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Abstract: Glucosamine is a natural drug widely used for treating osteoarthritis and is usually left
until it expires, which will cause a waste of resources if treated as garbage. However, its molecule
contains many heteroatoms, entitling it to be a potential corrosion inhibitor. In this investigation, the
corrosion inhibition activities of two types of expired glucosamine drugs (glucosamine hydrochloride
and glucosamine sulfate) on carbon steel were estimated by electrochemical methods in the acidic
solution. The results demonstrated that the glucosamine drugs were mixed-type corrosion inhibitors.
Glucosamine hydrochloride could inhibit the carbon steel corrosion more significantly than that of
sulfuric style at the same glucosamine content, suggesting a possible synergistic effect of glucosamine
molecules with halide ions. Then, the co-adsorption behaviors of glucosamine sulfate with iodide
ions were studied by experimental research, as well as theoretical investigations. The results indicated
that the inhibition effect could be significantly enhanced when the glucosamine drug was utilized
in combination with iodide ions. The electronic structures played a critical role in the synergistic
inhibition of glucosamine drugs and iodide ions. Neutral molecules could interact with the metallic
surface vertically through the amino and carbonyl groups, while protonated molecules were able to
adsorb on it in parallel with the help of multiple functional groups. Since glucosamine molecules
would be protonated and positively charged in the acidic solution, they were difficult to adsorb on
the solid surface with metallic cations. When the iodide ions were presented, they preferentially
adsorbed on the carbon steel surface and induced it to be negatively charged. Therefore, protonated
glucosamine molecules could adsorb on the metallic surface using iodide ions as a bridge and form a
protective film to mitigate the carbon steel corrosion.

Keywords: expired drug; glucosamine; carbon steel; green corrosion inhibitor; acidic solution

1. Introduction

Glucosamine, a kind of natural hexosamine sugar found in the human body, is a
non-toxic green compound which can stimulate chondrocytes to produce proteoglycan
and improve their recovery ability [1,2]. However, the human body’s capability to syn-
thesize glucosamine decreases with aging, which results in many health problems, such
as bone and joint inflammation. Thus, two main types of salts viz glucosamine sulfate
[(C6H13NO5)2·H2SO4] and glucosamine hydrochloride (C6H13NO5·HCl) are widely used
for the therapy of osteoarthritic patients. In addition, they are also added in health care
products by food enterprises as a nutrient for strengthening muscles and bones [3,4]. There-
fore, many families have numerous reservations, and lots were left expired. If these expired
drugs are treated as garbage, it will not only cause a waste of resources, but also have some
unpredictable ecological impacts. Therefore, it is necessary to find new solutions to recycle
these expired medicines.
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Corrosion inhibitors are a category of agents that can significantly mitigate metal
corrosion in a small amount and are widely applied in the petroleum industry, chemical
industry, and other fields [5]. The molecule of a corrosion inhibitor usually deserves
multi-ring structures, unsaturated bonds, or atoms with large electronegativity, which
enables it to interact with the metal via these functional groups or heteroatoms to form
a protective film on the metallic surface and suppress its corrosion [5–8]. Nowadays,
numerous corrosion inhibitors have been developed, but lots of them are forbidden due to
their detrimental effects on the environment. It has been a trend to design and use green,
environmental-friendly agents [9,10]. Among them, pharmaceutical products undergo
a variety of biological experiments and safety tests, which have been considered as a
major branch of green corrosion inhibitors [6,11]. Amino acids, vitamins, and quinolones
have all been reported to be able to inhibit metal corrosion [6,12]. Glucosamine molecule
contains many atoms with lone pair electrons, entitling it a potential corrosion inhibitor [13].
However, there is still no report on its application in metal protection against corrosion.

Meanwhile, it should be noted that these pharmaceutical agents are not designed to
be corrosion inhibitors and the corrosion protection effect on metals may not be ideal. Thus,
other compounds often need to be utilized together to enhance their corrosion inhibition
effect. Previous investigations have implied that the corrosion inhibition properties of
organic compounds are greatly improved by the addition of appropriate halide ions and
their synergy increases following the sequence of Cl− < Br− < I− [14,15].

