Assessment of Inclusion Removal Ability in Refining Slags Containing Ce2O3
Abstract
:1. Introduction
2. Modeling Methodology and Model Details
2.1. Calculation Model of the Surface Tension of Slag
2.1.1. The Ion and Molecule Coexistence Theory
- Slag is composed of various ions, compounds (molecules), and electrons. For the slag system studied in this paper, slag contains Ca2+, O2−, Ce2+, Mg2+, Al2O3, SiO2, and aluminate and silicate generated by their mutual reactions.
- The coexistence of ions and molecules is continuous in the slag system of any composition.
- Dynamic equilibrium reactions are achieved between ions and molecules.
- The chemical reaction in slag obeys the law of mass action.
2.1.2. The Butler Equation
- The mass action concentration NiBulk of each component in a multi-components slag system are calculated by using the ion and molecule coexistence theory;
- According to Equation (1), the expression of the mass action concentration NiSurf of each component on the surface of a multi-components slag system can be written;
- For a combination of the surface tension and the molar volume data of each component, the equation ∑NiSurf = 1 and the expansion of the Butler equation, the mass action concentrations NiSurf of each component on the surface of a multi-components slag system are obtained;
- The surface tension is acquired by solving the Butler equation.
2.1.3. Surface Tension Calculation of the CaO-Ce2O3-SiO2-Al2O3 Slag System
- (1)
- Mass Action Concentration Calculation of Each Component
- (2)
- Surface tension calculation
2.1.4. Surface Tension Calculation of the CaO-Ce2O3-SiO2-Al2O3-MgO Slag System
2.2. Calculation Model of Interfacial Tension
2.2.1. Interfacial Tension between Inclusion and Molten Steel
2.2.2. Interfacial Tension between Inclusion and Slag
2.2.3. Interfacial Tension between Slag and Steel
2.2.4. Interfacial Tension Summary
2.3. Motion Model of Inclusion at the Steel–Slag Interface
2.3.1. Assumptions of This Model
2.3.2. Motion Equation of Inclusion
2.3.3. Model Validation
3. Results and Discussion
3.1. Motion Behavior of Solid Al2O3 Inclusions in the CaO-Ce2O3-SiO2-Al2O3 Slag System
3.2. Motion Behaviors of Liquid 50%wtAl2O3–50%wtCaO Inclusions in the CaO-Ce2O3-SiO2-Al2O3 Slag System
3.3. Motion Behaviors of Solid Al2O3 Inclusions in the CaO-Ce2O3-SiO2-Al2O3-MgO Slag System
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiessling, R. Non-Metallic Inclusions in Steel: Part III: The Origin and Behavior of Inclusions and Their Influence on the Properties of Steels; The Metals Society: London, UK, 1968. [Google Scholar]
- Zhang, L.F. Non-Metallic Inclusions in Steels: Fundamentals; Metallurgical Industry Press: Beijing, China, 2019. [Google Scholar]
- Park, J.H.; Zhang, L.F. Kinetic Modeling of Nonmetallic Inclusions Behavior in Molten Steel: A Review. Metall. Mater. Trans. B 2020, 51, 2453–2482. [Google Scholar] [CrossRef]
- Nadif, M.; Lehmann, J.; Burty, M.; Domgin, J.F. Control of Steel Reoxidation and CC Nozzle Clogging: An overview. In Proceedings of the International Conference on Clean Steel 7, Balatonfüred, Hungary, 4–6 June 2007. [Google Scholar]
- Huang, R.K.; Zhang, L.F.; Jiang, R.B.; Guo, Y.T.; Zhou, Q.Y.; Duan, H.J. Effect of FeOx in an ultra-low carbon Al-killed steel on nozzle clogging. Iron Steel 2021, 56, 43–50. [Google Scholar] [CrossRef]
- Hua, C.J.; Wang, M.; Bao, Y.P. Effect of Nozzle Clogging on the Fluid Flow Pattern in a Billet Mold with Particle Image Velocimetry Technology. Metall. Mater. Trans. B 2020, 51, 2871–2881. [Google Scholar] [CrossRef]
- Fu, B.H.; Chen, C.; Cheng, G.G.; Pan, J.X.; Li, Y.; Pan, W. Inclusions in 430 Stainless Steelmaking During AOD-LF-CC Process. Iron Steel 2012, 47, 40–43. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.G. Delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn austenitic stainless steel. Metall. Mater. Trans. B 2017, 48, 2324–2333. [Google Scholar] [CrossRef]
- Li, Y.H.; He, Y.B.; Ren, Z.F.; Bao, Y.P.; Wang, R. Comparative Study of the Cleanliness of Interstitial-Free Steel with Low and High Phosphorus Contents. Steel Res. Int. 2021, 92, 2000581. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Jiang, M.; Wang, X.H. Formation and evolution of inclusions in Q345D steel during secondary reefing process. Iron Steel 2022, 57, 63–72. [Google Scholar] [CrossRef]
- Wang, K.P.; Wang, Y.; Xu, J.F.; Chen, T.J.; Xie, W.; Jiang, M. Investigation on evolution of inclusions in bearing steel during secondary refining. Iron Steel 2022, 57, 42–49. [Google Scholar] [CrossRef]
- Cao, J.Q.; Chen, C.; Xue, L.Q.; Li, Z.; Zhao, J.; Lin, W.M. Analysis of the inclusions in the whole smelting process of non-oriented silicon steel DG47A. Iron Steel 2022. [Google Scholar] [CrossRef]
- Yuan, B.H.; Liu, J.H.; Zeng, J.H.; Zhang, M.; Huang, J.H.; Yang, X.D. Evolution of Inclusions and Cleanliness in Ti-Bearing IF Steel Produced via the BOF–LF–RH–CC Process. Metals 2022, 12, 434. [Google Scholar] [CrossRef]
- Yuan, X.B.; Zhong, M.; Wu, Y.W.; Wang, C. Characterizing Inclusions in the Weld Metal of Eh36 Shipbuilding Steel Processed by CaF2-30 Wt Pct TiO2 Flux. Metall. Mater. Trans. B 2022, 53, 656–661. [Google Scholar] [CrossRef]
- Qiao, T.; Cheng, G.G.; Huang, Y.; Li, Y.; Zhang, Y.L.; Li, Z.C. Formation and Removal Mechanism of Nonmetallic Inclusions in 42CrMo4 Steel during the Steelmaking Process. Metals 2022, 12, 1505. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, J.C.; Li, K.L.; Wang, R.G.; Wang, X.H. Formation Mechanism of Large CaO-SiO2-Al2O3 Inclusions in Si-Deoxidized Spring Steel Refined by Low Basicity Slag. Metall. Mater. Trans. B 2021, 52, 1950–1954. [Google Scholar] [CrossRef]
- Podder, A.; Coley, K.S.; Phillion, A.B. Modeling Study of Steel–Slag–Inclusion Reactions During the Refining of Si–Mn Killed Steel. Steel Res. Int. 2022, 2100831. [Google Scholar] [CrossRef]
- Meng, Y.Q.; Li, J.L.; Zhu, H.Y.; Wang, K.P. Effect of LF soft bubbling time on oxide inclusions in Si-killed spring steel. Iron Steel 2022, 57, 48–54. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Chen, C.; Lin, W.M.; Yu, Y.C.; E, D.Y.; Wang, S.B. Numerical Simulation of Tracers Transport Process in Water Model of a Vacuum Refining Unit: Single Snorkel Refining Furnace. Steel Res. Int. 2020, 91, 2000022. [Google Scholar] [CrossRef]
