Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion Reception, Catalytic Degradation of Dyes, and Optoelectronic Application
Abstract
:1. Introduction
2. Method and Materials
3. Results and Discussion
3.1. Synthesis
3.2. Spectroscopic 1H NMR and IR Data
3.3. Optical Absorption
λmax (nm) (ε × 10−3M−1.cm−1) | Egap-opt (eV) | Ref | |||||
---|---|---|---|---|---|---|---|
Compound | Soret band | Q bands | |||||
Free-base meso-arylporphyrins | |||||||
H2(TPP) a | 416(419) | 513(20) | 550(20) | 590(6) | 646(6) | 1.89 | [53] |
H2(TEBOP) b | 422(295) | 517(9) | 554(8) | 593(5) | 651(7) | 1.85 | [54] |
H2(TAzP-IVP) c | 424(576) | 520(46) | 555(29) | 595(24) | 652(18) | 1.86 | [55] |
H2TNH2PP | 424(545) | 514(39) | 552(41) | 592(40) | 677(35) | 1.83 | this work |
H2TN3PP | 424(519) | 516(39) | 550(37) | 594(38) | 642(36) | 1.92 | this work |
Zinc(II) meso-arylporphyrin complexes | |||||||
[Zn(TPP)] | 421(524) | 550(21) | 591(25) | 1.91 | [43] | ||
[Zn(TAzP-IVP)] | 424(530) | 551(26) | 592(10) | 2.04 | [50] | ||
4α-[Zn(TN3PP)] | 430(535) | 560(410) | 598(361) | 2.02 | this work | ||
4α-[ZnTAzPP] | 430(544) | 561(394) | 601(321) | 2.03 | this work |
3.4. Photoluminescence Studies
3.5. Anion Binding Studies
3.6. Degradation of Rhodamine B (RhB) and Methyl Orange (MO) Dyes
3.7. Photodegradation of MO and RhB Dyes
4. Electronic Study on Complex (4)
4.1. Impedance Spectroscopy
4.2. Conductance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perutz, M. Regulation of Oxygen Affinity of Hemoglobin: Influence of Structure of the Globin on the Heme Iron. Ann. Rev. Biochem. 1979, 48, 327. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, L.R. The Colors of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds; Oxford University Press: New York, NY, USA, 1997; p. 249. [Google Scholar]
- Campbell, W.M.; Jolley, K.W.; Wagner, P.; Wagner, K.; Walsh, P.J.; Gordon, K.C.; Schmidt-Mende, L.; Nazeeruddin, M.K.; Wang, Q.; Grätzel, M.; et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C. Lett. 2007, 111, 11760. [Google Scholar] [CrossRef]
- Gregg, B.A.; Fox, M.A.; Bard, A.J. Functionalized Porphyrin Discotic Liquid Crystals. J. Am. Chem. Soc. 1989, 111, 3024. [Google Scholar] [CrossRef]
- Garg, K.; Singh, A.; Majumder, C.; Nayak, S.K.; Aswal, D.K.; Gupta, S.K.; Chattopadhyay, S. Room temperature ammonia sensor based on jaw like bis-porphyrin molecules. Org. Electron. 2013, 14, 14189. [Google Scholar] [CrossRef]
- Kadish, K.M.; Smith, K.M.; Guilard, R.; Harvey, P.D. The Porphyrin Handbook; Academic Press: San Diego, CA, USA, 2003; Volume 18, p. 63. [Google Scholar]
- Lammi, R.K.; Ambroise, A.; Balasubramanian, T.; Wagner, R.W.; Bocian, D.F.; Holten, D.; Lindsey, J.S. One-step synthesis and characterization of difunctionalized N-confused tetraphenylporphyrins. J. Am. Chem. Soc. 2000, 122, 7579. [Google Scholar] [CrossRef]
- Izatt, R.M.; Pawlak, K.; Bradshaw, J.S. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 1995, 95, 2529. [Google Scholar] [CrossRef]
- Dietrich, B. Design of anion receptors: Applications. Pure Appl. Chem. 1993, 65, 1457. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, K.; de Gala, S.R.; Austin, D.J.; Crabtree, R. A readily available non-preorganized neutral acyclic halide receptor with an unusual nonplanar binding conformation. J. Am. Chem. Soc. 1997, 119, 2325. [Google Scholar] [CrossRef]
- Davis, A.P.; Perry, J.J.; Williams, R.P. Anion recognition by tripodal receptors derived from cholic acid. J. Am. Chem. Soc. 1997, 119, 1793. [Google Scholar] [CrossRef]
- Berger, M.; Schmidtchen, F. Electroneutral artificial hosts for oxoanions active in strong donor solvents. J. Am. Chem. Soc. 1996, 118, 8947. [Google Scholar] [CrossRef]
- Kral, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J.L. Protonated sapphyrins. Highly effective phosphate receptors. J. Am. Chem. Soc. 1996, 118, 1595. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Kral, V.; Lynch, V. Calix [4] pyrroles: Old yet new anion-binding agents. J. Am. Chem. Soc. 1996, 118, 5140. [Google Scholar] [CrossRef]
