Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electro-Optic Response (EOR)
2.3. Electro-Optic Measurements (EOM) and Color Texture Analysis (CTA)
2.4. Fluorescence Confocal Polarizing Microscopy (FCPM)
3. Results and Discussion
3.1. Viscoelastic Properties—Electro-Optic Results
3.2. FCPM Laser Photobleaching and Color Texture Analysis
3.3. FCPM Laser Photobleaching and Au Nanoparticles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reinitzer, F. Contributions to the knowledge of cholesterol. Liq. Cryst. 1989, 5, 7–18. [Google Scholar] [CrossRef]
- Shen, Y.; Dierking, I. Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Appl. Sci. 2019, 9, 2512. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, A. Niezwykły Stan Materii–Ciekłe Kryształy; Wiedza Powszechna: Warszawa, Poland, 1981. [Google Scholar]
- Żmija, J.; Zieliński, J.; Parka, J.; Nowinowski-Kruszelnicki, E. Displeje Ciekłokrystaliczne; Wydawnictwa Naukowe PWN: Warszawa, Poland, 1993. [Google Scholar]
- Hamley, I.W. Liquid crystal phase formation by biopolymers. Soft Matter 2010, 6, 1863–1871. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Rešetič, A.; Milavec, J.; Domenici, V.; Zupančič, B.; Bubnov, A.; Zalar, B. Deuteron NMR investigation on orientational order parameter in polymer dispersed liquid crystal elastomers. Phys. Chem. Chem. Phys. 2020, 22, 23064–23072. [Google Scholar] [CrossRef]
- Tschierske, C. Liquid Crystals: Materials Design and Self-Assembly; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; p. 318. [Google Scholar]
- Kato, T.; Mizoshita, N.; Kishimoto, K. Functional liquid-crystalline assemblies: Self-organized soft materials. Angew. Chem. Int. Ed. 2005, 45, 38–68. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319. [Google Scholar] [CrossRef]
- Lagerwall, S.T. Chirality, Symmetry and Physical Effects. In Chiral Liquid Crystals; Kuczyński, W., Ed.; IFM PAN: Poznań, Poland, 2005; pp. 185–222. [Google Scholar]
- Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P. Ferroelectric liquid crystals. J. Phys. Lett. 1975, 36, 69–71. [Google Scholar] [CrossRef]
- Kuczyński, W.; Dardas, D.; Hoffmann, J.; Nowicka, K.; Jeżewski, W. Comparison of methods for determination of viscoelastic properties in chiral smectics C*. Phase Trans. 2012, 85, 358–363. [Google Scholar] [CrossRef]
- Malik, P.; Raina, K.K.; Bubnov, A.; Chaudhary, A.; Singh, R. Electrooptic switching and dielectric spectroscopy studies of ferroelectric liquid crystals with low and high spontaneous polarization. Thin Solid Films 2010, 519, 1052–1055. [Google Scholar] [CrossRef]
- Bone, M.F.; Coates, D.; Davey, A.B. Spontaneous polarization measurements on Ce3 and Ce8, two commercially available ferroelectric liquid crystals. Mol. Cryst. Liq. Crys. 1984, 102, 331–338. [Google Scholar] [CrossRef]
- Piecek, W.; Kula, P.; Raszewski, Z.; Perkowski, P.; Morawiak, P.; Kędzierski, J.; Dąbrowski, R.; Sun, X. An Influence of a Single Fluorine Atom Position in the Molecular Rigid Core on Physical Properties of Orthoconic Antiferroelectric Liquid Crystal. Ferroelectrics 2008, 365, 78–87. [Google Scholar] [CrossRef]
- Longa, L.; Trebin, H.R. Spontaneous polarization in chiral biaxial liquid crystals. Phys. Rev. A 1990, 42, 3453–3469. [Google Scholar] [CrossRef] [Green Version]
- Chandani, A.D.L.; Ouchi, Y.; Takezoe, H.; Fukuda, A.; Terashima, K.; Furukawa, K.; Kishi, A. Novel Phases Exhibiting Tristable Switching. Jpn. J. Appl. Phys. 1989, 28, L1261–L1264. [Google Scholar] [CrossRef]
- Czerwiński, M.; Tykarska, M. Helix parameters in bi- and multicomponent mixtures composed of orthoconic antiferroelectric liquid crystals with three ring molecular core. Liq. Cryst. 2014, 41, 850–860. [Google Scholar] [CrossRef]
- Parodi, O. Stress tensor for a nematic liquid crystal. J. Phys. 1970, 31, 581–584. [Google Scholar] [CrossRef]
- Gähwiller, C. Direct determination of the five independent viscosity coefficients of nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1973, 20, 301–318. [Google Scholar] [CrossRef]