Therefore, corrosion inhibition activities of two expired glucosamine drugs, namely,
glucosamine sulfate (GS) and glucosamine hydrochloride (GH), were investigated by
potentiodynamic polarization (PDP) and the electrochemical impedance spectrum (EIS)
in the acid medium. Iodide ions were added to enhance the inhibition effect. Then, the
synergistic mechanism between the glucosamine sulfate and iodide ions was analyzed
based on theoretical investigations. This study aims to evaluate the anti-corrosion behaviors
of expired glucosamine drugs and to find a strategy to strengthen the corrosion inhibition
effect; furthermore, to provide an experimental and theoretical reference for designing new
expired pharmaceutical corrosion inhibitors.

2. Materials and Methods
2.1. Materials Preparation

The two types of glucosamine drugs were both expired for more than 1 year. They
packed well before the experiments. Glucosamine hydrochloride medicine was produced
by Jiangsu Zhengda Qingjiang Pharmaceutical Co., Ltd. Each tablet weighted 0.950 g and
contained 3.48 mmol glucosamine. Glucosamine sulfate was purchased from Yongxin
Pharmaceutical Industry Co., Ltd. Each tablet weighted 0.415 g and contained 1.09 mmol
glucosamine. Since both drugs were slow-release products, after obtaining the appropriate
amount of agent by the weight method, they were dissolved in the corrosive medium for
24 h before each experiment to ensure their stable content in the solution.

The corrosive medium used in the study was 0.5 mol L−1 H2SO4 solution, prepared
with 98 wt% sulfuric acid, as well as bi-distilled water.

The electrode (10 mm × 10 mm × 5 mm) utilized in the electrochemical experiment
was processed from R235 carbon steel supplied by Yangzhou Xiangwei Machinery Co., Ltd.
(Yangzhou, China). Its composition was obtained by the spark discharge atomic emission
spectrometric method in the light of the standard GB/T 4336-2016 and was listed in Table 1.
The electrode was welded with copper wire at one end and sealed with epoxy resin, where
only an exposed surface (1 cm2) was left for testing. Before each experiment, it was ground
to 1000 # step-by-step with abrasive paper, cleaned, and dried with cold air.

Table 1. Composition of the carbon steel electrode.

Content C Mn P S Si Fe

Amount (wt%) 0.16 0.45 0.04 0.05 0.03 Balance
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2.2. Electrochemical Measurements

The electrochemical analysis was conducted on the working station (CORRTES, CS310)
using the traditional three-electrode system, where a carbon rod served as the auxil-
iary electrode and a saturated calomel electrode for reference. An open circuit poten-
tial (OCP) measurement was carried out for 1 h before each test to make sure the stable
corrosion state of the electrode sample. The potentiodynamic scanning was performed
from −0.25 V to +0.25 V concerning OCP at a speed of 1 mV s−1. The EIS data were ob-
tained from 100,000 Hz to 0.01 Hz at OCP. The signal used was an alternating current and
the perturbation amplitude was set to be 10 mV. The experiments were all conducted at
room temperature.

2.3. Computational Details

Gaussian 09 package was employed for the quantum chemical calculations. Geometry
optimizations were conducted under the hybrid density functional theory (DFT) framework
based on the Lee-Yang-Parr (B3LYP) exchange-correlation functional theory, using the
6-31G(d,p) basis set. During the optimization process, the COSMO model was utilized to
introduce the effect of the solvent (water). The Forcite module in the Materials Studio 2019
software (Community) was applied for molecular dynamics simulations. The simulation
model consisted of a metal surface, a layer of corrosion inhibitor solution, and a vacuum
with a thickness of 30 Å. The metal surface was Fe(110), which contained five layers of iron
atoms. It has been proved that the metal suffers from hydrogen evolution corrosion in an
acidic solution and is prone to form cations, which causes the solid surface to be positively
charged and easy to attract anions [16–18]. Thus, in the model, to study the synergistic
effect of glucosamine and iodide ions, 3 I− was firstly added to the Fe(110) surface. In total,
222 water molecules, 1 glucosamine molecule, 4 H+, and 2 SO4

2− were used to simulate
0.5 mol L−1 H2SO4 solution with corrosion inhibitor, where appropriate counterions (H+,
K+) were added or removed to maintain the charge balance of the simulation system. Since
the glucosamine molecule had combined with 1 H+ after it was protonated, the number
of free H+ was reduced to 3. The molecular interaction was described by COMPASS and
was conducted using the NVT ensemble at 298 K with Nosé-Hoover thermostat to control
the temperature. The time step was 1 fs, and each system ran for 1000 ps to reach the
equilibrium state.

