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Abstract: In this paper, the interfacial stabilities of six different stacking interface configurations of
Ni(100)/Ni3Al(100) eutectic structures with AlNi termination and Ni termination are calculated by
using first-principles methods. The calculated adhesion work and interface energy indicate that
the “Center” site stacking interface configurations are more stable than the “Top” and “Bridge” site
stacking interface models. The partial density of states (PDOS) and the charge density difference
confirm that the bonding characteristic of the Ni-terminated “Center” site stacking interface of the
Ni(100)/Ni3Al(100) eutectic structure is metallic, while the bond at the AlNi-terminated “Center”
site interface is a combination of covalent and metallic bonds. A comprehensive analysis of the
interface energy, PDOS and charge density difference confirms that the AlNi-terminated “Center”
site stacking interface configuration of the Ni(100)/Ni3Al(100) eutectic structure is the most stable
eutectic interface model.

Keywords: solidification; eutectic structure; Ni/Ni3Al interface; first-principle calculations

1. Introduction

γ/γ’ eutectic structures consist of a face-centered cubic Ni solid solution matrix (γ)
and an L12-type ordered face-centered cubic intermetallic Ni3Al (γ’) phase. Ni/Ni3Al
eutectic structures have received considerable attention as typical structures in Ni-based
superalloys, coatings and composites [1–3]. The performance of materials strongly de-
pends on the morphology, volume fraction and interfacial characteristics of their Ni/Ni3Al
eutectic structures.

Many previous studies have been conducted on the solidification behavior and pref-
erential growth orientation of Ni/Ni3Al eutectic structures in Ni-based superalloys un-
der different processing conditions [4]. Ni/Ni3Al eutectic structures generally develop
in the interdendritic regions of superalloys and eutectic composites, and they exhibit
diversified morphologies, including isolated blocky, rosette-like, rod-like and continu-
ous strip-like structures. The morphology and volume fraction of eutectic structures
are closely related to the cooling rate, thermal gradient, alloy composition and external
electromagnetic field [5–8]. In comparison to the Bridgman process, the downward di-
rectional solidification process enhances the cooling rate, refines the dendritic structure
and decreases the Ni/Ni3Al eutectic structure size to obtain a homogeneous microstruc-
ture [5]. A high thermal gradient increases the solid volume fraction and conforms to the
Bower–Brody–Flemings model, promoting the development of a fine Ni/Ni3Al eutectic
structure in the center of interdendritic regions, which evolves into a petal-like coarse
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eutectic structure [6]. The addition of Re and Ru alloying elements increases the Ni/Ni3Al
eutectic fractions and the segregation degree of Al and Ta alloying elements [7]. An external
high-density current causes the dissolution of Ni/Ni3Al eutectic structures, promoting the
transformation of the morphology of crisscrossed fine eutectic structures from block to bar
shapes [8]. Therefore, in order to investigate the Ni/Ni3Al eutectic structures in alloys with
various chemical compositions under different cooling rates, thermal gradients and external
electromagnetic fields are essential to improve the performance of materials containing
eutectic structures. In particular, the two Ni and Ni3Al phases under different conditions
always have preferential growth orientations, and the orientation relationships (OR) of the
Ni/Ni3Al interface have been determined to be (100)Ni||(100)Ni3Al, (110)Ni||(110)Ni3Al
and (111)Ni||(111)Ni3Al [9,10]. Moreover, the (100)Ni||(100)Ni3Al interface is taken in this
study as a typical coherent interface, which universally exists in eutectic structures. Con-
sequently, it is of significance to clarify the interfacial characteristic of Ni/Ni3Al eutectic
structures with preferential OR.