- Stannarius, R. Elastic Properties of Nematic Liquid Crystals; WILEY-VCH Verlag GmbH: Weinheim, Germany, 1998. [Google Scholar] [CrossRef]
- Kuczyński, W. Determination of elasticity and viscosity coefficients in a ferroelectric smectic c liquid crystal. Ber. Bunsenges. Phys. Chem. 1981, 85, 234–237. [Google Scholar] [CrossRef]
- Gouda, F.; Skarp, K.; Andersson, G.; Kresse, H.; Lagerwall, S.T. Viscoelastic Properties of the Smectic A* and C* Phases Studied by a New Dielectric Method. Jpn. Soc. Appl. Phys. 1989, 28, 1887–1892. [Google Scholar] [CrossRef]
- Kuczyński, W.; Dardas, D.; Nowicka, K. Determination of the bulk rotational viscosity coefficient in a chiral smectic C* liquid crystal. Phase Trans. 2009, 82, 444–451. [Google Scholar] [CrossRef]
- Lalik, S.; Deptuch, A.; Fryń, P.; Jaworska–Gołąb, T.; Dardas, D.; Pociecha, D.; Urbańska, M.; Tykarska, M.; Marzec, M. Systematic study of the chiral smectic phases of a fluorinated compound. Liq. Cryst. 2019, 46, 2256–2268. [Google Scholar] [CrossRef]
- Takezoe, H.; Kondo, K.; Miyasato, K.; Abe, S.; Tsuchiya, T.; Fukuda, A.; Kuze, E. On the methods of determining material constants in ferroelectric smectic C* liquid crystals. Ferroelectrics 1984, 58, 55–70. [Google Scholar] [CrossRef]
- Marzec, M.; Fryń, P.; Tykarska, M. New antiferroelectric compound studied by complementary methods. Phase Trans. 2014, 87, 1011–1017. [Google Scholar] [CrossRef]
- Wojciechowski, M.; Tykarska, M.; Bąk, G.W. Dielectric properties of ferrielectric subphase of liquid crystal MHPOPB. Scient. Bull. Phys. Tech. Univ. Łódź. 2013, 34, 57–64. [Google Scholar]
- Dardas, D.; Kuczyński, W.; Hoffmann, J.; Jeżewski, W.; Nowicka, K.; Małecki, J. Non-linear electrooptic effect in antiferroelectric liquid crystal. Opto-Electron. Rev. 2010, 17, 25–29. [Google Scholar] [CrossRef]
- Dardas, D.; Kuczyński, W.; Hoffmann, J.; Jeżewski, W. Determination of twist elastic constant in antiferroelectric liquid crystals. Meas. Sci. Technol. 2011, 22, 85707. [Google Scholar] [CrossRef]
- Dardas, D. Electro-optic and viscoelastic properties of a ferroelectric liquid crystalline binary mixture. Phase Trans. 2016, 89, 368–375. [Google Scholar] [CrossRef]
- Dardas, D. Tuning the electro-optic and viscoelastic properties of ferroelectric liquid crystalline materials. Rheol. Acta 2019, 58, 193–201. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Giesselmann, F. The experimental study of phases and phase transitions in antiferroelectric liquid crystals. Chiral Liq. Cryst. 2015, 2005, 147–184. [Google Scholar]
- Mikułko, A.; Marzec, M.; Wróbel, S.; Dąbrowski, R. Detection of alpha sub-phase between para- and ferroelectric phase of a fluorinated compound. Ferroelectrics 2005, 313, 105–112. [Google Scholar] [CrossRef]
- Salamończyk, M.; Kovarova, A.; Svoboda, J.; Pociecha, D.; Górecka, E. Switchable fluorescent liquid crystals. Appl. Phys. Lett. 2009, 95, 171901. [Google Scholar] [CrossRef]
- Škarabot, M.; Čepič, M.; Žekš, B.; Blinc, R.; Heppke, G.; Kityk, A.V.; Muševič, I. Birefringence and tilt angle in the antiferroelectric, ferroelectric, and intermediate phases of chiral smectic liquid crystals. Phys. Rev. E 1998, 58, 575. [Google Scholar] [CrossRef] [Green Version]
- Kuczyński, W. Behavior of the helix in some chiral smectic- C- liquid crystals. Phys. Rev. E. 2010, 81, 1–6. [Google Scholar] [CrossRef]
- Dardas, D.; Kuczyński, W.; Hoffmann, J. Measurements of absolute values of electrooptic coefficients in a ferroelectric liquid crystal. Phase Trans. 2006, 79, 213–222. [Google Scholar] [CrossRef]
- Kuczyński, W.; Goc, F.; Dardas, D.; Dąbrowski, R.; Hoffmann, J.; Stryła, B.; Małecki, J. Phase transitions in a liquid crystal with long-range dipole order. Ferroelectrics 2002, 274, 83–100. [Google Scholar] [CrossRef]
- Adamow, A.; Sznitko, L.; Chrzumnicka, E.; Stachera, J.; Szukalski, A.; Martyński, T.; Myśliwiec, J. The ultra-photostable and electrically modulated Stimulated Emission in perylene-based dye doped liquid crystal. Sci. Rep. 2019, 9, 2143. [Google Scholar] [CrossRef] [Green Version]