- Ouyang, X.; Lin, W.M.; Luo, Y.; Zhang, Y.Z.; Fan, J.P.; Chen, C.; Cheng, G.G. Effect of Salt Tracer Dosages on the Mixing Process in the Water Model of a Single Snorkel Refining Furnace. Metals 2022, 12, 1948. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, L.F.; Ren, Y.; Yang, W.; Zhao, X.L.; Wang, G.C. Evolution of Nonmetallic Inclusions with Varied Argon Stirring Condition during Vacuum Degassing Refining of a Bearing Steel. Steel Res. Int. 2021, 92, 2000364. [Google Scholar] [CrossRef]
- Yang, R.G.; Yan, Z.H.; Cao, C.G.; Shi, S.D.; Wang, G.H.; Liu, J.G. Practice of VD furnace oxygen decarburization process. Iron Steel 2021, 56, 39–43. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhu, H.W.; Wang, R.; Ren, Z.F.; Lin, L. Prediction of two phase flow behavior and mixing degree of liquid steel under reduced pressure. Vacuum 2021, 192, 110480. [Google Scholar] [CrossRef]
- Wei, G.S.; Dong, J.F.; Zhu, R.; Han, B.C. Effect of ladle bottom blowing on RH dehydrogenation and inclusions. Iron Steel 2021, 56, 63–68. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhu, H.W.; Wang, R.; Ren, Z.F.; He, Y.B. Bubble behavior and evolution characteristics in the RH riser tube-vacuum chamber. Int. J. Chem. React. Eng. 2022, 20, 1053–1064. [Google Scholar] [CrossRef]
- Zhu, G.S.; Deng, X.X.; Ji, C.X. Effect of vacuum degree on inclusion removal in ultra low carbon steel during RH refining process. Iron Steel 2022. [Google Scholar] [CrossRef]
- Wang, K.P.; Wang, Y.; Xu, J.F.; Xie, W.; Chen, T.J.; Jiang, M. Influence of Temperature Drop from 1773 K (1500 °C) to 1743 K (1470 °C) on Inclusion of High Carbon Chromium Bearing Steel Melts Treated by RH Vacuum Degassing. Metall. Mater. Trans. B 2022. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, C.; Huang, A.; Yan, W.; Gu, H.Z.; He, Z.; Li, G.Q. Numerical simulation on refractory wear and inclusion formation in continuous casting tundish. Metall. Mater. Trans. B 2021, 52, 1344–1356. [Google Scholar] [CrossRef]
- Chang, S.; Zou, Z.S.; Li, B.K.; ISAC, M.; Guthrie, R.I.L. Modeling Inclusion Removal when Using Microbubble Swarm in a Full-Scale Tundish with an Impact Pad. Metall. Mater. Trans. B 2021, 53, 526–536. [Google Scholar] [CrossRef]
- Xin, Z.Y.; Cui, H.N.; Li, T.; Tang, G.Z.; Zhu, Y.L.; Yan, J.C.; Li, J.G. Numerical Simulation of Inclusion Removal by Bubble Injection in the Submerged Nozzle With Swirling Flow. Metall. Mater. Trans. B 2022, 53, 2570–2586. [Google Scholar] [CrossRef]
- Fan, J.P.; Li, Y.Q.; Chen, C.; Ouyang, X.; Wang, T.Y.; Lin, W.M. Effect of Uniform and Non-Uniform Increasing Casting Flow Rate on Dispersion and Outflow Percentage of Tracers in Four Strand Tundishes under Strand Blockage Conditions. Metals 2022, 12, 1016. [Google Scholar] [CrossRef]
- Reis, B.H.; Bielefeldt, W.V.; Vilela, A.C.F. Absorption of non-metallic inclusions by steelmaking slags—A review. J. Mater. Res. Technol. 2014, 3, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, Y.H.; Li, D.Z.; Kang, Y.; Bao, Y.P.; Yan, Z.J. Inclusions Absorbed by Slags in Interstitial-Free Steel Production. Steel Res. Int. 2020, 91, 1900440. [Google Scholar] [CrossRef]
- Wen, X.; Ren, Y.; Zhang, L.F. Effect of CaF2 Contents in Slag on Inclusion Absorption in a Bearing Steel. Steel Res. Int. 2022, 2200218. [Google Scholar] [CrossRef]
- Salgado, U.D.; Weiß, C.; Michelic, S.K.; Bernhard, C. Fluid force-induced detachment criteria for nonmetallic inclusions adhered to a refractory/molten steel interface. Metall. Mater. Trans. B 2018, 49, 1632–1643. [Google Scholar] [CrossRef]
- Wikström, J.; Nakajima, K.; Jonsson, L.; Jönsson, P. Application of a Model for Liquid Inclusion Separation at a Steel-Slag Interface for Laboratory and Industrial Situations. Steel Res. Int. 2008, 79, 826–834. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.G.; Yang, H.K.; Hou, Z.B. Physical modeling of Fluid flow Characteristics in a Delta Shaped, Four-Strand Continuous Casting Tundish with Different Flow Control Devices. Adv. Mater. Res. 2011, 284–286, 1071–1079. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.G.; Sun, H.B.; Hou, Z.B.; Wang, X.C.; Zhang, J.Q. Effects of salt tracer amount, concentration and kind on the fluid flow behavior in a hydrodynamic model of continuous casting tundish. Steel Res. Int. 2012, 83, 1141–1151. [Google Scholar] [CrossRef]
- Chen, C.; Rui, Q.X.; Cheng, G.G. Effect of salt tracer amount on the mixing time measurement in a hydrodynamic model of gas-stirred ladle system. Steel Res. Int. 2013, 84, 900–907. [Google Scholar] [CrossRef]
- Conejo, A.N.; Zhao, G.A.; Zhang, L.F. On the Limits of the Geometric Scale Ratio Using Water Modeling in Ladles. Metall. Mater. Trans. B 2021, 52, 2263–2274. [Google Scholar] [CrossRef]
- Yang, R.W.; Chen, C.; Lin, Y.C.; Zhao, Y.; Zhao, J.; Zhu, J.J.; Yang, S.S. Water model experiment on motion and melting of scarp in gas stirred reactors. Chin. J. Process Eng. 2022, 22, 954–962. [Google Scholar] [CrossRef]
- Pei, K.H.; Chen, C.; Zhao, Y.; Lin, Y.C.; Yang, R.W.; Zhu, J.J.; Wang, T.; Yang, K.; Lin, W.M. Water model experiment on the motion, melting, and mixing of scrap in bottom stirred reactors. Chin. J. Process Eng. 2022, 22, 1601–1612. [Google Scholar] [CrossRef]
- Lindborg, U.; Torssell, K. A Collision Model for the Growth and Separation of Deoxidation Products. Trans. Metall. Soc. AIME 1968, 242, 94–102. [Google Scholar]
- Linder, S. Hydrodynamics and Collisions of Small Particles in a Turbulent Metallic Melt with Special Reference to Deoxidation of Steel. Scand. J. Metall. 1974, 3, 137–150. [Google Scholar]
- Engh, T.A.; Lindskog, N. A Fluid Mechanical Model of Inclusion Removal. Scand. J. Metall. 1975, 4, 49–58. [Google Scholar]
- Söder, M.; Jönsson, P.; Alexis, J. Most relevant mechanisms of inclusion growth in an induction-stirred ladle. Scand. J. Metall. 2002, 31, 210–220. [Google Scholar] [CrossRef]
- Lei, H.; Nakajima, K.; He, J.C. Mathematical Model for Nucleation, Ostwald Ripening and Growth of Inclusion in Molten Steel. ISIJ Int. 2010, 50, 1735–1745. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, K.; Szekely, J. Deoxidation Kinetics in a Turbulent Flow Field. Trans. ISIJ 1975, 15, 522–530. [Google Scholar] [CrossRef]
- Johansen, S.T.; Boysan, F.; Engh, T.A. Numerical calculations of removal of inclusions and dissolution of refractory in bubble stirred ladles. In Proceedings of the 4th Japan-Nordic Countries Joint Symposiums on Science and Technology of Process Metallurgy, Tokyo, Japan; 1986; pp. 182–215. [Google Scholar]
- Miki, Y.; Shimada, Y.; Thomas, B.G.; Denissov, A. Model of Inclusion Removal during RH Degassing of Steel. Iron Steelmak. 1997, 28, 31–38. Available online: https://experts.illinois.edu/en/publications/model-of-inclusion-removal-during-rh-degassing-of-steel (accessed on 19 January 2023).