3. Results and Discussion
3.1. Corrosion Inhibition Activities of Expired Glucosamine Drugs on Carbon Steel
3.1.1. PDP

Figure 1 depicted the PDP curves of carbon steel electrodes in the H2SO4 solution
with different concentrations of expired GS or GH. Since there are 2 glucosamine units in
a GS molecule but only 1 in the GH, the molar amount of the GS added was half of the
GH to ensure equal glucosamine content. Compared with the blank system (0.5 mol L−1

H2SO4 solution without corrosion inhibitors, hereinafter same), the cathodic curves shifted
towards low current density after adding the expired drugs, indicating that the addition of
glucosamine led to a reduction in the electrode corrosion rate [19]. In order to determine the
corrosion inhibition influence of glucosamine drugs more clearly, the corrosion potential
(Ecorr), the corrosion current density (icorr), the anodic Tafel slope (βa), and the cathodic Tafel
slope (βc) could be obtained by fitting the PDP data via the Tafel extrapolation method [20].
The corrosion inhibition efficiency IE was calculated according to the formula below [20,21]:

IE (%) = [(i0corr − icorr)/i0corr] × 100% (1)

where i0corr and icorr were the corrosion current densities for the uninhibited and inhibited
electrodes, respectively. The fitting results were listed in Table 2.
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Figure 1. PDP curves of the electrodes in 0.5 mol L−1 H2SO4 solution without and with various
amounts of glucosamine salts.

Table 2. Tafel fitting results of the electrodes in 0.5 mol L−1H2SO4 solution without and with various
amounts of glucosamine salts.

Inhibitor βa
(mV dec−1)

−βc
(mV dec−1)

icorr
(mA cm−2)

Ecorr
(mV)

IE
(%)

Blank 76 121 0.667 −413 /
2.5 mmol L−1 GS 74 120 0.427 −423 36.0
5 mmol L−1 GS 75 122 0.370 −426 44.5
5 mmol L−1 GH 74 122 0.298 −426 55.3
10 mmol L−1 GH 72 119 0.119 −438 82.2

According to Figure 1 and Table 2, the icorr decreased with the increasing glucosamine
addition, implying that the inhibitor molecules adsorbed on the metallic surface were
increased and the corrosion protective effect of the drug became stronger [22]. Furthermore,
it can be noted that the IE of GS was much lower than that of GH at the same glucosamine
content, which might be ascribed to the synergistic inhibition of glucosamine drugs and
halide ions. Although Ecorr got more negative, it is visible that there were hardly any
variations in βa or βc. Thereby, the glucosamine drugs were mixed-type corrosion inhibitors
and their inhibition activities were induced by a coverage effect rather than cathodic
electrochemical inhibition [18,22].

3.1.2. EIS

Figure 2 showed the EIS of carbon steel electrodes in the solution with different
concentrations of expired GS or GH. Based on the Bode plots (Figure 2b), there was only
one time constant for the EIS of the electrode in the corrosive medium, either with or
without corrosion inhibitors. Thus, only one irregular capacitive semicircle appeared in the
Nyquist moiety (Figure 2a); yet a small inductive arc was visible in the low-frequency part.
The capacitive arc corresponded to the electrochemical corrosion process of the electrode,
whereas the radius of the capacitive arc indicated its corrosion properties. The larger the
radius was, the more difficult the electrochemical corrosion occurred. The inductive arc
was induced by the continuous desorption of corrosion products and/or inhibitors from
the electrode surface [7,23]. Therefore, the EIS data could be fitted with the equivalent
electrical circuit (EEC) in Figure 3 and the fitting results were collected in Table 3. Rs stood
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for the solution resistance, Rct the charge transfer resistance, C the capacitance of the electric
double layer, RL the inductive resistance, and L the inductance. Due to the continuous
generation of corrosion products, the electrode surface was rough, and the capacitive arc
did not fit well with the theoretical model; thus, CPE was employed to replace the capacitive
element C. Its value was assessed by the following equations [24,25]:

ZCPE = Y−1(2πjf max)−n (2)

C = Y(2πf max)n−1 (3)

where f max denoted the frequency with the largest value of the impedance imaginary part.
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Figure 3. EEC to fit the EIS data for the electrodes in 0.5 mol L−1 H2SO4 solution without and with
various amounts of glucosamine salts.

