Burning Rate Prediction of Solid Rocket Propellant (SRP) with High-Energy Materials Genome (HEMG)
Abstract
:1. Introduction
2. History and Current Status of HEMG
3. Methodology
4. Results and Discussion
4.1. Experiment
- 73.5% NG/NC + 19.5% burning rate inhibitor + 4.0% catalyst + 3.0% additives with and without nAl;
- 63.0% NG/NC + 2.3% catalyst + 2.8% additives + 26% RDX + 4.6% diethyl phthalate (DEP) + 2.6% (nAl + Al2O3) with and without nAlN;
- 63.4% NG/NC + 5.85% catalyst + 4.75% additives + 24% HMX with and without nDPN;
- CL-20-CMDB propellants formulation with different mass fraction of nNi;
- RDX-CMDB propellants with different mass fractions of nNi.
4.2. Modelling
4.2.1. Direct Task
4.2.2. Inverse Problem (Task)
4.2.3. Virtual Experiments
4.2.4. Comparison of Predicted Burning Rate with Experimental Data of SRP
5. Conclusions
- The usage of ANN for the creation of new MCM of the propellants combustion and detonation, that solve the direct and inverse tasks as well execute the virtual experiments, depict that ANN have the wide possibilities for propellants combustion and detonation research and development of new kind of advanced propellants. The results presented in this article depict no more than 1% of the propellants combustion patterns contained in the obtained MCM.
- The autonomous computer module of MCM allows reader to independently and in detail study all the regularities contained in the ANN model, visualizing in the form of hundreds of graphs those regularities that the authors of the article could not present in the article due to the limitations on the volume of the article. Instructions for using the executable ANN model are included with the module.
- The autonomous computing module of MSM can be utilized. This allows researchers to calculate the values of the burning rate for energetic compositions at various conditions, visualize the patterns contained in the experimental data, conduct virtual experiments, and predict the burning rate of propellants at different pressures. The virtual experiments are a very promising means to develop new and advanced solid propellants in the framework of HEMG.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HEMG | high-energy materials genome |
HEMs | high-energy materials |
ANN | artificial neural networks |
MCM | multifactor computational models |
SRP | solid rocket propellant |
NEPE | nitrate ester plasticized polyether |
AI | artificial intelligence |
mAl | micro-sized aluminium |
nAl | nano-sized aluminium |
MGI | materials genome initiative |
ML | machine learning |
EMGI | energetic materials genome initiative |
MI | materials informatics |
ICSD | inorganic crystal structure database |
CHNO | carbon, hydrogen, nitrogen, and oxygen |
AN | artificial neuron |
RMS | root-mean-square |
nNi | nano-sized nickel |
RDX | hexogen |
CL-20 | hexanitrohexaazaisowurtzitane |
CMDB | compound-modified double base |
NG | nitroglycerin |
NC | nitrocellulose |
DEP | diethyl phthalate |
Al2O3 | aluminium trioxide |
nDPN | a type of nano-sized composite |
HMX | octogen |
nAlN | nano-sized aluminium nitride |
References
- Yan, Q.-L.; Zhao, F.-Q.; Kuo, K.K.; Zhang, X.-H.; Zeman, S.; DeLuca, L.T. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 2016, 57, 75–136. [Google Scholar] [CrossRef]
- Pang, W.-Q.; Wang, K.; Xu, H.-X.; Li, J.-Q.; Xiao, L.-Q.; Fan, X.-Z.; Li, H. Combustion features of nitrate ester plasticized polyether solid propellants with ADN and Fox-12 particles. Int. J. Energy Mater. Chem. Prop. 2020, 19, 11–23. [Google Scholar] [CrossRef]
- Pang, W.-Q.; Wang, K.; DeLuca, L.T.; Trache, D.; Fan, X.-Z.; Li, J.; Li, H. Experiments and simulations on interactions between 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate (DNTN) with some energetic components and inert materials. FirePhysChem 2021, 1, 166–173. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Dai, Z.-L. Calculation for high-pressure combustion properties of high-energy solid propellant based on GA-BP neural network. J. Solid Rocket. Technol. 2007, 30, 229–232. [Google Scholar]
- Kalil, T.; Wadia, C. Materials Genome Initiative for Global Competitiveness, A Whitepaper, Executive Office of the President National Science and Technology Council, Washington, D.C. 20502. 24 June 2011. Available online: https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf (accessed on 28 January 2023).
- DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M.; Manzara, A.P. Innovation of Energetic Materials by Materials Genome Initiative. An Introduction to Energetic Materials for Propulsion. In Chemical Rocket Propulsion; DeLuca, L.T., Shimada, T., Sinditskii, V., Calabro, M., Eds.; Springer Aerospace Technology: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Abrukov, V.S.; Malinin, G.I.; Volkov, M.E.; Makarov, D.N.; Ivanov, P.V. Application of artificial neural networks for creation of “black box” models of energetic materials combustion. In Advancements in Energetic Materials and Chemical Propulsion; Kuo, K.K., Hori, K., Eds.; Begell House Inc. of Redding: Danbury, CT, USA, 2008; pp. 377–386. [Google Scholar]
- Abrukov, V.S.; Karlovich, E.V.; Afanasyev, V.N.; Semenov, Y.V.; Abrukov, S.V. Сreation of propellant combustion models by means of data mining tools. Int. J. Energetic Mater. Chem. Propuls. 2010, 9, 385–396. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Bharath, R.S.; Oommen, C.; Abrukov, V.S.; Lukin, A.N.; Kiselev, M.V.; Anufrieva, D.A.; Sanal Kumar, V.R. Development of the Multifactorial Computational Models of the Solid Propellants Combustion by Means of Data Science Methods-Phase II. In Proceedings of the 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2018–4961), Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Abrukov, V.; Lukin, A.; Anufrieva, D.; Oommen, C.; Sanalkumar, V.; Chandrasekaran, N.; Bharath, R. Recent advancements in study of effects of nano micro additives on solid propellants combustion by means of the data science methods. Def. Sci. J. 2019, 69, 20–26. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Oommen, C.; Kumar, V.R.S.; Lukin, A.N.; Abrukov, V.S.; Anufrieva, D.A. Prediction of detonation velocity and N-O composition of high energy C-H-N-O explosives by means of the data science methods. Prop. Explos. Pyrotech. 2019, 44, 579. [Google Scholar] [CrossRef]
- Mariappan, A.; Choi, H.; Abrukov, V.S.; Anufrieva, D.A.; Lukin, A.N.; Sankar, V.; Sanalkumar, V.R. The Application of Energetic Materials Genome Approach for Development of the Solid Propellants through the Space Debris Recycling at the Space Platform. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, AIAA 2020–3898, Online. 24–28 August 2020. [Google Scholar]
- Abrukov, V.S.; Lukin, A.N.; Chandrasekaran, N.; Oommen, C.; Thianesh, U.K.; Mariappan, A.; Sanal Kumar, V.R.; Anufrieva, D.A. Genome approach and data science methods for accelerated discovery of new solid propellants with desired properties. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, AIAA 2020–3929, Online. 24–28 August 2020. [Google Scholar]
- Abrukov, V.S.; Lukin, A.N.; Nichith, C.; Oommen, C.; Kiselev, M.V.; Anufrieva, D.A.; Kumar, V.R.S. Development of the Multifactorial Computational Models of the Solid Propellants Combustion by Means of Data Science Methods–Phase III. In Proceedings of the AIAA 2019–3957. AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.-J.; Song, S.-W.; Yang, Z.-J.; Qi, X.-J.; Wang, K.-C.; Liu, Y.; Zhang, Q.-H.; Tian, Y. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat. Commun. 2018, 9, 2444. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Liu, Z.; Abou-Rachid, H.; Guo, H. Machine-learning assisted screening of energetic materials. J. Phys. Chem. A 2020, 124, 5341–5351. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.-L.; He, L.; Tao, G.-H.; Shreeve, J.M. Materials-genome approach to energetic materials. Acc. Mater. Res. 2021, 2, 692–696. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Rong, J.-L.; Zhao, Z.-T. Study on the prediction and inverse prediction of detonation properties based on deep learning. Def. Technol. 2022; in press. [Google Scholar] [CrossRef]
- Tian, X.-L.; Song, S.-W.; Chen, F.; Qi, X.-J.; Wang, Y.; Zhang, Q.-H. Machine learning-guided property prediction of energetic materials: Recent advances, challenges, and perspectives. Energetic Mater. Front. 2022, 3, 177–186. [Google Scholar] [CrossRef]
- Materials Genome Initiative. Available online: https://www.mgi.gov/ (accessed on 10 January 2023).
