Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties—“Composition and Structural Analysis: XRD, RBS, SEM and TEM Measurements”
3.2. Luminescence Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute for Solar Energy Research in Hamelin (ISFH). Available online: https://isfh.de/26-1-record-efficiency-for-p-type-crystalline-si-solar-cells/?lang=en (accessed on 13 December 2022).
- The National Renewable Energy Laboratory (NREL). Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 13 December 2022).
- Klampaftis, E.; Ross, D.; McIntosh, K.R.; Richards, B.S. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review. Sol. Energy Mater. Sol. Cells 2009, 93, 1182–1194. [Google Scholar] [CrossRef]
- Ghazy, A.; Safdar, M.; Lastusaari, M.; Savin, H.; Karppinen, M. Advances in upconversion enhanced solar cell performance. Sol. Energy Mater. Sol. Cells 2021, 230, 111234. [Google Scholar] [CrossRef]
- Trupke, T.; Würfel, P.; Green, M.A. Up-and down-conversion as new means to improve solar cell efficiencies. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Wegh, R.T.; Donker, H.; van Loef, E.V.D.; Oskam, K.D.; Meijerink, A. Quantum cutting through downconversion in rare-earth compounds. J. Lumin. 2000, 87–89, 1017–1019. [Google Scholar] [CrossRef]
- Lian, H.; Hou, Z.; Shang, M.; Geng, D.; Zhang, Y.; Lin, J. Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 2013, 57, 270–283. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, S.; Bhangwan, S.; Singh, D. Rare earth (RE) doped phosphors and their emerging applications: A review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar] [CrossRef]
- Shalav, A.; Richards, B.S.; Trupke, T. Application of NaYF4:Eu3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2005, 86, 013505. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, J.; Liu, X.; Du, H. Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors. Mater. Res. Bull. 2013, 48, 2175–2179. [Google Scholar] [CrossRef]
- Verma, T.; Agrawal, S. Photoluminescence characteristics of Sm3+ and Eu3+ doped yttrium oxide phosphors. J. Mater. Sci. Mater. Electron. 2018, 29, 13397–13406. [Google Scholar] [CrossRef]
- Chen, K.; Yin, S.; Xue, D. Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten 2019, 1, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Egaña, A.; Cantelar, E.; Tardío, M.; Muñoz Santiuste, J.E. Synthesis and luminescence properties of Er3+ doped La3NbO7 ceramic powder. Opt. Mater. 2019, 97, 109393. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, H.; Zhou, J.; Wang, T.; Huang, D.; Wu, Y.; Sun, L.; Zhou, G.; Zhan, J.; Hu, J. Enhanced anti-stocks luminescence in LaNbO4:Ln3+ (Ln3+ = Yb3+, Er3+/Ho3+/Tm3+) with abundant color. RSC Adv. 2017, 7, 16777–16786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.L.; Hua, P.R.; Cui, Y.M.; Chen, C.H.; Pun, E.Y.B. Absorption and emission characteristics of Er3NbO7 phosphor: A comparison with ErNbO4 phosphor and Er:LiNbO3 single crystal. J. Lumin. 2007, 127, 453–460. [Google Scholar] [CrossRef]
- Silver, J.; Martínez-rubio, M.I.; Ireland, T.G.; Fern, G.R.; Withnall, R. The Effect of Particle Morphology and Crystallite Size on the Upconversion Luminescence Properties of Erbium and Ytterbium co-doped Yttrium Oxide Phosphors. J. Phys. Chem. B 2001, 105, 948–953. [Google Scholar] [CrossRef]
- Zhou, P.Q.; Wang, X.J.; He, Y.D.; Wu, Z.F.; Du, J.L.; Fu, E.G. Effect of deposition mechanisms on the infrared photoluminescence of erbium-ytterbium silicate films under different sputtering methods. J. Appl. Phys. 2019, 125, 175114. [Google Scholar] [CrossRef]
- Cabello-Guzmán, G.; González, D.; Caro-Díaz, C.; Lillo-Arroyo, L.; Valenzuela-Malgarejo, F.; Cárdenas Triviño, G.; Buono-Core, G.E.; Chornik, B.; Huentupil, Y. Preliminary evaluation of the up-conversion emission of Y2O3:Er-Yb thin films prepared by a solid state photochemical deposition method. J. Lumen. 2018, 204, 401–409. [Google Scholar] [CrossRef]
- Jakeš, V.; Rubešová, K.; Hlásek, T.; Polák, V.; Oswald, J.; Nádherný, L. Thin films of ErNbO4 and YbNbO4 prepared by sol–gel. J. Sol-Gel Sci. Technol. 2016, 78, 600–605. [Google Scholar] [CrossRef]
- Trabelsi, F.; Mercier, F.; Blanquet, E.; Crisci, A.; Salhi, R. Synthesis of upconversion TiO2:Er3+-Yb3+ nanoparticles and deposition of thin films by spin coating technique. Ceram. Int. 2020, 46, 28183–28192. [Google Scholar] [CrossRef]
- Park, S.I.; Kim, S.I.; Chang, S.K.; Kim, Y.H. Fabrication and characterization of Bi-doped Y2O3 phosphor thin films by RF magnetron sputtering. Thin Solid Films 2016, 600, 83–89. [Google Scholar] [CrossRef]
- Cai, L.; Nino, J.C. Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y). J. Eur. Ceram. Soc. 2007, 27, 3971–3976. [Google Scholar] [CrossRef]