Table 3. EIS fitting results for the electrodes in 0.5 mol L−1 H2SO4 solution without and with various
amounts of glucosamine salts.

Inhibitor Rs(Ω cm2)
CPE−Y

(µ Ω−1 cm−2 Sn) CPE−n
Rct

(Ω cm2)
RL

(Ω cm2)
L

(H cm2)

Blank 1.67 643 0.76 30.5 121 7.68
2.5 mmol L−1 GS 1.64 535 0.77 45.1 142 10.1
5 mmol L−1 GS 1.61 482 0.78 51.7 186 11.9
5 mmol L−1 GH 1.31 415 0.78 60.5 233 75.5

10 mmol L−1 GH 1.14 352 0.77 167.8 699 128

In view of Figure 2 and Table 3, after the addition of the expired glucosamine drug
(either GS or GH), the impedance modulus and Rct of the electrode increased relative to the
blank system, while CPE−Y representing the capacitive properties decreased. Furthermore,



Crystals 2023, 13, 205 6 of 14

such a trend got more obvious as the drug amount increased. These results suggested
that the amount of glucosamine molecules adsorbed on the electrode surface increased
with their increasing concentration; thus, the double layer got thicker, and the carbon
steel corrosion was suppressed. It is noteworthy that Rs decreased in the presence of
glucosamine drugs, which was due to the fact that GS and/or GH were dissociated to
certain ions (such as H+, SO4−, Cl−), reducing the dielectric constant of the solution [25,26].
Meanwhile, the protonation of glucosamine molecules in the acidic solution also led to
the decline of the solution resistance [27]. Consistent with the PDP results, the impedance
modulus and Rct of the carbon steel sample were much larger in the solution with GH than
that in the corrosive medium with GS of the same amount by glucosamine, which once
again demonstrated that the glucosamine drug might have a synergistic adsorption effect
with halide ions. Therefore, it was necessary to study the co-adsorption behaviors of the
glucosamine molecules and halide ions.

3.2. Synergistic Corrosion Inhibition Effect of GS with KI
3.2.1. PDP

Previous investigations have confirmed that organic corrosion inhibitors often have
synergistic adsorption with halide ions, and this effect is the most significant in iodide
ions [14,15]. In order to determine the synergism of glucosamine molecules with halide
ions and to further promote the application of expired glucosamine drugs as corrosion
inhibitors, various concentrations of iodide ions were employed in the corrosive media and
the co-adsorption of iodide ions with 2.5 mmol L−1 GS was studied. The results indicated
that 2.5 mmol L−1 GS had the best protective performance on the carbon steel sample at
the iodide ion concentration of 0.75 mmol L−1. Above this value, the corrosion efficiency
would decrease (Figure S1). For the purpose of clearly demonstrating the combined
corrosion inhibition behaviors of glucosamine and iodide ions, the PDP curves of carbon
steel electrodes in the acidic solution with various corrosion inhibitor formulations were
illustrated in Figure 4. The fitting results were collected in Table 4.
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Table 4. Tafel fitting results of the electrodes in 0.5 mol L−1 H2SO4 solution without and with different
corrosion inhibitor formulations.

Inhibitor Formulation βa
(mV dec−1)

−βc
(mV dec−1)

icorr
(mA cm−2)

Ecorr
(mV)

IE
(%) S

Blank 76 121 0.667 −413 / /
GS 74 120 0.427 −423 36.0 /

0.25 mmol L−1 KI 78 119 0.304 −429 54.4 /
0.75 mmol L−1 KI 90 118 0.109 −439 83.7 /

GS + 0.25 mmol L−1 KI 154 118 0.081 −457 87.8 1.24
GS + 0.75 mmol L−1 KI 257 119 0.059 −464 91.2 1.02