- Andrews, P.A.; Mann, S.C.; Huynh, H.H.; Albright, K.D. Role of the Na+,K+-Adenosine Triphosphatase in the Accumulation of cis-Diamminedichloroplatinum(II) in Human Ovarian Carcinoma Cells. Cancer Res. 1991, 51, 3677. [Google Scholar]
- Zhou, Y.; Dong, X.; Zhang, Y.; Tong, P.; Qu, J. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes. Dalton Trans. 2016, 45, 6839. [Google Scholar] [CrossRef] [PubMed]
- Mandal, T.N.; Karmakar, A.; Sharma, S.; Ghosh, S.K. Metal-Organic Frameworks (MOFs) as Functional Supramolecular Architectures for Anion Recognition and Sensing. Chem. Rec. 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Rozveh, Z.S.; Kazemi, S.; Karimi, M.; Ali, G.A.; Safarifard, V. Photocatalytic aerobic oxidative functionalization (PAOF) reaction of benzyl alcohols by GO-MIL-100(Fe) composite in glycerol/K2CO3 deep eutectic solvent. Polyhedron 2020, 183, 113514. [Google Scholar]
- Dieleman, C.B.; Matt, D.; Neda, I.; Schmutzler, R.; Harriman, A.; Yaftian, R. Hexahomotrioxacalix [3] arene: A scaffold for a C 3-symmetric phosphine ligand that traps a hydrido-rhodium fragment inside a molecular funnel. Chem. Commun. 1999, 1911. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Singh, H.; Suating, P.; Kim, H.S.; Sunwoo, K.; Shim, I.; Gibb, B.C.; Kim, J.S. Hexahomotrioxacalix [3] arene: A scaffold for a C 3-symmetric phosphine ligand that traps a hydrido-rhodium fragment inside a molecular funnel. Chem. Rev. 2019, 119, 9657. [Google Scholar] [CrossRef] [PubMed]
- Sessler, J.L.; Cyr, M.; Furuta, H.; Kral, V.; Mody, T.; Morishima, T.; Shionoya, M.; Weghorn, S. Anion binding: A new direction in porphyrin-related research. Pure. Appl. Chem. 1993, 65, 393. [Google Scholar] [CrossRef]
- Sessler, J.L.; Burrell, A.K. Sapphyrins and heterosapphyrins. Top. Curr. Chem. 1992, 161, 177. [Google Scholar] [CrossRef]
- Shionoya, M.; Furuta, H.; Harriman, A.; Sessler, J.L. Diprotonated sapphyrin: A fluoride selective halide anion receptor. J. Am. Chem. Soc. 1992, 114, 5714. [Google Scholar] [CrossRef]
- Gilday, L.C.; White, N.G.; Beer, D. Halogen-and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition. Dalton Trans. 2013, 42, 15766. [Google Scholar] [CrossRef] [PubMed]
- Imahori, H.; Umeyama, T.; Ito, S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1809. [Google Scholar] [CrossRef] [PubMed]
- Radivojevic, I.; Varotto, A.; Farley, C.; Drain, C.M. Commercially viable porphyrinoid dyes for solar cells. Energy. Environ. Sci. 2010, 3, 1897. [Google Scholar] [CrossRef]
- Martinez-Diaz, M.V.; Torre, G.; Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 2010, 46, 7090. [Google Scholar] [CrossRef]
- Walter, M.G.; Rudine, A.B.; Wamser, C.C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porph. Phthalocyanines 2010, 14, 759. [Google Scholar] [CrossRef]
- Griffith, M.J.; Sunahara, K.; Wagner, P.; Wagner, K.; Wallace, G.G.; Officer, D.L.; Furube, A.; Katoh, R.; Mori, S.; Mozer, A.J. Porphyrins for dye-sensitised solar cells: New insights into efficiency-determining electron transfer steps. Chem. Commun. 2012, 48, 4145. [Google Scholar] [CrossRef] [PubMed]
- Imahori, H.; Umeyama, T.; Kurotobi, K.; Takano, Y. Self-assembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport. Chem. Commun. 2012, 48, 4032. [Google Scholar] [CrossRef]
- MPanda, K.; Ladomenou, K.; Coutsolelos, A.G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coord. Chem. Rev. 2012, 256, 2601. [Google Scholar]
- Hasobe, T.; Imahori, H.; Kamat, P.V.; Ahn, T.K.; Kim, S.K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 1216. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Grätzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272. [Google Scholar] [CrossRef]
- Cherian, S.; Wamser, C.C. Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2. J. Phys. Chem. B. 2000, 104, 3624. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Humphry-Baker, R.; Officer, D.L.; Campbell, W.M.; Burrell, A.K.; Grätzel, M. Conformation and π-conjugation of olefin-bridged acceptor on the pyrrole β-carbon of nickel tetraphenylporphyrins: Implicit evidence from linear and nonlinear optical properties. Langmuir 2004, 20, 6514. [Google Scholar] [CrossRef]
