) coordination polymers with a new bridging chelating ligand. Eur. J. Inorg. Chem. 2004, 2004, 4317–4323. [Google Scholar] [CrossRef]
- Yong, G.; Wang, Z.; Chen, J. Two-dimensional and three-dimensional nickel(II) supramolecular complexes based on the new chelating ligand N-(4-carboxyphenyl)iminodiacetic acid: Hydrothermal synthesis and crystal structures. J. Mol. Struct. 2004, 707, 223–229. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, 1.171.39.46; Rigaku Corporation: Oxford, UK, 2018.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Choquesillo-Lazarte, D.; Covelo, B.; González-Pérez, J.M.; Castiñeiras, A.; Niclós-Gutiérrez, J. Metal chelates of N-(2-pyridylmethyl)iminodiacetate(2-) ion (pmda). Part I. Two mixed-ligand copper(II) complexes of pmda with N,N-chelating bases. Synthesis, crystal structure and properties of H2pmda·0.5H2O, [Cu(pmda)(pca)]·3H2O (pca=α-picolylamine) and [Cu(pmda)(Hpb)]·5H2O (Hpb=2-(2′-pyridyl)benzimidazole). Polyhedron 2002, 21, 1485–1495. [Google Scholar] [CrossRef]
- Román-Alpiste, M.; Martín-Ramos, J.; Castiñeiras-Campos, A.; Bugella-Altamirano, E.; Sicilia-Zafra, A.; González-Pérez, J.; Niclós-Gutiérrez, J. Synthesis, XRD structures and properties of diaqua(iminodiacetato)copper(II), [Cu(IDA)(H2O)2], and aqua(benzimidazole)(iminodiacetato)copper(II), [Cu(IDA)(HBzIm)(H2O)]. Polyhedron 1999, 18, 3341–3351. [Google Scholar] [CrossRef]
- Bugella-Altamirano, E.; González-Pérez, J.M.; Choquesillo-Lazarte, D.; Carballo, R.; Castiñeiras, A.; Niclós-Gutiérrez, J. A structural evidence for the preferential coordination of the primary amide group versus the unionised carboxyl group: Synthesis, molecular and crystal structure, and properties of [Cu(HADA)2], a new copper(II) bis-chelate (H2ADA=N-(2-carbamoylmethyl)iminodiacetic acid). Inorg. Chem. Commun. 2003, 6, 71–73. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
CCDC number | 2304883 | 2304881 | 2304880 | 2304882 |
Empirical formula | C22H30Cu3N2O19 | C23H29Cu3N2O17.5 | C11H8CuNNaO6 | C11H12CuNNaO8 |
Formula weight | 817.10 | 804.10 | 336.71 | 372.75 |
Temperature (K) | 293(2) | 293(2) | 150(2) | 150(2) |
Wavelength | 0.71073 Å | 1.54184 Å | 1.54184 Å | 1.54184 Å |
Crystal system | Monoclinic | Monoclinic | Orthorhombic | Orthorhombic |
Space group | P 21/n | P 21/n | Pbca | Iba2 |
a (Å) | 18.0990 (7) | 18.1311 (4) | 14.4270 (8) | 28.1538 (16) |
b (Å) | 9.7523 (3) | 9.7972 (2) | 6.4340 (4) | 14.5726 (7) |
c (Å) | 18.2152 (6) | 18.1195 (5) | 23.3780 (16) | 6.2930 (3) |
α (°) | 90 | 90 | 90 | 90 |
β (°) | 93.438 (3) | 94.229(2) | 90 | 90 |
γ (°) | 90 | 90 | 90 | 90 |
Volume (Å3) | 3209.32 (19) | 3209.88 (13) | 2170.0 (2) | 2581.9 (2) |
Z | 4 | 4 | 8 | 8 |
Dcalc(g·cm−3) | 1.691 | 1.664 | 2.061 | 1.918 |
Absorption coefficient (mm−1) | 2.053 | 3.011 | 3.540 | 3.164 |
F(000) | 1660 | 1632 | 1352 | 1512 |
Crystal dimensions (mm) | 0.22 × 0.17 × 0.11 | 0.43 × 0.30 × 0.22 | 0.19 × 0.07 × 0.03 | 0.33 × 0.11 × 0.05 |
Theta range for data collection (°) | 1.636 to 26.372 | 5.135 to 66.585 | 4.869 to 67.033 | 5.607 to 66.556 |
Index ranges | −14 ≤ h ≤ 22 | −21 ≤ h ≤ 19 | −17 ≤ h ≤ 16 | −33 ≤ h ≤ 27, |
−12 ≤ k ≤ 12 | −11 ≤ k ≤ 8 | −7 ≤ k ≤ 4 | −12 ≤ k ≤ 17 | |
−21 ≤ l ≤ 22 | −18 ≤ l ≤ 21 | −27 ≤ l ≤ 12 | −7 ≤ l ≤ 4 | |