The interfacial characteristic between Ni and Ni3Al, including atomic structures,
electronic structures and interfacial stability, is often the controlling factor limiting their
practical applications [11,12]. Thus, determining it and understanding its influence on the
comprehensive properties of Ni/Ni3Al eutectic structures are of great importance. For
Ni-based single-crystal superalloys, the Ni matrix and Ni3Al precipitates are coherent [13].
To date, first-principles calculations based on the density functional theory (DFT) have
been used to establish supercell and cluster models of the Ni/Ni3Al interface, further
theoretically revealing the effects of alloying elements (Re, B, Cr, Ru, Co, Mo, W, Ta, Zr, Ti,
Nb and Hf) on the thermodynamic stability and fracture strength of the interface between
the Ni matrix and the precipitated Ni3Al phase [14–17]. However, the previous studies
mainly focus on one or two types of interfacial models. For the Ni/Ni3Al eutectic structure
in the interdendritic regions of superalloys and eutectic composites, the relationship of
the interfacial characteristic with the preferential OR and eutectic structures, and the
atomic and electronic structures and bonding characteristics of Ni/Ni3Al eutectic structures
with preferential growth orientation remain unclear. Therefore, a systematic study of
Ni(100)/Ni3Al(100) eutectic interfaces with diversified interface models is essential to
clarify the interfacial properties of Ni/Ni3Al eutectic structures.

This study investigates the interfacial stability and electronic structures of six different
interface models of Ni(100)/Ni3Al(100) eutectic structures calculated by employing first-
principles calculations. The interface adhesion, interface energy and electronic structures of
the diversified Ni(100)/Ni3Al(100) interface configurations are determined, providing an
enhanced understanding of the most stable structures and the bonding characteristics of
the Ni(100)/Ni3Al(100) eutectic interfaces with optimum stacking sites.

2. Computational Method

The first-principles calculations based on DFT were performed by using the Cam-
bridge Sequential Total Energy Package (CASTEP) code [18]. The exchange and correlation
energies of the bulk properties of pure Ni and Ni3Al, including the lattice constants, elastic
constants and bulk modulus, were calculated by using the Generalized Gradient Ap-
proximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) functions [19]. The K-point
sampling in the first irreducible Brillouin zone was conducted by using the Monkhorst–
Pack scheme. The plane-wave cutoff energy was set to 450 eV, the Monkhorst–Pack
k-point mesh with 13 × 13 × 13 k points was utilized for the bulk Ni and Ni3Al, and
13 × 13 × 1 k points for the Ni/Ni3Al interfaces were utilized in the Brillouin zone integra-
tion. For the interface calculations, the self-consistent field (SCF) convergence threshold
was set to 2.0 × 10−7 eV/atom, and the mean atomic force was reduced to 0.01 eV/Å. The
equilibrium stress for each atom was converged to 0.02 GPa, the displacement was lower
than 5.0 × 10−5 Å, and the system was considered to converge. The Kohn–Sham equation
with the self-consistent field procedure was solved to obtain the electronic minimization
and the ground state. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was
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employed to achieve the minimum energy state of the Ni/Ni3Al eutectic interface. For the
surface models and interface configurations, periodic boundary conditions were applied,
and a vacuum layer with a thickness of 10 Å was added on the interface and surface
structures to avoid the interaction between the two identical surfaces.

3. Results and Discussion
3.1. Bulk Properties of Ni and Ni3Al

The calculated lattice parameters (a), elastic constants (Cij) and bulk modulus (B) of
the pure Ni and the pure Ni3Al crystal are listed in Table 1. For the pure Ni, the space
group is Fm-3m (225), and the lattice constant and bulk modulus are a = 3.529 Å and
B = 203.76 GPa, respectively. The results calculated by using GGA-PBE agree well with the
values reported in the previous references. The difference between the experimental and
theoretical elastic constants and bulk modulus is attributed to the different computational
and experimental conditions. The space group of Ni3Al is Pm-3m (221), and the bulk
structure of cubic Ni3Al is shown in Figure 1. The crystal structure belongs to the Cu3Au-
type, and the Ni atoms occupy the 3c(0, 0.5, 0.5) Wyckoff positions, while the Al atoms
occupy the 1a(0, 0, 0) positions. The lattice constant and bulk modulus calculated by using
GGA-PBE are determined to be a = 3.577 Å and B = 182.64 GPa, respectively, which are
in good agreement with the previous theoretical and experimental data. The comparison
between the calculated and referenced values ensures the accuracy of the parameters
and the precision in the calculation of the GGA-PBE functions. Therefore, the GGA-PBE
functional is applied in the following calculations.