- Wakoh, M.; Fuchigama, K.; Endoh, K.; Imamura, N.; Kiyose, A.; Sawada, I. Analysis of Inclusion Behavior in a ladle refining process by using newly developed coagulation model. In Proceedings of the Scanmet I, Luleå, Sweden, 7–8 June 1999; pp. 267–274. [Google Scholar]
- Sheng, D.Y.; Söder, M.; Jönsson, P.; Jonsson, L. Modeling micro-inclusion growth and separation in gas-stirred ladles. Scand. J. Metall. 2002, 31, 134–147. [Google Scholar] [CrossRef]
- Söder, M.; Jönsson, P.; Jonsson, L. Inclusion growth and removal in gas-stirred ladles. Steel Res. Int. 2004, 75, 128–138. [Google Scholar] [CrossRef]
- Hallberg, M.; Jönsson, P.G.; Jonsson, L.T.I.; Eriksson, R. Process model of inclusion separation in a stirred steel ladle. Scand. J. Metall. 2005, 34, 41–56. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Zhang, J.; Lee, H.G. A CFD-based Nucleation-growth-removal Model for Inclusion Behavior in a Gas-agitated Ladle during Molten Steel Deoxidation. ISIJ Int. 2008, 48, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Geng, D.Q.; Lei, H.; He, J.C. Numerical Simulation for Collision and Growth of Inclusions in Ladles Stirred with Different Porous Plug Configurations. ISIJ Int. 2010, 50, 1597–1605. [Google Scholar] [CrossRef] [Green Version]
- Claudotte, L.; Rimbert, N.; Gardin, P.; Simonnet, M.; Lehmann, L.; Oesterlé, B. Behaviour of Oxide Inclusions in Liquid Steel Multi-QMOM Simulation. Steel Res. Int. 2010, 81, 630–636. [Google Scholar] [CrossRef]
- Daoud, I.L.A.; Rimbert, N.; Jardy, A.; Oesterlé, B.; Hans, S.; Bellot, J.P. 3D modeling of the aggregation of oxide inclusions in a liquid steel ladle: Two numerical approaches. Adv. Eng. Mater. 2011, 13, 543–549. [Google Scholar] [CrossRef]
- Gardin, P.; Gauthier, S.; Simonnet, M.; Lehmann, J. Multiphase Model for Predicting the Elimination of Inclusions inside a Liquid-Steel Ladle. Adv. Eng. Mater. 2011, 13, 538–542. [Google Scholar] [CrossRef]
- Lou, W.T.; Zhu, M.Y. Numerical simulations of inclusion behavior in gas-stirred ladles. Metall. Mater. Trans. B 2013, 44, 762–782. [Google Scholar] [CrossRef]
- Chen, C.; Jonsson, L.T.I.; Tilliander, A.; Cheng, G.G.; Jönsson, P.G. A mathematical modeling study of tracer mixing in a continuous casting tundish. Metall. Mater. Trans. B 2015, 46, 169–190. [Google Scholar] [CrossRef]
- Chen, C.; Jonsson, L.T.I.; Tilliander, A.; Cheng, G.G.; Jönsson, P.G. A mathematical modeling study of the influence of small amounts of KCl solution tracers on mixing in water and residence time distribution of tracers in a continuous flow reactor-metallurgical tundish. Chem. Eng. Sci. 2015, 137, 914–937. [Google Scholar] [CrossRef]
- Guo, X.P.; Godinez, J.; Walla, N.J.; Silaen, A.K.; Oltmann, H.; Thapliyal, V.; Bhansali, A.; Pretorius, E.; Zhou, C.Q. Computational Investigation of Inclusion Removal in the Steel-Refining Ladle Process. Processes 2021, 9, 1048. [Google Scholar] [CrossRef]
- Wang, F.; Sun, B.Y.; Liu, Z.Q.; Li, B.K.; Huang, S.; Zhang, B.J. Numerical Simulation on Motion Behavior of Inclusions in the Lab-Scale Electroslag Remelting Process with a Vibrating Electrode. Metals 2021, 11, 1784. [Google Scholar] [CrossRef]
- Siddiqui, M.I.H.; Albaqami, A.; Arifudin, L.; Alluhydan, K.; Alnaser, I.A. Simulation of Inclusion Particle Motion Behavior under Interfacial Tension in Continuous Casting Mold. Materials 2022, 15, 7458. [Google Scholar] [CrossRef]
- Chen, C.; Ni, P.Y.; Jonsson, L.T.I.; Tilliander, A.; Cheng, G.G.; Jönsson, P.G. A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel–Slag Interface for Different Tundish Designs. Metall. Mater. Trans. B 2016, 47, 1916–1932. [Google Scholar] [CrossRef]
- Tacke, K.H.; Ludwig, J.C. Steel flow and inclusion separation in continuous casting tundishes. Steel Res. 1987, 58, 262–270. [Google Scholar] [CrossRef]
- Rückert, A.; Warzecha, M.; Koitzsch, R.; Pawlik, M.; Pfeifer, H. Particle Distribution and Separation in Continuous Casting Tundish. Steel Res. Int. 2009, 80, 568–574. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Garcia-Hernandez, S.; Barreto, J.J. Mathematical Analysis of the Touching Inclusions Parameters at the Tundish Free Surface to Predict More Realistic Inclusion Removal Rates. Steel Res. Int. 2019, 90, 1900328. [Google Scholar] [CrossRef]
- Chen, C. Some Aspects on Macroscopic Mixing in a Tundish. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Nakajima, K.; Okamura, K. Inclusion Transfer Behavior across Molten Steel-Slag Interface. In Proceedings of the 4th International Conference on Molten Slags and Fluxes, Sendai, Japan, 8–11 June 1992; pp. 505–510. [Google Scholar]
- Bouris, D.; Bergeles, G. Investigation of Inclusion Re-Entrainment from the Steel-Slag Interface. Metall. Mater. Trans. B 1998, 29, 641–649. [Google Scholar] [CrossRef]
- Strandh, J.; Nakajima, K.; Eriksson, R.; Jönsson, P. Solid inclusion transfer at a steel-slag interface with focus on tundish conditions. ISIJ Int. 2005, 45, 1597–1606. [Google Scholar] [CrossRef] [Green Version]
- Strandh, J.; Nakajima, K.; Eriksson, R.; Jönsson, P. A mathematical model to study liquid inclusion behavior at the steel-slag interface. ISIJ Int. 2005, 45, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Xuan, C.; Persson, E.S.; Sevastoplev, R.; Nzotta, M. Motion and detachment behaviors of liquid inclusion at molten steel-slag interfaces. Metall. Mater. Trans. B 2019, 50, 1957–1973. [Google Scholar] [CrossRef]
- Shannon, G.N.; Sridhar, S. Modeling Al2O3 inclusion separation across steel-slag interfaces. Scand. J. Metall. 2005, 34, 353–362. [Google Scholar] [CrossRef]