It is evident that the addition of KI or GS caused the cathodic curve to move towards
the low current density; as a result, the corrosion electrochemical reaction rate of the
electrode was reduced [28]. The alteration of the anodic curve was very small when GS
or 0.25 mmol L−1 KI was added alone. However, such a situation was changed when the
concentration of KI was increased to 0.75 mmol L−1 or KI was applied in combination
with GS. Not only did the whole polarization curves shift to the direction of the lower
current density, but also the shape of the anodic branches was transformed. The anodic
polarization curve presented three different regions: at the potential slightly exceeding OCP,
the current density increased slowly; then a potential plateau appeared; finally, above about
−0.3 V, it returned to the polarization behavior similar to the sample in the blank system.
This phenomenon was closely related to the variation of the electrode surface state. In the
acidic solution, the metal corrosion occurred and a large number of positively charged
metallic cations were enriched on the solid surface. Thereby, protonated glucosamine
molecules could adsorb on the metallic surface, but very difficult [16–18]. In contrast,
iodide ions were easy to adsorb on the solid surface through coulombic action because of
their opposite charge with the metallic cations. The adsorption of iodide ions led to the
reduction in the carbon steel corrosion, but the effect was very limited if its amount was
not large enough. Thus, it could hardly change the corrosion behavior of the metal and the
shape of the polarization curve was not altered. However, the covered sites by iodide ions
increased with the increasing KI addition, and their corrosion inhibition activities to the
carbon steel got more significant. In the presence of GS, an obvious co-adsorption emerged.
The interaction of glucosamine molecules with the solid surface was strongly enhanced
with iodide ions as the mediator, which could form an anti-corrosion layer and effectively
inhibit the metal corrosion. When the amount of the iodide ions was increased to about
0.75 mmol L−1, their co-adsorption achieved the best with the highest IE of 91.2%. The
synergism of corrosion inhibitors and halide ions could be measured by the synergistic
coefficient SI, which was calculated by the following formula [29–31], as showed in Table 4:

SI = (1 − I1 + 2)/(1 − I’1 + 2) (4)

where I1 + 2 = (I1 + I2) − I1I2. I1, I2 and I’1 + 2 were the corrosion inhibition efficiencies of the
halide ions and organic corrosion inhibitors, and in the presence of halide ions and organic
corrosion inhibitors, respectively. SI > 1 suggests a synergistic corrosion inhibition effect
between organic compounds and halide ions; meanwhile, SI < 1 indicates an antagonism
between the two species [14,32]. From Table 4, SI of 2.5 mmol L−1 GS and 0.25 mmol L−1

KI was 1.24, indicating significant synergism between them. SI of 2.5 mmol L−1 GS and
0.75 mmol L−1 KI was 1.02, which might be attributed to their co-adsorption being close to
the maximum at this concentration, and there was a certain deviation in the calculation of
the synergistic coefficient.

3.2.2. EIS

Figure 5 exhibited the EIS of carbon steel electrodes in the acidic solution without and
with different corrosion inhibitor formulations. It can be observed that the EIS behavior
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of the electrode in the system with 0.25 mmol L−1 KI was similar to that in the blank
solution, either with GS or without. There was a suppressed capacitive arc in the Nyquist
diagram (Figure 5a) with a small inductance in its low-frequency region. Yet, the inductive
arc got much weaker. This might be attributed to the fact that iodide ions and ferrous
cations deserved opposite charges, which retarded the dissociation of metal ions from the
solid surface. Moreover, the addition of corrosion inhibitor formulations induced the high
phase region of Bode plots (Figure 5b) wider, indicating that the charge transfer got more
difficult. When the concentration of KI was increased to 0.75 mmol L−1 (0.50 mmol L−1

was sufficient, Figure S2), the capacitive arc in the low-frequency part disappeared. Espe-
cially, when it was applied together with GS, a stable protective layer was formed, which
could even affect substances diffusion and cause a line representing the diffusion control
process visible at the low-frequency region (because the shape of the curve in this part was
random, it did not fit). Therefore, EIS data of the electrodes in the corrosive medium with
0.75 mmol L−1 KI were fitted utilizing the EEC in Figure 6 and the rests were fitted with
that showed in Figure 3. The EEC parameters were presented in Table 5.
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In Table 5, the most obvious point was that Rs was significantly reduced in the presence
of KI, which should be ascribed to the addition of KI causing the ion’s concentration in the
solution to increase and the dielectric constant to decrease [25,26]. The value of CPE−Y
decreased, while Rct increased when GS and/or KI was added in the system, implying
that the adsorption of glucosamine molecules and/or iodide ions on the metallic surface
changed the properties of the electric double layer. Thereby, the charge transfer became
more difficult, and the carbon steel corrosion was suppressed [16,33]. Especially, the
phenomenon was more significant in the case that KI and GS were applied together. It is
clear that the value of Rct increased by more than one order of magnitude compared with
the blank; either GS was used with 0.25 mmol L−1 KI or 0.75 mmol L−1, indicating that KI
and GS had significant synergistic corrosion inhibitions.