- Lalik, S.; Stefańczyk, O.; Dardas, D.; Górska, N.; Ohkoshi, S.-I.; Marzec, M. Modifications of FLC Physical Properties through Doping with Fe2O3 Nanoparticles (Part I). Materials 2021, 14, 4722. [Google Scholar] [CrossRef]
- Pawlak, M.; Bagiński, M.; Llombart, P.; Beutel, D.; González-Rubio, G.; Górecka, E.; Rockstuhl, C.; Mieczkowski, J.; Pociecha, D.; Lewadowski, W. Tuneable helices of plasmonic nanoparticles using liquid crystal templates: Molecular dynamics investigation of an unusual odd–even effect in liquid crystalline dimers. Chem. Commun. 2022, 58, 7364–7367. [Google Scholar] [CrossRef]
- Labeeb, A.; Gleeson, H.F.; Hegmann, T. Polymer stabilization of the smectic C-alpha∗ liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens. Appl. Phys. Lett. 2015, 107, 232903. [Google Scholar] [CrossRef]
- Hegmann, T.; Qi, H.; Marx, V.M. Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet Polym. Mater. 2007, 17, 483–508. [Google Scholar] [CrossRef]
- Yoshida, H.; Tanaka, Y.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Kikuchi, H.; Ozaki, M. Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2009, 2, 121501. [Google Scholar] [CrossRef]
- Yevchenko, T.; Dardas, D.; Kuczyński, W.; Brańka, A.C. Determining the Kerr constant in optically isotropic liquid crystals. Phys. Rev. E 2022, 206, 14701. [Google Scholar] [CrossRef] [PubMed]
- Knapkiewicz, M.; Rachocki, A.; Bielejewski, M.; Sebastião, P.J. NMR studies of molecular ordering and molecular dynamics in a chiral liquid crystal with the SmCα* phase. Phys. Rev. E 2020, 101, 52708. [Google Scholar] [CrossRef] [PubMed]
- Otón, E.; Yoshida, H.; Morawiak, P.; Strzeżysz, O.; Kula, P.; Ozaki, M.; Piecek, W. Orientation control of ideal blue phase photonic crystals. Sci. Rep. 2020, 10, 10148. [Google Scholar] [CrossRef] [PubMed]
- Bubnov, A.; Bobrovsky, A.; Rychetský, I.; Fekete, L.; Hamplová, V. Self-Assembling Behavior of Smart Nanocomposite System: Ferroelectric Liquid Crystal Confined by Stretched Porous Polyethylene Film. Nanomaterials 2020, 10, 1498. [Google Scholar] [CrossRef]
- Diaspro, A.; Chirico, G.; Usai, C.; Ramoino, P.; Dobrucki, J. Photobleaching. In Handbook of Biological Confocal Microscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Lalik, S.; Stefańczyk, O.; Dardas, D.; Deptuch, A.; Yevchenko, T.; Ohkoshi, S.-I.; Marzec, M. Nanocomposites Based on Antiferroelectric Liquid Crystal (S)-MHPOBC Doping with Au Nanoparticles. Molecules 2022, 27, 3663. [Google Scholar] [CrossRef]
- Pieprzyk, S.; Yevchenko, T.; Dardas, D.; Brańka, A.C. Phase transitions and physical properties by a color texture analysis: Results for liquid crystals. J. Mol. Liq. 2022, 362, 119699. [Google Scholar] [CrossRef]
- Smalyukh, I.I.; Shiyanovskii, S.V.; Lavrentovich, O.D. Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem. Phys. Lett. 2001, 336, 88–96. [Google Scholar] [CrossRef]
- Nowicka, K.; Bielejewska, N.; Kuczyński, W.; Knapkiewicz, M.; Hoffmann, J. Exploration of liquid crystal structures using fluorescent confocal polarizing microscopy. Phase Trans. 2014, 87, 1073–1079. [Google Scholar] [CrossRef]
- Klyukin, D.; Silvennoinen, M.; Krykova, V.; Svirko, Y.; Sidorov, A.; Nikonorov, N. Fluorescent clusters in chloride photo-thermo-refractive glass by femtosecond laser bleaching of Ag nanoparticles. Opt. Express 2017, 25, 12944–12951. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dardas, D.; Lalik, S.; Nowacka, Z.; Yevchenko, T.; Marzec, M. Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals. Crystals 2023, 13, 164. https://doi.org/10.3390/cryst13020164
Dardas D, Lalik S, Nowacka Z, Yevchenko T, Marzec M. Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals. Crystals. 2023; 13(2):164. https://doi.org/10.3390/cryst13020164
Chicago/Turabian StyleDardas, Dorota, Sebastian Lalik, Zuzanna Nowacka, Tetiana Yevchenko, and Monika Marzec. 2023. "Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals" Crystals 13, no. 2: 164. https://doi.org/10.3390/cryst13020164
APA StyleDardas, D., Lalik, S., Nowacka, Z., Yevchenko, T., & Marzec, M. (2023). Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals. Crystals, 13(2), 164. https://doi.org/10.3390/cryst13020164