- Shannon, G.N.; Sridhar, S. Film-Drainage, Separation and Dissolution of A12O3 Inclusions across Interfaces between Molten Steel and Ladle-, Tundish- and Mold-Slags. High Temp. Mater. Proc. 2005, 24, 111–124. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Deng, Z.Y.; Zhu, M.Y. Consideration on removal of non-spherical solid inclusions at slag-steel interface. Chin. J. Process Eng. 2022, 22, 222–231. [Google Scholar] [CrossRef]
- Valdez, M.; Shannon, G.S.; Sridhar, S. The Ability of Slags to Absorb Solid Oxide Inclusions. ISIJ Int. 2006, 46, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Shannon, G.; White, L.; Sridhar, S. Modeling inclusion approach to the steel/slag interface. Mater. Sci. Eng. A 2008, 495, 310–315. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.F.; Li, J.S.; Zhu, L.B.; Li, X.G. Motion Behavior of Nonmetallic Inclusions at the Interface of Steel and Slag. Part I: Model Development, Validation, and Preliminary Analysis. Metall. Mater. Trans. B 2016, 47, 1882–1892. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.F.; Li, J.S.; Liu, C.; Sun, L.Y.; Yang, H.B. Motion Behavior of Nonmetallic Inclusions at the Interface of Steel and Slag. Part II: Model Application and Discussion. Metall. Mater. Trans. B 2014, 45, 2453–2463. [Google Scholar] [CrossRef]
- Liu, W.; Yang, S.F.; Li, J.S. Calculation of Static Suspension Depth and Meniscus Shape of a Solid Spherical Inclusion at the Steel–Slag Interface. Metall. Mater. Trans. B 2020, 51, 422–425. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Zhao, H.X.; Yang, S.F.; Li, J.S. CFD Modeling of Solid Inclusion Motion and Separation from Liquid Steel to Molten Slag. Metall. Mater. Trans. B 2021, 52, 2430–2440. [Google Scholar] [CrossRef]
- Zhang, X.M.; Pirker, S.; Saeedipour, M. Numerical investigation of particle motion at the steel–slag interface in continuous casting using VOF method and dynamic overset grids. Exp. Comput. Multiph. Flow 2023, 5, 178–191. [Google Scholar] [CrossRef]
- Du, Y.N.; Guo, L.; Yang, Y.; Zhang, S.; Yu, H.Z.; Guo, Z.C. Numerical simulation of inclusions floating behavior under supergravity field in liquid steel. Iron Steel 2022, 57, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wang, L.J.; Chou, K.C. Dissolution Behavior of Al2O3 in Refining Slags Containing Ce2O3. ISIJ Int. 2014, 54, 728–733. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, Q.; Li, J.M.; Chou, K.C. Dissolution mechanism of Al2O3 in refining slags contained Ce2O3. J. Min. Metall. Sect. B-Metall. 2016, 52, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.Y.; Zhang, T.A.; Dou, Z.H.; Niu, L.P. Dissolution Behavior of Al2O3 Inclusions in CaO-Al2O3 Based Slag Representing Aluminothermic Reduction Slag. Crystals 2020, 10, 1061. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.S.; Xu, R.Z.; Khasraw, D.; Song, G.Y.; Xu, D. Dissolution Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags. Metals 2021, 11, 1801. [Google Scholar] [CrossRef]
- Yeo, S.; Um, H.; Chung, Y. The Effect of Alumina Activity on Dissolution Behavior of Alumina Particles in CaO-Al2O3-SiO2 Slags. Metall. Mater. Trans. B 2021, 52, 3938–3945. [Google Scholar] [CrossRef]
- Ren, C.Y.; Zhang, L.F.; Zhang, J.; Wu, S.J.; Zhu, P.; Ren, Y. In Situ Observation of the Dissolution of Al2O3 Particles in CaO-Al2O3-SiO2 Slags. Metall. Mater. Trans. B 2021, 52, 3288–3301. [Google Scholar] [CrossRef]
- Song, S.Y.; Li, J.; Yan, W. Dissolution mechanism of alumina inclusions into CaO–SiO2–Al2O3–FetO–MgO slag via a converter tapping process. Int. J. Appl. Ceram. Technol. 2022, 19, 2734–2748. [Google Scholar] [CrossRef]
- Zhang, L.F.; Ren, Y. Concept of inclusion capacity of slag and its application. Iron Steel 2022. [Google Scholar] [CrossRef]
- Xuan, C.J.; Mu, W.Z. A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates. J. Am. Ceram. Soc. 2019, 102, 6480–6497. [Google Scholar] [CrossRef]
- Xuan, C.J.; Mu, W.Z. A mechanism theory of dissolution profile of oxide particles in oxide melt. J. Am. Ceram. Soc. 2020, 104, 57–75. [Google Scholar] [CrossRef]
- Mu, W.Z.; Xuan, C.J. Phase-field study of dissolution behaviors of different oxide particles into oxide melts. Ceram. Int. 2020, 46, 14949–14956. [Google Scholar] [CrossRef]
- Xuan, C.J.; Mu, W.Z. Dissolution kinetics of arbitrarily-shaped alumina in oxide melt: An integration of phase-field modelling and real-time observation study. J. Alloys Compd. 2020, 834, 155168. [Google Scholar] [CrossRef]
- Pan, X.Y.; Shen, F.M.; Gao, Q.J.; Jiang, X.; Zheng, H.Y. Effect of Erosion Behavior of FeO-CaO-SiO2-MgO-Al2O3 Blast Furnace Primary Slag on Al2O3 Substrate. Crystals 2021, 11, 957. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Wang, S.; Guo, Y.C.; Jiang, X.; Gao, Q.J.; Shen, F.M. Thermodynamic model for calculating sulfur distribution ratio between CaO-SiO2-MgO-Al2O3 slag and hot metal. Iron Steel 2021, 56, 16–23. [Google Scholar] [CrossRef]
- Hu, X.G.; Shen, F.M.; Zheng, H.Y.; Guo, Y.C.; Jiang, X.; Gao, Q.J. Effect of temperature on Al2O3 activity in CaO-SiO2-Al2O3-MgO blast furnace slag system. Iron Steel 2022, 57, 25–33. [Google Scholar] [CrossRef]
- Liu, K.; Han, Y.H.; Yang, F.; Zhu, L.G. Effect of MgO on microstructure of CaO-Al2O3 based quaternary system mold fluxes. Iron Steel 2020, 55, 52–58. [Google Scholar] [CrossRef]
- Zhao, B.B.; Zhang, J.; Yan, B.J. Interfacial Phenomena and Reaction Kinetics between High Al Molten Steel and CaO-SiO2-Type Flux. Metals 2022, 12, 391. [Google Scholar] [CrossRef]
- Wang, X.F.; Wang, Q.Q.; Zhang, X.B.; Wang, Q.; He, S.P. Effect of AlN on properties of CaO-SiO2 based mold fluxes for high-Al steel. Iron Steel 2022, 57, 64–71. [Google Scholar] [CrossRef]
- Silva, A.M.B.; Oliveira, M.A.; Peixoto, J.J.M.; Silva, C.A.D. Slag-Steel Emulsification on a Modified RH Degasser. Metall. Mater. Trans. B 2021, 52, 2111–2126. [Google Scholar] [CrossRef]