- Physics-Informed Meta-Learning for Design of Complex Materials. Available online: https://www.mgi.gov/sites/default/files/documents/MGI_PI_20220628.pdf/ (accessed on 10 January 2023).
- Anufrieva, D.A.; Koshcheev, M.I.; Abrukov, V.S. Application of Data Mining Methods in Physics Research. Multifactor Detonation Models. In the Collection: High-Speed Hydrodynamics and Shipbuilding. Collection of Scientific Papers of the XII International Summer Scientific School-Conference Dedicated to the 155th Anniversary of the Birth of Academician A.N. Krylov. 2018. S. 221–226. Available online: https://www.researchgate.net/publication/333210244_primenenie_metodov_intellektualnogo_analiza_dannyh_v_fiziceskih_issledovaniah_mnogofaktornye_modeli_detonacii (accessed on 10 January 2023).
- Anufrieva, D.A.; Abrukov, V.S.; Oommen, C.; Sanalkumar, V.R.; Chandrasekaran, N. Generalized Multifactor Computational Models of the Detonation of Condensed Systems. Available online: https://www.researchgate.net/publication/334126580_Generalized_multifactor_computational_models_of_the_detonation_of_condensed_systems (accessed on 10 January 2023). [CrossRef]
- ResearchGate. Victor Abrukov. Available online: https://www.researchgate.net/profile/V-Abrukov/research/ (accessed on 10 January 2023).
- Kolmogorov, A. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables. Izvestiya AN SSSR 1956, 108, 179–182, English translation: Amer. Math. Soc. Transl. 1961, 17, 369–373. [Google Scholar]
- Arnold, V. On the function of three variables. Izvestiya AN SSSR 1957, 114, 679–681, English translation: Amer. Math. Soc. Transl. 1963, 28, 51–54. [Google Scholar]
- Gorban, A.N. Generalized approximation theorem and computational capabilities of neural networks. Sib. J. Comput. Math. 1998, 1, 11–24. [Google Scholar]
- Hecht-Nielsen, R. Kolmogorov’s Mapping Neural Network Existence Theorem. In Proceedings of the IEEE First Annual International Conference on Neural Networks, San Diego, CA, USA; 1987; Volume 3, pp. 11–13. [Google Scholar]
- Werbos, P.J. Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Galushkin, A.I. Neural Networks Theory; Springer: Berlin/Heidelberg, Germany, 29 October 2007; eBook; ISSN 978-3-540-48125-6. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1986; Volume 1, pp. 318–362. [Google Scholar]
- Abrukov, V.S.; Anufrieva, D.A.; Sanalkumar, V.R.; Amrith, M. Multifactor Computational Models of the Effect of Catalysts on the Combustion of Ballistic Powders (Experimental Results of Denisyuk Team) Direct Tasks, Virtual Experiments and Inverse Problems. 2020, pp. 1–20. Available online: https://www.researchgate.net/publication/344727996_Multifactor_Computational_Models_of_the_Effect_of_Catalysts_on_the_Combustion_of_Ballistic_Powders_experimental_results_of_Denisyuk_team_Direct_Problems_Experiments_Virtverse (accessed on 28 January 2023).
- Abrukov, V.; Anufrieva, D.A.; Oommen, C.; Sanalkumar, V.R.; Chandrasekaran, N. Effects of Metals and Termites Adds on Combustion of Double-Based Solid Propellants. Development of the Multifactor Computational Models of the Solid Propellants Combustion by Means of Data Science Methods. Virtual Experiments and Propellant Combustion Genome. 2019. Available online: https://www.researchgate.net/publication/334172872_effects_of_metals_and_termites_adds_on_combustion_of_doble-_based_solid_propellants_development_of_the_multifactor_computational_models_of_the_solid_propellants_combustion_by_means_of_data_science_me (accessed on 28 January 2023).
- Abrukov, V.S.; Anufrieva, D.A.; Sanalkumar, V.R.; Amrith, M. Comprehensive Study of AP Particle Size and Concentration Effects on the Burning Rate of Composite AP/HTPB Propellants by Means of Neural Networks. Development of the Multifactor Computational Models. Direct Tasks and Inverse Problems & Virtual Experiments. 2020, 1–20. Available online: https://www.researchgate.net/publication/344494607_comprehensive_study_of_ap_particle_size_and_concentration_effects_on_the_burning_rate_of_composite_aphtpb_propellants_by_means_of_neural_networks_development_of_the_multifactor_computational_models_di#fullTextFileContent (accessed on 28 January 2023).