Table 1. The calculated lattice constants (a), elastic constants (Cij) and bulk modulus (B) of pure Ni
and Ni3Al crystal.

a(Å) C11(GPa) C12(GPa) C44(GPa) B(GPa)

Ni
PBE 3.529 283.78 178.75 110.95 203.76

Exp. [20] 3.524 248.1 154.9 124.2 186
Cal. [21] 3.526 303.4 205.7 136.3 196.8

Ni3Al
PBE 3.577 240.14 153.89 124.59 182.64

Exp. [22] 3.567 224.5 148.6 124.4 173.9
DFT [23] 3.58 243.8 148.7 123.4 182.4 [21]
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Figure 1. Crystal model of Ni3Al. The gray and purple balls correspond to the Ni and Al
atoms, respectively.

3.2. Surface Convergence

The required number of atomic layers for pure Ni and Ni3Al in the surface slab models
should be determined to ensure that the surface slab models exhibit bulk-like interior
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properties. To determine the number of atomic layers in the following calculations of
interfacial characteristics, a surface convergence test is conducted on the Ni and Ni3Al
slabs versus slab thickness, and the results are listed in Table 2. For the Ni(100) surface,
the odd layers with two identical surfaces are chosen to calculate the surface energy. The
surface energy (γs) for more than nine atomic layers can be determined by the following
equation [24]:

γs =
1

2A
(Esurf − NEbulk) (1)

where the factor 2 represents the two identical surfaces of the surface slab, A is the surface
area, Esurf is the final energy of the Ni surface slab, Ebulk is the energy of each Ni atom in
the bulk crystal, and N is the number of atoms in the surface slab. The Ni(100) surface
energy is calculated and converges to 2.20 J/m2 for the surface models with more than nine
layers, which is consistent with a previous study [21]. Therefore, the Ni surface slab model
with nine atomic layers is adopted in the following calculation of interfacial characteristics
of the Ni(100)/Ni3Al(100) eutectic structures.

Table 2. Calculated surface energies of different Ni(100) surfaces versus atomic layers.

Atomic Layer (n) Surface Energy (J/m2)

Ni (100)

3 2.24
5 2.22
7 2.21
9 2.20

11 2.19

For the Ni3Al(100) surface, there are two kinds of Ni3Al surfaces, namely, a Ni-
terminated surface and a AlNi-terminated surface. The convergence test is conducted on
the Ni3Al surface slabs by using the method described in Ref. [25]. To avoid the dipole effect
of the surface configurations, the two free surfaces of Ni3Al(100) are identical. The odd
layered slabs with 3, 5, 7, 9 and 11 layers are established to evaluate the convergences of the
surfaces and to eliminate surface polarity. In the calculations, all of the atoms are relaxed
to the local minimum positions. To quantitatively characterize the degree of relaxation
during the calculations, the variation in the interlayer distance (∆ij) for the optimized
configuration after relaxation is calculated as (di,j − d0)/d0 × 100%, where d0 is the bulk
interlayer distance, and di,j is the average distance between the ith and jth layer. A positive
∆ij represents an increasing distance between the two layers and interlayer expansion,
while a negative ∆ij indicates a decreasing distance and interlayer reduction. The results
are shown in Table 3. The two Ni-terminated and AlNi-terminated surfaces with more than
nine layers converge well, indicating that nine layers are thick enough for the convergence
of the two Ni-terminated and AlNi-terminated Ni3Al(100) surfaces. Therefore, the nine-
layered Ni and nine-layered Ni3Al slabs are chosen to construct the Ni(100)/Ni3Al(100)
eutectic interfaces.

Table 3. Interlayer distance variation (∆ij) convergences of the two Ni-terminated and AlNi-
terminated Ni3Al(100) surfaces versus the number of atomic layers.