- Li, S.J.; Cheng, G.G.; Yang, L.; Chen, L.; Yan, Q.Z.; Li, C.W. A Thermodynamic Model to Design the Equilibrium Slag Compositions during Electroslag Remelting Process: Description and Verification. ISIJ Int. 2017, 4, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Bublik, S.; Tangstad, M.; Einarsrud, K.R.E. Interfacial Behaviour in Ferroalloys: The Influence of FeMn Slag Composition. Metall. Mater. Trans. B 2022, 53, 3276–3291. [Google Scholar] [CrossRef]
- Bai, C.G.; Yan, Z.M.; Pang, Z.D.; Jiang, Y.Y.; Ling, J.W.; Lü, X.W. Advances of measurement and calculation model of slag viscosity. Iron Steel 2020, 55, 27–37. [Google Scholar] [CrossRef]
- Lü, X.W.; Yan, Z.M.; Pang, Z.D.; Bai, C.G.; Liang, D.; Xie, H. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: Review. Iron Steel 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Fang, J.L.; Pang, Z.G.; Xing, X.D.; Xu, R.S. Thermodynamic Properties, Viscosity, and Structure of CaO–SiO2–MgO–Al2O3–TiO2–Based Slag. Materials 2021, 14, 124. [Google Scholar] [CrossRef]
- Haghdani, S.; Tangstad, M.; Einarsrud, K.R.E. A Raman-Structure Model for the Viscosity of SiO2-CaO-Al2O3 System. Metall. Mater. Trans. B 2022, 53, 1733–1746. [Google Scholar] [CrossRef]
- Zhang, R.; Meng, Y.F.; Wang, Z.; Jiao, S.Y.; Jia, J.X.; Min, Y.; Liu, C.J. Surface Tension Prediction of Multicomponent Slags of the CaO–SiO2–Al2O3–FeO–Fe2O3 System Based on Microstructure Analysis. Metall. Mater. Trans. B 2022, 53, 571–583. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, S.S.; Liu, P.B.; Chen, Y.B. Effect of K2O and Na2O on activity of components and MgO content of high Al2O3 slag. Iron Steel 2022, 57, 48–56. [Google Scholar] [CrossRef]
- Zhao, M.G.; Li, G.; Li, Z.; Wang, Q.Q.; He, S.P. Study of Thermodynamic for Low-Reactive CaO-BaO-Al2O3-SiO2-CaF2-Li2O Mold Flux Based on the Model of Ion and Molecular Coexistence Theory. Metals 2022, 12, 1099. [Google Scholar] [CrossRef]
- He, S.P.; Chen, G.J.; Guo, Y.T.; Shen, B.Y.; Wang, Q. Morphology control for Al2O3 inclusions without Ca treatment in high aluminum steel. Metall. Mater. Trans. B 2015, 46, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Sakuma, K. Use of Rare Earth Elements in Steel Making. Tetsu-to-Hagané 1956, 42, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Malm, S. On the Precipitation of Slag Inclusions during Solidification of High-carbon Steels Deoxidized with Aluminium and Misch Metal. Scand. J. Metall. 1976, 5, 248–257. [Google Scholar]
- Emi, T.; Haida, O.; Sakuraya, T.; Sanbongi, K. Mechanism of sulfides precipitation during solidification of calcium- and rare earth treated ingots. In Proceedings of the Steelmaking Proceedings, Detroit, MI, USA; 1979; Volume 62, pp. 574–584. [Google Scholar]
- Zhao, S.; Han, Q.; Shen, F.; Shao, G.; Xie, Z. Study on the Nozzle Blockage Mechanism of Steel Containing Rare Earth Metals during Casting. Scand. J. Metall. 1985, 14, 175–182. [Google Scholar]
- Mizuno, M.; Berjoan, R.; Coutures, J.P.; Foex, M. Phase Diagram of the System Al2O3-La2O3 at Elevated Temperature. Yogyo-Kyokai-Shi 1974, 82, 631–636. [Google Scholar] [CrossRef]
- Mizuno, M.; Berjoan, R.; Coutures, J.P.; Foex, M. Phase Diagram of the System Al2O3-CeO2 at Liquidus Temperature. Yogyo-Kyokai-Shi 1975, 83, 90–96. [Google Scholar] [CrossRef]
- Ueda, S.; Morita, L.; Sano, N. Activity of AlO1.5 for the CaO–AlO1.5–CeO1.5 System at 1773 K. ISIJ Int. 1998, 38, 1292–1296. [Google Scholar] [CrossRef]
- Wu, P.; Pelton, A.D. Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J. Alloys Compd. 1992, 179, 259–287. [Google Scholar] [CrossRef]
- Navrotsky, A.; Lee, W.; Mielewczyk-Gryn, A.; Ushakov, S.V.; Anderko, A.; Wu, H.H.; Riman, R.E. Thermodynamics of solid phases containing rare earth oxides. J. Chem. Thermodyn. 2015, 88, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.F.; Liu, Z.Y.; Jiang, M.F. Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere. Metals 2022, 12, 768. [Google Scholar] [CrossRef]
- Jeong, S.J.; Kim, T.S.; Park, J.H. Relationship Between Sulfide Capacity and Structure of MnO-SiO2-Al2O3-Ce2O3 System. Metall. Mater. Trans. B 2017, 48, 545–553. [Google Scholar] [CrossRef]
- Qi, J.; Liu, C.J.; Zhang, C.; Jiang, M.F. Effect of Ce2O3 on Structure, Viscosity, and Crystalline Phase of CaO-Al2O3-Li2O-Ce2O3 Slags. Metall. Mater. Trans. B 2017, 48, 11–16. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, Z.W.; Guo, W.T.; Wang, Z. Influence of Nb2O5 and basicity on the viscosity and structure of CaO-SiO2-Nb2O5-CeO2-CaF2 slag system. Metall. Res. Technol. 2020, 117, 307. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Long, H. Calculating model of action concentration of slag systems containing Ce2O3. Chin. J. Nonferrous Met. 2013, 23, 2999–3005. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Long, H.; Yang, X.H. A Thermodynamic Model for Evaluation of Mass Action Concentrations of Ce2O3-contained Slag Systems Based on the Ion and Molecule Coexistence Theory. High Temp. Mater. Proc. 2013, 32, 207–214. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Tian, J. A Thermodynamic Model for Evaluation of Mass Action Concentrations of La2O3-Al2O3-CaF2-CaO-MgO Slags for Electroslag Remelting Based on the Ion and Molecule Coexistence Theory. High Temp. Mater. Proc. 2013, 32, 541–550. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Long, H. Effect of Ce2O3 and CaO/Al2O3 on the Phase, Melting Temperature and Viscosity of CaO-Al2O3-10 Mass% SiO2 Based Slags. High Temp. Mater. Proc. 2014, 33, 77–84. [Google Scholar] [CrossRef]
- Long, H.; Cheng, G.G.; Wu, B.; Wu, Y. Melting and Fluidity Properties of Refining Slag Containing Ce2O3 for Steelmaking. J. Chin. Rare Earth Soc. 2010, 28, 721–727. Available online: http://www.re-journal.com/WKD3/WebPublication/paperDigest.aspx?paperID=28ff3254-3d8b-4c9d-83fc-f0ff6e2f874b (accessed on 20 November 2022).