Reflections collected | 13,135 | 12,308 | 4666 | 2980 |
Independent reflections, R(int) | 6552, 0.0367 | 5452, 0.0163 | 1927, 0.0284 | 1599, 0.0206 |
Data/restraints/parameters | 6552/3/437 | 5452/0/421 | 1927/0/181 | 1599/1/181 |
Goodness of fit on F2 | 1.022 | 1.091 | 1.173 | 1.081 |
Final R indices [I > 2sigma(I)]a,b | R1 = 0.0485, wR2 = 0.1251 | R1 = 0.0431, wR2 = 0.1338 | R1 = 0.0571, wR2 = 0.1406 | R1 = 0.0255, wR2 = 0.0679 |
R indices (all data)a,b | R1 = 0.0649, wR2 = 0.1375 | R1 = 0.0451, wR2 = 0.1353 | R1 = 0.0643, wR2 = 0.1438 | R1 = 0.0259, wR2 = 0.0682 |
Largest diff. peak and hole (e.Å−3) | 0.90/−0.54 | 1.65/−0.88 | 0.81/−0.82 | 0.37/−0.41 |
Compound 1 | 2 | ||
---|---|---|---|
Distances | |||
Cu(1)–O(1) | 1.918(3) | Cu(1)–O(1) | 1.917(2) |
Cu(1)–O(6)#1 | 1.936(3) | Cu(1)–O(6)#3 | 1.933(2) |
Cu(1)–O(2)#1 | 2.239(3) | Cu(1)–O(2)#3 | 2.247(2) |
Cu(1)–O(3)#1 | 1.943(3) | Cu(1)–O(3)#3 | 1.935(3) |
Cu(1)–N(1)#1 | 2.043(3) | Cu(1)–N(1)#3 | 2.043(3) |
Cu(2)–O(7) | 1.911(3) | Cu(2)–O(8)#4 | 2.238(2) |
Cu(2)–O(8)#2 | 2.251(3) | Cu(2)–O(7) | 1.905(2) |
Cu(2)–O(9)#2 | 1.975(3) | Cu(2)–O(12)#4 | 1.976(3) |
Cu(2)–O(12)#2 | 1.959(3) | Cu(2)–O(9)#4 | 1.983(3) |
Cu(2)–N(2)#2 | 2.028(3) | Cu(2)–N(2)#4 | 2.036(3) |
Cu(3)–O(2W) | 1.975(3) | Cu(3)–O(2W) | 1.970(3) |
Cu(3)–O(5) | 1.976(3) | Cu(3)–O(5) | 1.990(3) |
Cu(3)–O(1W) | 2.179(3) | Cu(3)–O(4W) | 1.994(3) |
Cu(3)–O(4W) | 1.984(3) | Cu(3)–O(3W) | 2.179(3) |
Cu(3)–O(3W) | 1.951(3) | Cu(3)–O(1W) | 1.946(3) |
Compound 3 | 4 | ||
---|---|---|---|
Distances | |||
Cu(1)–O(1)#5 | 1.935(4) | Cu(1)–O(5) | 1.903(2) |
Cu(1)–O(5) | 1.892(4) | Cu(1)–O(3) | 1.947(2) |
Cu(1)–O(3) | 1.940(4) | Cu(1)–O(1)#9 | 1.952(2) |
Cu(1)–N(1) | 2.046(5) | Cu(1)–O(1) | 2.390(3) |
Na(1)–O(1) | 2.706(5) | Cu(1)–N(1) | 2.054(3) |
Na(1)–O(5) | 2.365(4) | Na(1)–O(5) | 2.327(3) |
Na(1)–O(3)#6 | 2.903(4) | Na(1)–O(3)#10 | 2.919(3) |
Na(1)–O(3)#7 | 2.408(4) | Na(1)–O(3)#11 | 2.371(3) |
Na(1)–O(6)#8 | 2.361(5) | Na(1)–O(2)#9 | 2.809(3) |
Na(1)–O(4)#6 | 2.397(5) | Na(1)–O(6)#12 | 2.362(3) |
Na(1)–O(2)#5 | 2.690(5) | Na(1)–O(4)#10 | 2.401(3) |
Na(1)–O(1) | 2.701(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, S.; Kremer, C.; González-Platas, J.; Mendoza, C. New Polynuclear Coordination Compounds Based on 2–(Carboxyphenyl)iminodiacetate Anion: Synthesis and X-rays Crystal Structures. Crystals 2023, 13, 1669. https://doi.org/10.3390/cryst13121669
Martínez S, Kremer C, González-Platas J, Mendoza C. New Polynuclear Coordination Compounds Based on 2–(Carboxyphenyl)iminodiacetate Anion: Synthesis and X-rays Crystal Structures. Crystals. 2023; 13(12):1669. https://doi.org/10.3390/cryst13121669
Chicago/Turabian StyleMartínez, Sebastián, Carlos Kremer, Javier González-Platas, and Carolina Mendoza. 2023. "New Polynuclear Coordination Compounds Based on 2–(Carboxyphenyl)iminodiacetate Anion: Synthesis and X-rays Crystal Structures" Crystals 13, no. 12: 1669. https://doi.org/10.3390/cryst13121669
APA StyleMartínez, S., Kremer, C., González-Platas, J., & Mendoza, C. (2023). New Polynuclear Coordination Compounds Based on 2–(Carboxyphenyl)iminodiacetate Anion: Synthesis and X-rays Crystal Structures. Crystals, 13(12), 1669. https://doi.org/10.3390/cryst13121669