Termination Interlayer
Slab Thickness

3 5 7 9 11

Ni
termination

∆12 −3.93% −4.14% −4.25% −4.32% −4.24%
∆23 0.02% −0.04% −0.56% −0.55%
∆34 0.05% −0.39% −0.45%
∆45 −0.64% −0.75%
∆56 −0.003%
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Table 3. Cont.

Termination Interlayer
Slab Thickness

3 5 7 9 11

AlNi
termination

∆12 −3.22% −3.02% −3.08% −3.02% −3.02%
∆23 −0.21% −0.44% −0.39% −0.39%
∆34 −0.36% −0.31% −0.26%
∆45 0.03% 0.02%
∆56 0.04%

3.3. Surface Stability of Ni3Al Surfaces

The Ni3Al surface slab with symmetric terminations is non-stoichiometric, and the
chemical potentials of the Ni and Al atoms should be considered for the calculation of
the surface energy. The surface model is in equilibrium with the bulk and follows the
relationships (µbulk

Ni3Al = µslab
Al + 3µslab

Ni ) and (µbulk
Ni3Al = µslab

Al + 3µslab
Ni + ∆H0

f ), where µbulk
Ni3Al is

the chemical potential of bulk Ni3Al; µslab
Al and µslab

Ni are the chemical potentials of the Al
and Ni atoms, respectively; and ∆H0

f is the formation enthalpy of bulk Ni3Al. The surface
energies (γs) of the different Ni3Al surface models with non-stoichiometric characteristics
can be determined by [26]

γs =
1

2A

(
Eslab −

NNi

3
µbulk

Ni3Al +

(
NNi

3
− NAl

)
µslab

Al

)
(2)

where A is the area of the surface; Eslab is the total energy of the different surface models;
NNi and NAl are the numbers of the Ni and Al atoms in the surface model, respectively.
The Ni3Al(100) surface equilibrates the Ni3Al bulk and the chemical potentials of the Al
and Ni atoms are less than the values in the bulk, indicating that stable atoms form the slab
structures. In addition, µslab

Ni ≤ µbulk
Ni , and µslab

Al ≤ µbulk
Al ; the range of µslab

Al − µbulk
Al can be

determined as follows:
∆H0

f ≤ µslab
Al − µbulk

Al ≤ 0 (3)

The surface energy of Ni3Al can be rewritten as follows:

γs =
1

2A

(
Eslab −

NNi

3
µbulk

Ni3Al +

(
NNi

3
− NAl

)
µbulk

Al −
(

NNi

3
− NAl

)(
µslab

Al − µbulk
Al

))
(4)

The surface energy variations of the Ni-terminated and AlNi-terminated surfaces
versus the chemical potential difference of µslab

Al − µbulk
Al are illustrated in Figure 2. There

is a linear relationship between the surface energies and the chemical potential difference
for the two surfaces. The Ni-terminated N3Al(100) surface energy increases with the
increase in the chemical potential difference, while the surface energy decreases for the
AlNi-terminated N3Al(100) surface. This is related to the different bonding characteristics of
the Ni-terminated and AlNi-terminated Ni3Al(100) surfaces, as discussed in the following
section, which covers the electronic structures of the eutectic interface. The surface energy
of the AlNi-terminated surface is smaller than that of the Ni-terminated surface, and the
values of the surface energies of the AlNi-terminated and Ni-terminated surfaces range
from 1.29 J to 2.11 J and from 2.3 J to 3.13 J, respectively. The smaller value of the surface
energy for the AlNi-terminated Ni3Al(100) surface indicates that it has better stability than
the Ni-terminated Ni3Al(100) surface.
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4. Interfacial Properties
4.1. Atomic Structures of the Ni/Ni3Al Eutectic Interface