- Wu, C.C.; Cheng, G.G. Calculating models on surface tension of RE2O3-MgO-SiO2 (RE = La, Nd, Sm, Gd and Y) melts. Trans. Nonferrous Met. Soc. China 2014, 24, 3696–3701. [Google Scholar] [CrossRef]
- Yang, X.H.; Long, H.; Cheng, G.G.; Wu, C.C.; Wu, B. Effect of refining slag containing Ce2O3 on steel cleanliness. J. Rare Earths 2011, 29, 1079–1083. [Google Scholar] [CrossRef]
- Wu, C.C. Research on the Rare Earth Addition Technology and Theory in Refining Process for Special Steel. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2015. [Google Scholar]
- Babenko, A.A.; Smirnov, L.A.; Upolovnikova, A.G.; Shartdinov, R.R. Study of possibility of cerium reduction from slags of CaO-SiO2-Ce2O3-15%Al2O3-8%MgO system. IOP Conf. Ser. Mater. Sci. Eng. 2020, 966, 012010. [Google Scholar] [CrossRef]
- Li, D.Z.; Wang, P.; Chen, X.Q.; Fu, P.X.; Luan, Y.K.; Hu, X.Q.; Liu, H.W.; Sun, M.Y.; Chen, Y.; Cao, Y.F.; et al. Low-oxygen rare earth steels. Nat. Mater. 2022, 21, 1137–1143. [Google Scholar] [CrossRef]
- Kang, J.; Yu, Y.C.; Zhang, J.L.; Chen, C.; Wang, S.B. Effect of Rare Earth on Inclusion Evolution in Industrial Production of HRB500E Steel. Metall. Res. Technol. 2021, 118, 220. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Y.P.; Zhi, J.G.; Duan, C.Y.; Gao, S.; Wang, M. Effect of Rare Earth Ce on the Morphology and Distribution of Al2O3 Inclusions in High Strength IF Steel Containing Phosphorus during Continuous Casting and Rolling Process. ISIJ Int. 2021, 61, 657–666. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Y.; Ren, Q.; Zhang, L.F. Transient Evolution of Nonmetallic Inclusions in a Si–Mn-Killed Stainless Steel with Cerium Addition. Steel Res. Int. 2022, 93, 2100773. [Google Scholar] [CrossRef]
- Yang, H.X.; Ren, Y.; Ji, S.; Zhang, L.F. Modification of Sulfides in a High Sulfur Steel by Cerium Addition. Metall. Mater. Trans. B 2022. [Google Scholar] [CrossRef]
- Bao, D.H.; Cheng, G.G.; Huang, Y.; Qiao, T.; Dai, W.X. Refinement of Solidification Structure of H13 Steel by Rare Earth Sulfide. Steel Res. Int. 2022, 93, 2100304. [Google Scholar] [CrossRef]
- Liu, D.Q.; Liu, M.; Jiang, X.; Yu, Y.H.; Zhang, Z.M.; Feng, X.M.; Lai, C.B. Effect of Yttrium-Based Rare Earth on Inclusions and Cryogenic Temperature Impact Properties of Offshore Engineering Steel. Crystals 2022, 12, 305. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Li, Y.C.; Dai, Q.W.; Chai, S.S.; Li, K.J. Evolution of inclusions with cerium addition and effects of C-containing rare earth inclusions on the toughness of ultra-high-strength structural steel. Ironmak. Steelmak. 2022, 2099696. [Google Scholar] [CrossRef]
- Huang, F.; Li, J.; Geng, R.M.; Wang, C.C. Effect of rare earth on inclusion evolution and corrosion resistance of HRB400E steel. Mater. Corros. 2022, 13104. [Google Scholar] [CrossRef]
- Zhang, J. Computational Thermodynamics of Metallurgical Melt and Solutions, 1st ed.; Metallurgical Industry Publisher: Beijing, China, 2007; p. 7. [Google Scholar]
- Cheng, G.G.; Liao, N.B. Calculation Model for Surface Tension of Slag Melt. J. Iron Steel Res. Int. 1999, 6, 17–20. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YING199902004 (accessed on 20 November 2022).