3.3. Quantum Chemical Calculations

The adsorption performance of a corrosion inhibitor molecule strongly relies on its
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO), where HOMO is associated with its electron donation characteristics and LUMO
is related to its electron acceptance behaviors [27,34–36]. Figure 7 presented the optimized
structures of neutral and protonated glucosamine molecules, as well as their HOMO and
LUMO distributions. For the neutral glucosamine molecule, HOMO was mainly distributed
around the amino and carbonyl groups, indicating that these groups were easy to interact
with the metals by providing negative charges from the heteroatoms of N and O. LUMO
was mainly distributed in the carbonyl group, suggesting it was an active site for accepting
electrons. When the glucosamine molecule was protonated, the LUMO distribution did not
change much, but the location of HOMO was moved to the position almost complementary
to LUMO, around the hydroxyl groups far away from the N atom. This was because
that positive surplus charge existed around N as the amino group was protonated, which
caused the active sites most likely to provide electrons alternating to the O atoms staying
off N. The structural parameters of the related molecules were listed in Table 6. Global
hardness (η), electronegativity (x), global softness (σ), nucleophilicity (ω), and the number
of electrons transferred (∆N) were calculated in line with the following relationships [5,35]:

η = (ELUMO − EHOMO)/2 (5)

x = −(EHOMO + ELUMO)/2 (6)

σ = 1/η (7)

ω = x2/2η (8)

∆N = (φFe − x)/2η (9)

where EHOMO was the energy of HOMO, and ELUMO the energy of LUMO. φFe was the
work function and its value was 4.82 V, based on the experimental result [27,36,37].

EHOMO represents the electron donation capability of an inhibitor molecule. A higher
EHOMO value suggests a stronger electron supply ability. It is notable that the electron
donation capacity of the glucosamine molecule was weakened after protonation. ELUMO
reflects the electron acceptance capability of a molecule. A lower ELUMO value indicates
an easier electron acceptance process. After protonation, the ELUMO of the glucosamine
molecule was decreased, indicating that it got more prone to accept electrons from other
substances for interaction. In addition, η measures the stability of itself. The lower its
value is, the more unstable the inhibitor molecule is and the more easily it reacts with
other substances. Thus, the higher η value of the pronated glucosamine molecule implied
that it was more stable than the neutral one in the solution, which was consistent with the
electrochemical experiment results. Furthermore, σ is the physical inverse of η. Generally,
a neutral corrosion inhibitor is considered as Lewis’s base and a higher value of σ indicates
a better corrosion inhibition effect since it is easier to react with the soft acid (neutral metal).
The protonated glucosamine molecule deserved the properties of hard Lewis’s acid, and it
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tended to interact with particles negatively charged. Ω can be used to evaluate the electrons
attracting reactivity from a nucleophilic species. The higher ω value of the protonated
glucosamine molecule demonstrated that it got more feasible to accept electrons in the
solution [38,39]. The ∆N > 0 suggests electron transfer from corrosion inhibitor molecules
to metals, while the ∆N < 0 indicates electron transfer from metals to organic compounds.
Based on Table 6, the neutral glucosamine molecule interacted with the metal mainly by
providing electrons to the metal and the protonated one via accepting negative charges.

Table 6. Quantum chemical parameters.

Compound
EHOMO

(eV)
ELUMO

(eV)
η

(eV)
x

(eV)
σ

(eV−1)
ω

(eV) ∆N

Neutral Glucosamine −6.91 −1.51 2.70 4.21 0.37 3.28 0.113
Protonated Glucosamine −7.72 −1.94 2.89 4.83 0.35 4.04 −0.002
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3.4. Molecular Dynamics Simulations (MDS)

Compared with the experimental research, MDS can reveal the interaction mechanism
of corrosion inhibitor molecules with the metal from the micro level, and is very helpful
to elucidate the co-adsorption activities of different corrosion inhibitors [11–15]. Figure 8
provided the equilibrium adsorption configuration and adsorption energy of neutral and
protonated glucosamine molecules on the Fe(110) surface, either with or without iodide
ions. The adsorption energy Eads of corrosion inhibitor on the solid surface was calculated
according to the following formula [40,41]:

Eads = Etotal − (Esurf + solu + Einh) (10)

where Etotal was the total energy of the adsorption system after adsorption, and Esurf + solu + Einh
was the sum of the energy involved in the solid surface with the corrosive solution, as well as
the corrosion inhibitor molecule before adsorption.
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Figure 8. Equilibrium adsorption configurations of glucosamine molecules: (a) neutral glucosamine
molecule on Fe(110) surface; (b) protonated glucosamine molecule on Fe(110) surface; (c) neutral
glucosamine molecule on Fe(110) surface with idiom ions; (d) protonated glucosamine molecule on
Fe(110) surface with idiom ions.