The nine-layered Ni and nine-layered Ni3Al surface slabs with periodic boundary
conditions based on the surface convergence test were utilized to construct the Ni(100)/
Ni3Al(100) eutectic interface models. A vacuum layer of 10 Å was built on top of the inter-
face models to eliminate the interaction between the free surfaces of the Ni3Al and Ni slabs.
The corresponding lattice mismatches (δ) for the interface models of Ni(100)/Ni3Al(100)
were calculated using δ = 2(αNi3Al − αNi)/(αNi3Al + αNi), where αNi3Al and αNi are the lattice
constants of the Ni3Al and Ni phases, respectively. The value of the lattice mismatches
was determined to be 1.34%, indicating a coherent Ni(100)/Ni3Al(100) interface and the
neglect of the interfacial strain in the calculation of the interfacial characteristics. Three
different stacking sequences of the Ni atoms in the layers of the Ni(100) surface on each
of the Ni3Al(100) Ni-terminated and AlNi-terminated surfaces were considered to build
six different interface models of Ni(100)/Ni3Al(100) eutectic structures, namely, the Ni-
terminated and “Top” site stacking interface, the Ni-terminated and “Bridge” site stacking
interface, the Ni-terminated and “Center” site stacking interface, the AlNi-terminated and
“Top” site stacking interface, the AlNi-terminated and “Bridge” site stacking interface, and
the AlNi-terminated and “Center” site stacking interface, as shown in Figure 3. For the
Ni-terminated and AlNi-terminated surfaces, the “Top” site stacking interface shown in
Figure 3a,d indicates that the interfacial Ni atoms in the first layer of the Ni(100) surface
were placed right on the interfacial Ni or Al atoms of the Ni3Al(100) slab. The “Bridge” site
stacking interface shown in Figure 3b,e indicates that the interfacial Ni atoms in the first
layer of the Ni(100) surface were located in the middle site between the Ni and Al atoms in
the Ni3Al(100) slab. The “Center” site stacking interface shown in Figure 3c,f indicates that
the interfacial Ni atoms in the first layer of the Ni(100) surface were located right above the
second layer of the Ni3Al(100) slab. All the atoms in the interface models can be relaxed
freely in the three dimensions.

4.2. Interfacial Stability

The interfacial adhesion work (Wad) is commonly used to evaluate the interfacial
stability of various Ni(100)/Ni3Al(100) eutectic structures, and it is defined as the reversible
energy required to separate the Ni/Ni3Al interface into two free surfaces. A higher inter-
facial adhesion work represents a stable interface. The interfacial adhesion work of the
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Ni(100)/Ni3Al(100) eutectic structure is determined via the energy of the Ni(100) surface
slab (ENi), the energy of the Ni3Al(100) surface slab (ENi3Al) after relaxation and the interfa-
cial energy of the Ni(100)/Ni3Al(100) eutectic structure after full relaxation (Einterface):

Wad =
1
A
(
ENi + ENi3Al − Einterface

)
(5)

where A is the interfacial area of the Ni(100)/Ni3Al(100) eutectic structure. After the atoms
in the interface are fully relaxed to the equilibrium position, the variation of the total
energy of the interface is calculated with the interfacial distance variation d0, which is
the distance between the first layer of the Ni and Ni3Al slabs along the z direction. The
optimal d0 and Wad are listed in the “Fully Relaxed” column in Table 4. Compared to the
“Top” and “Bridge” site stacking configurations, the interfacial adhesion work of “Center”
site stacking configuration is the highest for the both Ni-terminated and AlNi-terminated
Ni(100)/Ni3Al(100) eutectic interfaces. A larger adhesion work indicates a greater stability
of the interface. This indicates that the Ni-terminated and AlNi-terminated “Center” (100)
interfaces are more stable than the “Top” and “Bridge” site stacking interface models.
Consequently, the Ni-terminated and AlNi-terminated “Center” site stacking interface
configurations, rather than the “Top” and “Bridge” site stacking interface models, are
further investigated in this study.
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where A is the interfacial area of the Ni(100)/Ni3Al(100) eutectic structure. After the atoms 

in the interface are fully relaxed to the equilibrium position, the variation of the total 

energy of the interface is calculated with the interfacial distance variation d0, which is the 