- Zhou, Y.; Zhu, R.; Wang, H.Y.; Zhang, H.J. Effect of various components on the distribution of phosphorus in CaO–FeO–MgO–SiO2–MnO–TiO2–V2O5–P2O5 slag based on IMCT. Ironmak. Steelmak. 2021, 48, 570–578. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Guo, H.J.; Guo, J.; Duan, S.C.; Sun, W.X. A phosphorus distribution prediction model for CaO–SiO2–MgO–FeO–Fe2O3–Al2O3–P2O5 slags based on the IMCT. Ironmak. Steelmak. 2020, 47, 771–780. [Google Scholar] [CrossRef]
- Zhang, G.L.; Cheng, G.G.; Wang, Y.P.; Zhang, X.; Tan, B.; Yuan, C.W.; Miao, H.S. A thermodynamic model of the titanium distribution behaviour between slag and molten steel during LF refining process: Description and application. Ironmak. Steelmak. 2022, 49, 679–692. [Google Scholar] [CrossRef]
- Sun, H.; Yang, J.; Yang, W.K.; Zhang, R.H. Evaluation of Phosphorus Enrichment Capacity of CaO–SiO2–FeO–MgO–MnO–P2O5–Al2O3 Dephosphorization Slag Based on Ion-Molecule Coexistence Theory. Steel Res. Int. 2022, 2200662. [Google Scholar] [CrossRef]
- Butler, J.A.V. The Thermodynamics of the Surfaces of Solutions. Roy. Soc. 1932, 135, 348–375. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Ma, Q.Q. Calculation model of Surface Tension of CaF2-CaO-Al2O3-MgO-SiO2 Slag System. Shanghai Metals 2014, 36, 33–36, 41. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G. Calculating Models on the Surface Tension of CaO-Al2O3-TiO2 Molten Slag. Shanghai Metals 2014, 36, 35–39. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G. Computational Model on Surface Tension of CaO-MnO-SiO2 Slag System. Hot Work. Technol. 2014, 43, 58–62. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Good, R.J. A theory for the estimation of surface and interfacial energies. Ⅰ. Derivation and application to interfacial tension. J. Phys. Chem. 1957, 61, 904–909. [Google Scholar] [CrossRef]
- Nakajima, K. Estimation of Interfacial Tensions between Phases in the Molten Iron-Slag-Inclusion (Alumina) System. Tetsu-to-Hagané 1994, 80, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.B. Study on Moving Behavior of Inclusion during Process of Passing Steel-Slag Interface. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2015. [Google Scholar]
- Conejo, A.N.; Feng, W.H. Ladle Eye Formation Due to Bottom Gas Injection: A Reassessment of Experimental Data. Metall. Mater. Trans. B 2022, 53, 999–1017. [Google Scholar] [CrossRef]
Serial | CaO %wt | Al2O3 %wt | SiO2 %wt | Ce2O3 %wt | Basicity C/A | Viscosity (Pa·s) |
---|---|---|---|---|---|---|
A1 | 54.64 | 30.36 | 10 | 5 | 1.8 | 0.416 |
A2 | 51.00 | 34.00 | 10 | 5 | 1.5 | 0.363 |
A3 | 46.36 | 38.64 | 10 | 5 | 1.2 | 0.398 |
A4 | 51.43 | 28.57 | 10 | 10 | 1.8 | 0.497 |
A5 | 48.21 | 26.79 | 10 | 15 | 1.8 | 0.289 |
Serial | XCaO | XAl2O3 | XSiO2 | XCe2O3 |
---|---|---|---|---|
A1 | 0.6705 | 0.2045 | 0.1145 | 0.0105 |
A2 | 0.6387 | 0.2338 | 0.1169 | 0.0107 |
A3 | 0.5962 | 0.2728 | 0.1200 | 0.0110 |
A4 | 0.6580 | 0.2007 | 0.1194 | 0.0218 |
A5 | 0.6444 | 0.1966 | 0.1248 | 0.0342 |
Serial | CaO %wt | Al2O3 %wt | SiO2 %wt | MgO %wt | Ce2O3 %wt | Basicity C/A | Viscosity (Pa·s) |
---|---|---|---|---|---|---|---|
C0 | 48 | 37.5 | 4.5 | 10 | 0 | 1.27 | 0.495 |
C1 | 45 | 37.5 | 4.5 | 10 | 3 | 1.2 | 0.307 |
C2 | 46.2 | 36.3 | 4.5 | 10 | 3 | 1.27 | 0.374 |
C3 | 45 | 35.5 | 4.5 | 10 | 5 | 1.27 | 0.225 |
C4 | 43.4 | 34.1 | 4.5 | 10 | 8 | 1.27 | 0.265 |
C5 | 45 | 32.5 | 4.5 | 10 | 8 | 1.385 | 0.264 |
Serial | XCaO | XAl2O3 | XSiO2 | XMgO | XCe2O3 |
---|---|---|---|---|---|
C0 | 0.5531 | 0.2371 | 0.0484 | 0.1613 | 0 |
C1 | 0.5338 | 0.2442 | 0.0498 | 0.1661 | 0.0061 |
C2 | 0.5445 | 0.2349 | 0.0495 | 0.165 | 0.006 |
C3 | 0.5386 | 0.2333 | 0.0503 | 0.1676 | 0.0102 |
C4 | 0.5313 | 0.2292 | 0.0514 | 0.1714 | 0.0167 |
C5 | 0.5461 | 0.2165 | 0.051 | 0.1699 | 0.0166 |
Component | Relationship between Surface Tension (×10−3 N/m) and Temperature (K) | Relationship between Molar Volume (m3/mol) and Temperature (K) |
---|---|---|
CaO | 791 − 0.0935 T | 20.7 [1 + 1·10−4·(T-1773)]·10−6 |
Al2O3 | 1024 − 0.177 T | 28.3 [1 + 1·10−4·(T-1773)]·10−6 |
SiO2 | 243.2 + 0.031 T | 27.516 [1 + 1·10−4·(T-1773)]·10−6 |
MgO | 1770 − 0.636 T | 16.1 [1 + 1·10−4·(T-1773)]·10−6 |
Element | Oxide | Surface Tension (×10−3 N/m, 1873 K) | Surface Tension (×10−3 N/m, 2573 K) | Relationship between Molar Volume (m3/mol) and Temperature (K) |
---|---|---|---|---|
La | La2O3 | 686 (Solid) | 560 (Liquid) | 50.1 [1 + 1·10−4·(T-1773)]·10−6 |
Ce | Ce2O3 | To be estimated | Unknown | To be estimated |
Nd | Nd2O3 | 677 (Solid) | Unknown | 46.62 [1 + 1·10−4·(T-1773)]·10−6 |
Sm | Sm2O3 | Unknown | 815 (Liquid) | 47.93 [1 + 1·10−4·(T-1773)]·10−6 |
Gd | Gd2O3 | 664 (solid) | Unknown | 49.09 [1 + 1·10−4·(T-1773)]·10−6 |
Serial | CaO %wt | Al2O3 %wt | SiO2 %wt | Ce2O3 %wt | Basicity C/A | Surface Tension (N/m) |
---|---|---|---|---|---|---|
A1 | 54.64 | 30.36 | 10 | 5 | 1.8 | 0.5693 |
A2 | 51.00 | 34.00 | 10 | 5 | 1.5 | 0.5690 |