- Pang, W.; Li, Y.; DeLuca, L.T.; Liang, D.; Zhao, Q.; Liu, X.; Xu, H.; Fan, X. Effect of metal nanopowders on the performance of solid rocket propellants: A review. Nanomaterials 2021, 11, 2749. [Google Scholar] [CrossRef] [PubMed]
- Data about Combustion of RDX-CMDB and CL-20-CMDB Propellants with Different Nano Powders and Contents. Available online: https://www.researchgate.net/publication/361367833_data_about_combustion_of_RDX-CMDB_and_CL-20-CMDB_propellants_with_different_nano_powders_and_contents/ (accessed on 10 January 2023).
- Abrukov-Pang-25-01-23. Available online: https://www.researchgate.net/publication/367412407_Abrukov-Pang-25-01-23/ (accessed on 25 January 2023).
Input Factors | Values in Case 1 | Values in Case 2 |
---|---|---|
NC + NG, % | 82.5 | 82.5 |
Burning rate inhibitor, % | 0 | 0 |
Catalyst, % | 5.75 | 5.75 |
nAl, % | 0 | 0 |
Others, % | 6.25 | 5.75 |
RDX, % | 0 | 0 |
DEP, % | 0 | 0 |
nAlN, % | 0 | 0 |
Al2O3, % | 0 | 0 |
HMX, % | 0 | 0 |
mAl, % | 0 | 0 |
nDPN, % | 0 | 0 |
Al | 5.5 | 5.5 |
CL-20 | 0 | 0 |
nNi, % | 0 | 0.5 |
SUM | 100 | 100 |
Pressure, MPa | 15 | 10 |
Output Burning rate, mm/s | 31.9 | 34.4 |
Input Factors | Values |
---|---|
NC + NG, % | 63 |
Burning rate inhibitor, % | 0 |
Catalyst, % | 2.3 |
nAl, % | 0 |
Others, % | 2.8 |
RDX, % | 26 |
DEP, % | 4.6 |
nAlN, % | 1.3 |
Al2O3, % | 0 |
HMX, % | 0 |
mAl, % | 0 |
nDPN, % | 0 |
Al | 0 |
CL-20 | 0 |
nNi, % | 0 |
SUM | 100 |
Burning rate, mm/s | 18 |
OutputPressure, MPa | 15.2 |
Input Factors | Values for the Real Experiment | Values for the Virtual Experiment |
---|---|---|
NC + NG, % | 63.4 | 63.4 |
Burning rate inhibitor, % | 0 | 0 |
Catalyst, % | 5.85 | 5.85 |
nAl, % | 0 | 0 |
others, % | 4.75 | 4.75 |
RDX, % | 0 | 0 |
DEP, % | 0 | 0 |
nAlN, % | 0 | 0 |
Al2O3, % | 0 | 0 |
HMX, % | 24 | 24 |
mAl, % | 2 | 2 |
nDPN, % | 0 | 0.7 |
Al | 0 | 5.5 |
CL-20 | 0 | 0 |
nNi, % | 0 | 0 |
SUM | 100 | 106.2 |
Pressure, MPa | 15 | 15 |
OutputBurning rate, mm/s | 22.3 | 25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, W.; Abrukov, V.; Anufrieva, D.; Chen, D. Burning Rate Prediction of Solid Rocket Propellant (SRP) with High-Energy Materials Genome (HEMG). Crystals 2023, 13, 237. https://doi.org/10.3390/cryst13020237
Pang W, Abrukov V, Anufrieva D, Chen D. Burning Rate Prediction of Solid Rocket Propellant (SRP) with High-Energy Materials Genome (HEMG). Crystals. 2023; 13(2):237. https://doi.org/10.3390/cryst13020237
Chicago/Turabian StylePang, Weiqiang, Victor Abrukov, Darya Anufrieva, and Dongping Chen. 2023. "Burning Rate Prediction of Solid Rocket Propellant (SRP) with High-Energy Materials Genome (HEMG)" Crystals 13, no. 2: 237. https://doi.org/10.3390/cryst13020237
APA StylePang, W., Abrukov, V., Anufrieva, D., & Chen, D. (2023). Burning Rate Prediction of Solid Rocket Propellant (SRP) with High-Energy Materials Genome (HEMG). Crystals, 13(2), 237. https://doi.org/10.3390/cryst13020237