Figure 3. Side view of the six different interface models of Ni(100)/Ni3Al(100) eutectic structures:
(a) Ni-terminated Ni3Al and “Top” site, (b) Ni-terminated Ni3Al and “Bridge” site, (c) Ni-terminated
Ni3Al and “Center” site, (d) AlNi-terminated Ni3Al and “Top” site, (e) AlNi-terminated Ni3Al and
“Bridge” site, (f) AlNi-terminated Ni3Al and “Center” site. The gray and pink colored spheres
represent the Ni and Al atoms, respectively. The first three layers of Ni-terminated interface model
are defined and illustrated, and they are the same as those of the other interface models. The z
direction is the relaxation direction during geometry optimization.
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Table 4. Adhesion work (Wad) and interfacial distance variation (d0) of the Ni-terminated and
AlNi-terminated Ni(100)/Ni3Al(100) interface models after relaxation.

Termination Stacking
Fully Relaxed

d0(Å) Wad(J/m2)

Ni
termination

Top 2.30 2.36
Bridge 2.05 3.19
Center 1.73 4.34

AlNi
termination

Top 2.33 2.26
Bridge 2.1 3.03
Center 1.78 4.15

To further evaluate the interfacial stability of the different Ni(100)/Ni3Al(100) eu-
tectic interface configurations, the interfacial energies (γ) of the Ni-terminated and AlNi-
terminated “Center” site stacking interface models are calculated by using the following
equation [26].

γ =
1
A

(
Einterface −

NNi3Al
Ni
3

µbulk
Ni3Al −

(
NNi3Al

Ni
3

− NAl

)
µslab

Al − NNi
Ni µbulk

Ni

)
− σNi − σNi3Al (6)

where A is the interface area; Einterface is the interfacial energy of the Ni(100)/Ni3Al(100)
eutectic structure after full relaxation; NAl is the number of Al atoms in the Ni3Al(100)
slab; NNi3Al

Ni and NNi
Ni are the number of Ni atoms in the Ni3Al(100) and Ni(100) slabs,

respectively; µbulk
Ni3Al is the chemical potential of Ni3Al; µbulk

Ni is the chemical potential of the
Ni atom in the Ni bulk; µslab

Al is the chemical potential of the Al atom in the interface; and σNi
and σNi3Al are the surface energies of the Ni(100) and Ni3Al(100) surfaces, respectively. For
the two Ni-terminated and AlNi-terminated “Center” site stacking interface models, the
interfacial energy variation versus the chemical potential difference of Al (µslab

Al − µbulk
Al ) is

shown in Figure 4. The interface energy of the Ni-terminated “Center” site stacking interface
monotonously increases from −0.07 to 0.7 J/m2 with the increasing chemical potential
difference, while the interface energy of the AlNi-terminated “Center” site stacking interface
decreases from −0.06 to −0.84 J/m2. The interfacial energy of the AlNi-terminated “Center”
site stacking interface is lower than that of the Ni-terminated “Center” site stacking interface.
This indicates that the AlNi-terminated “Center” site stacking Ni(100)/Ni3Al(100) eutectic
interface has a high stability and is more stable than the Ni-terminated “Center” site
stacking interface model.