A3 | 46.36 | 38.64 | 10 | 5 | 1.2 | 0.5693 |
A4 | 51.43 | 28.57 | 10 | 10 | 1.8 | 0.5682 |
A5 | 48.21 | 26.79 | 10 | 15 | 1.8 | 0.5670 |
Serial | CaO %wt | Al2O3 %wt | SiO2 %wt | MgO %wt | Ce2O3 %wt | Surface Tension (N/m) |
---|---|---|---|---|---|---|
C0 | 48 | 37.5 | 4.5 | 10 | 0 | 0.5992 |
C1 | 45 | 37.5 | 4.5 | 10 | 3 | 0.6725 |
C2 | 46.2 | 36.3 | 4.5 | 10 | 3 | 0.6735 |
C3 | 45 | 35.5 | 4.5 | 10 | 5 | 0.6736 |
C4 | 43.4 | 34.1 | 4.5 | 10 | 8 | 0.6740 |
C5 | 45 | 32.5 | 4.5 | 10 | 8 | 0.6754 |
XCaO | XAl2O3 | XSiO2 | XMgO | φIS |
---|---|---|---|---|
0.453 | 0.125 | 0.423 | 0 | 0.630 |
0.486 | 0.059 | 0.454 | 0 | 0.701 |
0.342 | 0.125 | 0.532 | 0 | 0.564 |
0.673 | 0.287 | 0.035 | 0.005 | 0.820 |
0.673 | 0.287 | 0.035 | 0.005 | 0.821 |
Serial | XCaO | XAl2O3 | XSiO2 | XMgO | XCe2O3 | φIS |
---|---|---|---|---|---|---|
C0 | 0.5531 | 0.2371 | 0.0484 | 0.1613 | 0 | 0.7603 |
C1 | 0.5338 | 0.2442 | 0.0498 | 0.1661 | 0.0061 | 0.7588 |
C2 | 0.5445 | 0.2349 | 0.0495 | 0.165 | 0.006 | 0.7542 |
C3 | 0.5386 | 0.2333 | 0.0503 | 0.1676 | 0.0102 | 0.7499 |
C4 | 0.5313 | 0.2292 | 0.0514 | 0.1714 | 0.0167 | 0.7424 |
C5 | 0.5461 | 0.2165 | 0.051 | 0.1699 | 0.0166 | 0.7361 |
XCaO | XAl2O3 | XSiO2 | XMgO | φMS |
---|---|---|---|---|
0.536 | 0.246 | 0.168 | 0.050 | 0.439 |
0.604 | 0.277 | 0.068 | 0.051 | 0.433 |
0.481 | 0.287 | 0.165 | 0.067 | 0.432 |
0.514 | 0.306 | 0.109 | 0.072 | 0.453 |
0.544 | 0.324 | 0.056 | 0.076 | 0.454 |
0.505 | 0.233 | 0.164 | 0.098 | 0.438 |
0.572 | 0.262 | 0.067 | 0.099 | 0.428 |
0.466 | 0.215 | 0.160 | 0.159 | 0.435 |
0.531 | 0.243 | 0.065 | 0.161 | 0.429 |
Serial | σIM (N/m) | σIS (N/m) | σMS (N/m) | Overall Wettability cosθIMS |
---|---|---|---|---|
A1 | 1.585 | 0.2738 | 1.4097 | 0.9301 |
A2 | 0.2738 | 1.4096 | 0.9302 | |
A3 | 0.2738 | 1.4097 | 0.9301 | |
A4 | 0.2737 | 1.4094 | 0.9304 | |
A5 | 0.2736 | 1.4090 | 0.9307 |
Serial | σIM (N/m) | σIS (N/m) | σMS (N/m) | Overall Wettability cosθIMS |
---|---|---|---|---|
C0 | 1.585 | 0.3436 | 1.3610 | 0.9121 |
C1 | 0.3146 | 1.3426 | 0.9462 | |
C2 | 0.3148 | 1.3429 | 0.9459 | |
C3 | 0.3148 | 1.3430 | 0.9458 | |
C4 | 0.3149 | 1.3431 | 0.9457 | |
C5 | 0.3151 | 1.3435 | 0.9452 |
Substance | Density (kg·m−3) | Viscosity (Pa·s) | Interfacial Tension (N·m) | cosθIMS | ||
---|---|---|---|---|---|---|
Water-Oil σMS | Al2O3-Water σIM | Al2O3-Oil σIS | ||||
Water | 997 | 0.001 | 0.055 | 0.614 | 0.635 | −0.382 |
Silicon oil | 963 | 0.096 | ||||
Al2O3 | 710 | - |
Radius | Slags with Different Compositions | ||||
---|---|---|---|---|---|
A4 | A1 | A3 | A2 | A5 | |
51%CaO 29%Al2O3 10%SiO2 10%Ce2O3 | 55%CaO 30%Al2O3 10%SiO2 5%Ce2O3 | 46%CaO 39%Al2O3 10%SiO2 5%Ce2O3 | 51%CaO 34%Al2O3 10%SiO2 5%Ce2O3 | 48%CaO 27%Al2O3 10%SiO2 15%Ce2O3 | |
5 μm | R | R | R | R | R |
10 μm | R | R | R | R | O |
20 μm | R | O | O | O | O |
50 μm | O | O | O | P | P |
80 μm | P | P | P | P | P |
140 μm | P | P | P | P | P |
Radius | Slags of Different Compositions | ||||
---|---|---|---|---|---|
A4 | A1 | A3 | A2 | A5 | |
51%CaO 29%Al2O3 10%SiO2 10%Ce2O3 | 55%CaO 30%Al2O3 10%SiO2 5%Ce2O3 | 46%CaO 39%Al2O3 10%SiO2 5%Ce2O3 | 51%CaO 34%Al2O3 10%SiO2 5%Ce2O3 | 48%CaO 27%Al2O3 10%SiO2 15%Ce2O3 | |
5 μm | R | R | R | R | R |
10 μm | R | R | R | R | R |
20 μm | R | R | R | R | O |
40 μm | R | O | O | O | O |
50 μm | O | O | O | O | O |
80 μm | O | O | O | P | P |
130 μm | O | P | P | P | P |
Radius | Without Ce2O3 | Slags containing Ce2O3 in Different Compositions | ||||
---|---|---|---|---|---|---|
C0 | C2 | C1 | C4 | C5 | C3 | |
48%CaO 37.5%Al2O3 4.5%SiO2 10%MgO | 46.2%CaO 36.3%Al2O3 4.5%SiO2 10%MgO 3%Ce2O3 | 45%CaO 37.5%Al2O3 4.5%SiO2 10%MgO 3%Ce2O3 | 43.4%CaO 34.1%Al2O3 4.5%SiO2 10%MgO 8%Ce2O3 | 45%CaO 32.5%Al2O3 4.5%SiO2 10%MgO 8%Ce2O3 | 45%CaO 35.5%Al2O3 4.5%SiO2 10%MgO 5%Ce2O3 | |
5 μm | R | R | R | O | O | O |
10 μm | R | O | O | O | O | O |
20 μm | R | O | O | P | P | P |
30 μm | R | O | P | P | P | P |
50 μm | O | P | P | P | P | P |
80 μm | O | P | P | P | P | P |
140 μm | P | P | P | P | P | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Li, Y.; Lin, W.; Che, J.; Zhou, F.; Tan, Y.; Li, D.; Dang, J.; Chen, C. Assessment of Inclusion Removal Ability in Refining Slags Containing Ce2O3. Crystals 2023, 13, 202. https://doi.org/10.3390/cryst13020202
Cao J, Li Y, Lin W, Che J, Zhou F, Tan Y, Li D, Dang J, Chen C. Assessment of Inclusion Removal Ability in Refining Slags Containing Ce2O3. Crystals. 2023; 13(2):202. https://doi.org/10.3390/cryst13020202
Chicago/Turabian StyleCao, Jianqi, Yao Li, Wanming Lin, Julong Che, Feng Zhou, Yunfang Tan, Dongliang Li, Jie Dang, and Chao Chen. 2023. "Assessment of Inclusion Removal Ability in Refining Slags Containing Ce2O3" Crystals 13, no. 2: 202. https://doi.org/10.3390/cryst13020202
APA StyleCao, J., Li, Y., Lin, W., Che, J., Zhou, F., Tan, Y., Li, D., Dang, J., & Chen, C. (2023). Assessment of Inclusion Removal Ability in Refining Slags Containing Ce2O3. Crystals, 13(2), 202. https://doi.org/10.3390/cryst13020202