As can be inferred from Figure 8, the adsorption of the neutral glucosamine molecule
on the solid surfaces was mainly through the amino and carbonyl groups. Based on
Figure 7, it can be found that these sites were just consistent with the HOMO and LUMO
distributions. The interaction at such a location meant that the glucosamine molecule
adsorbed on the carbon steel surface not only by providing electrons to the d-empty orbital
of iron, but also via accepting electrons. The protonated glucosamine molecule covered
the solid surfaces parallelly. This type of configuration increased the interaction area of
the corrosion inhibitor molecule with the solid surface; therefore, the adsorption of the
protonated glucosamine molecule was much stronger than the neutral one. Yet, significant
differences could be identified by comparing the adsorptions of protonated glucosamine
molecules on the solid surface with and without iodide ions. At the Fe(110) surface free
of iodide ions, the inhibitor molecule was adsorbed mainly by the action of the carbonyl
group and hydroxyl group farthest from the amino group, whereas the protonated amino
groups and other three hydroxyl groups were all upward and away from the metal surface.
However, when iodide ions were presented, the protonated amino group became the
most critical part for its interaction with the solid interface. Meanwhile, the glucosamine
molecule also tried its best to adjust the conformation to enhance its adsorption on the
solid surface, so that the carbonyl group and multiple hydroxyl groups all participated in
the interaction. Furthermore, it is visible that Eads of the protonated glucosamine molecule
was far lower than that of the neutral one, either with iodide ions or not. This result
indicated that the glucosamine molecule was prone to protonation in the acidic solution
and interaction with the metal in such a style, which was totally in agreement with the
research by other studies [16–18]. Eads of the inhibitor molecule got much lower when
iodide ions were presented, indicating a stronger interaction of the glucosamine molecule
with the solid surface. Therefore, the synergistic inhibition effect of glucosamine molecules
and iodide ions could be interpreted as follows: due to its oppositive charges with the
metallic ions, iodide ions could first adsorb on the solid surface by forming a directional
dipole, and then protonated inhibitor molecules were able to interact with the dipole by
coulombic action; thus, glucosamine molecules could adsorb on the solid surface with
halide ions as a bridge and inhibit the metal corrosion.
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4. Conclusions

Corrosion inhibition characteristics of expired glucosamine drugs on carbon steel were
examined by electrochemical tests. GH illustrated a good corrosion inhibition effect while
GS exhibited low efficiency. However, the corrosion inhibition performance of GS could
be greatly improved by iodide ions ascribed to their synergistic inhibition action. The
corrosion inhibition efficiency reached above 90% when 2.5 mmol L−1 GS was applied
together with 0.75 mmol L−1 KI. Glucosamine drugs were mixed-type corrosion inhibitors.
Their inhibition properties were ascribed to the covering effect. Neutral glucosamine
molecules could vertically adsorb on the metallic interface through the action of the amino
and carbonyl groups, while interacting with the solid surface parallelly after protonation.
Yet, the protonated glucosamine was difficult to adsorb on the metallic surface because
it was positively charged in the acidic solution. By virtue of the opposite charges, halide
ions favored galvanically coupled with the metallic cations and caused the solid surface to
be negatively charged. Then, the protonated glucosamine molecules could absorb on the
solid surface through the mediation of halide ions by electrostatic action, forming a tight
anti-corrosion layer, and inhibiting the dissolution of carbon steel.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13020205/s1, Figure S1: EIS of carbon steel electrodes in
0.5 mol L−1 H2SO4 solution with 2.5 mmol L−1 GS in addition of various amounts of KI; Figure S2: EIS
of carbon steel electrodes in 0.5 mol L−1 H2SO4 solution without and with various amounts of KI.
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