4.3. Electronic Structure

To further explore the interfacial characteristic and stability of the Ni-terminated
and AlNi-terminated “Center” site stacking interface models of the Ni(100)/Ni3Al(100)
eutectic structures, the partial density of states (PDOS) and the charge density difference are
calculated to elucidate the electronic structure and the bonding characteristics of the two
different interface models. The obtained PDOS for the AlNi-terminated and Ni-terminated
“Center” site stacking interfaces of the Ni(100)/Ni3Al(100) eutectic structures are presented
in Figure 5. The vertical dashed line represents the Fermi level. The 1st, 2nd and 3rd
layers are the same as the layers in Figure 3, and the 3rd and higher layers of the Ni and
Ni3Al sides have similar bulk Ni and Ni3Al properties. For the Ni-terminated “Center” site
stacking Ni(100)/Ni3Al(100) interface, the PDOS at the interface is different from that of
the interior layers, indicating the electron redistribution of the interfacial atoms (Figure 5a).
The interfacial Ni atoms have the same PDOS and occupy more states near the Fermi level
with no depletion, indicating the metallic bonding characteristics of the Ni(100)/Ni3Al(100)
interface. For the AlNi-terminated “Center” site stacking Ni(100)/Ni3Al(100) interface,
the PDOS of the interfacial Al atoms are larger than the PDOS of those in the bulk or the
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interior one, and the first-layer Ni atoms in the Ni(100) slab have a weak depletion, as
shown in Figure 5b. Based on the difference between the PDOS of the interface and the
PDOS of the interior layers, the overlapping interfacial Ni and Al atoms near the Fermi level
reflect the orbital hybridization and the formation of covalent bonds between Ni-3d and
Al-2p. Therefore, the bonding characteristic of the AlNi-terminated “Center” site stacking
interface of the Ni(100)/Ni3Al(100) eutectic structures is covalent with metallic bonding.
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Figure 6 shows the charge density difference for the fully relaxed Ni-terminated and
AlNi-terminated “Center” site stacking interfaces of the Ni(100)/Ni3Al(100) eutectic struc-
tures. The solid horizontal lines represent the interfaces of the two Ni(100)/Ni3Al(100)
eutectic interface models, the red area denotes the enrichment of electrons, and the blue area
represents the loss of electrons. For the Ni-terminated “Center” site stacking interface, the
charge depletion is mainly concentrated in the Al atoms in the Ni3Al(100) slab and partially
concentrated around the Ni atoms in the Ni(100) slab. The original interfacial charge distri-
bution is similar to that in the Ni(100) slab and the Ni3Al(100) slab, indicating no obvious
charge transfer or redistribution near the interface and the metallic bonding characteristic
at the Ni-terminated “Center” site stacking interface of the Ni(100)/Ni3Al(100) eutectic
structures, as shown in Figure 6a. For the AlNi-terminated “Center” site stacking interface,
there is an obvious charge accumulation in the Ni atoms at the interface, and the charge
accumulation region extends to the second layer of the Ni(100) slab. The interfacial charge
distribution is similar to that in the Ni3Al(100) slab, indicating the combined interaction
of covalent and metallic bonding characteristics (Figure 6b). Additionally, the covalent
bond is stronger than the metallic bond. Therefore, the bonding characteristic of the AlNi-
terminated “Center” site stacking interface of the Ni(100)/Ni3Al(100) eutectic structures is
more stable than that of the Ni-terminated “Center” site stacking interface model. These
results are consistent with the conclusion from the PDOS.
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dashed line represents the Fermi level, and the number of layers corresponds to the number of layers
in Figure 3.
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5. Conclusions

Six different Ni-terminated and AlNi-terminated interface models of Ni(100)/Ni3Al(100)
eutectic structures, containing “Top”, “Bridge” and “Center” site stacking configurations,
were established for an investigation into the interfacial stability of eutectic structures. The
interface adhesion, interface energy and electronic structures were calculated to determine
the most stable interfacial configuration of the Ni(100)/Ni3Al(100) eutectic structures. The
main conclusions are summarized as follows:

1. A nine-layered Ni(100) slab and a nine-layered Ni3Al(100) slab with AlNi termina-
tion and Ni termination were utilized to establish six different interface models of
Ni(100)/Ni3Al(100) eutectic structures, namely, Ni-terminated and AlNi-terminated
“Top” site stacking interface, Ni-terminated and AlNi-terminated “Bridge” site stack-
ing interface, and Ni-terminated and AlNi-terminated “Center” site stacking
interface configurations.

2. The AlNi-terminated “Center” site stacking interface model of the Ni(100)/Ni3Al(100) eu-
tectic structure was determined to be the most stable interfacial configuration from a com-
prehensive analysis of the adhesion work, interfacial energy and electronic structures.

3. The PDOS and charge density difference indicated the combined bonding characteris-
tics of covalent and metallic bonds at the interface of the AlNi-terminated and “Center”
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site stacking interface of the Ni(100)/Ni3Al(100) eutectic structure, which had a higher
stability than the Ni-terminated and “Center” site stacking interfacial model.
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