- Rossell, H.J. Fluorite-related phases Ln3MO7, Ln = Rare-earth, Y or Sc, M = Nb, Sb or Ta. III. Structure of the non-stoichiometric Y3TaO7 phase. J. Solid State Chem. 1979, 27, 287–292. [Google Scholar] [CrossRef]
- Francis, L.T.; Rao, P.P.; Thomas, M.; Mahesh, S.K.; Reshmi, V.R.; Thampi, V.D.S. New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Mater. Lett. 2012, 81, 142–144. [Google Scholar] [CrossRef]
- Aarts, L.; van der Ende, B.M.; Meijerink, A. Downconversion for solar cells in NaYF4:Er,Yb. J. Appl. Phys. 2009, 106, 023522. [Google Scholar] [CrossRef] [Green Version]
- Gómez, L.A.; Menezes, L.S.; de Araújo, C.B.; Gonçalves, R.R.; Ribeiro, S.J.L.; Messaddeq, Y. Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm. J. Appl. Phys. 2010, 107, 113508. [Google Scholar] [CrossRef] [Green Version]
- Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. Photocatalytic Activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for Water Splitting into H2 and O2. J. Phys. Chem. 2006, 110, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Hinatsu, Y.; Wakeshima, M.; Kawabuchi, N.; Taira, N. Structures and magnetic properties of rare earth rhenium oxides Ln3ReO7 (Ln = Gd, Tb, and Dy). J. Alloy Compd. 2004, 374, 79–83. [Google Scholar] [CrossRef]
- Preux, N.; Rolle, A.; Merlin, C.; Benamira, M.; Malys, M.; Estournes, C.; Rubbens, A.; Vannier, R.N. La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers. C. R. Chim. 2010, 13, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Toyoura, K.; Nakamura, A.; Matsunaga, K. First-principles analysis on proton diffusivity in La3NbO7. Solid States Ionics 2014, 262, 472–475. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Sriubas, M.; Bockute, K.; Laukaitis, G. Dynamics of the formation of thin LaNbO4 films using magnetron sputtering. J. Vibroeng. 2015, 17, 3313–3322. [Google Scholar]
- Subramani, T.; Voskanyan, A.; Jayanthi, K.; Abramchuk, M.; Navrotsky, A. A Comparison of Order-Disorder in Several Families of Cubic Oxides. Front. Chem. 2021, 1, 719169. [Google Scholar] [CrossRef]
- Cai, L.; Nino, J.C. Synchrotron and neutron powder diffraction study of phase transition in weberite-type Nd3NbO7 and La3NbO7. J. Solid State Chem. 2011, 184, 2263–2271. [Google Scholar] [CrossRef]
- Mielewczyck-Gryn, A.; Navrotsky, A. Enthalpies of formation of rare earth niobates, RE3NbO7. Am. Mineral. 2015, 100, 1578–1583. [Google Scholar] [CrossRef]
- Dai, L.; Xu, Q.; Zhu, S.Z.; Liu, L. Preparation of Ultra–Fine La3NbO7 Powder by Solid State Reaction. Key Eng. Mat. 2012, 512–515, 158–161. [Google Scholar] [CrossRef]
- Redondo-Cubero, A.; Borge, M.J.G.; Gordillo, N.; Gutiérrez, P.C.; Olivares, J.; Pérez Casero, R.; Ynsa, M.D. Current status and future developments of the ion beam facility at the Centre of Micro-Analysis of Materials in Madrid. Eur. Phys. J. Plus. 2021, 136, 175. [Google Scholar] [CrossRef]
- Chu, W.K.; Mayer, J.W.; Nicolet, M.A. Backscattering Spectrometry, 1st ed.; Academic Press Inc.: San Diego, CA, USA, 1978. [Google Scholar]
- Mayer, M. SIMNRA User’s Guide; Report IPP 9/113; Max-Planck-Institut für Plasmaphysik: Garching, Germany, 1997. [Google Scholar]
- Huang, J.; Zhou, L.; Liang, Z.; Gong, F.; Han, J.; Wang, R. Promising red phosphors LaNbO4:Eu3+, Bi3+ for LED solid-state lighting application. J. Rare Earths 2010, 28, 356–360. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Li, J.F.; Zhu, Z.J.; You, Z.Y.; Tu, C.Y. Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy: BaLaGa3O7 crystals. J. Lumen. 2019, 208, 259–266. [Google Scholar] [CrossRef]
Sample | Sputtering Condition | ||
---|---|---|---|
Power (W) | Deposition Time (min) | Thickness (nm) | |
LT—LP | 50 | 30 | 115 |
LT—HP | 80 | 30 | 250 |
HT—LP | 50 | 240 | 800 |
HT—HP | 80 | 240 | 1040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas-Colera, E.; Tardío, M.; García-Tabarés, E.; Perea, B.; Crespillo, M.L.; Muñoz-Santiuste, J.E.; Galiana, B. Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals 2023, 13, 159. https://doi.org/10.3390/cryst13020159
Salas-Colera E, Tardío M, García-Tabarés E, Perea B, Crespillo ML, Muñoz-Santiuste JE, Galiana B. Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals. 2023; 13(2):159. https://doi.org/10.3390/cryst13020159
Chicago/Turabian StyleSalas-Colera, Eduardo, Miguel Tardío, Elisa García-Tabarés, Belén Perea, Miguel L. Crespillo, Juan Enrique Muñoz-Santiuste, and Beatriz Galiana. 2023. "Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells" Crystals 13, no. 2: 159. https://doi.org/10.3390/cryst13020159
APA StyleSalas-Colera, E., Tardío, M., García-Tabarés, E., Perea, B., Crespillo, M. L., Muñoz-Santiuste, J. E., & Galiana, B. (2023). Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals, 13(2), 159. https://doi.org/10.3390/cryst13020159