- Wang, Q.; Campbell, W.M.; Bonfantani, E.E.; Jolley, K.W.; Officer, D.L.; Walsh, P.J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M.K.; Grätzel, M. Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films. J. Phys. Chem. B. 2005, 109, 15397. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, H.R.; Chen, J.; Shinokubo, H.; Osuka, A.; Kim, D. Photoelectrochemical Properties of Doubly β-Functionalized Porphyrin Sensitizers for Dye-Sensitized Nanocrystalline-TiO2 Solar Cells. J. Phys. Chem. C 2008, 112, 16691. [Google Scholar] [CrossRef]
- Bessho, T.; Zakeeruddin, S.M.; Yeh, C.Y.; Diau, E.W.G.; Grätzel, M. Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew.Chem. Int. Ed. 2010, 49, 6646. [Google Scholar] [CrossRef]
- Campbell, W.M.; Burrell, A.K.; Officer, D.L.; Jolley, K.W. Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Films. Coord. Chem. Rev. 2004, 248, 1363. [Google Scholar] [CrossRef]
- He, H.; Gurung, A.; Si, L. 8-Hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 2012, 48, 5910. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry connections for functional discovery. Angew. Chem. Int. Ed. 2001, 40, 2004. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596. [Google Scholar] [CrossRef]
- Shetti, V.S.; Ravikanth, M. Synthesis and studies of Thiacorroles. Eur. J. Org. Chem. 2010, 75, 4172–4182. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Sengupta, K.; Bhattacharyya, S.; Nandi, A.; Samanta, S.; Mittra, K.; Dey, A. Photophysical and ligand binding studies of metalloporphyrins bearing hydrophilic distal superstructure. J. Porph. Phthalocyanines 2013, 17, 210. [Google Scholar] [CrossRef]
- Samanta, S.; Mittra, K.; Sengupta, K.; Chatterjee, S.; Dey, A. Second Sphere Control of Redox Catalysis: Selective Reduction of O2 to O2– or H2O by an Iron Porphyrin Catalyst. Inorg. Chem. 2013, 52, 1443. [Google Scholar] [CrossRef] [PubMed]
- Mittra, K.; Chatterjee, S.; Samanta, S.; Sengupta, K.; Bhattacharjee, H.; Dey, A. A hydrogen bond scaffold supported synthetic heme Fe III–O 2− adduct. Chem. Comm. 2012, 48, 10535. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Sengupta, K.; Mittra, K.; Bandyopadhyay, S.; Dey, A. Selective four electron reduction of O 2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes. Chem. Comm. 2012, 48, 7631. [Google Scholar] [CrossRef]
- Mandal, A.K.; Taniguchi, M.; Diers, J.R.; Niedzwiedzki, D.M.; Kirmaier, C.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four meso-Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. J. Phys. Chem. A 2016, 120, 9719. [Google Scholar] [CrossRef]
- Collman, J.P.; Gagne, R.R.; Halbert, T.R.; Marchon, J.C.; Reed, C.A. Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin. Model for oxymyoglobin. J. Am. Chem. Soc. 1973, 95, 7868. [Google Scholar] [CrossRef]
- Hartle, M.D.; Prell, J.S.; Plut, M.D. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Trans. 2016, 45, 4843. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, J. Increased yield of a desired isomer by equilibriums displacement on binding to silica gel, applied to meso-tetrakis (o-aminophenyl) porphyrin. J. Org. Chem. 1980, 45, 5215. [Google Scholar] [CrossRef]
- Gorlitzer, K.; Huth, S.; Jones, P.G. Color reaction of chlorhexidine and proguanil with hypobromite. Pharmazie 2005, 60, 269. [Google Scholar]
- Guergueb, M.; Brahmi, J.; Nasri, S.; Loiseau, F.; Aouadi, K.; Guerineau, V.; Nasri, H. Zinc (II) triazole meso-arylsubstituted porphyrins for UV-visible chloride and bromide detection. Adsorption and catalytic degradation of malachite green dye. RSC Adv. 2020, 10, 22712. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.B.; Zeng, J.B.; Deng, X.; Chen, L.; Wang, Y.Z. Block phosphorus-containing poly (trimethylene terephthalate) copolyester via solid-state polymerization: Retarded crystallization and melting behaviour. CrystEngComm. 2013, 15, 2688–2698. [Google Scholar] [CrossRef]
- Polster, J.; Lachmann, H. Spectrometric Titrations. Analysis of Chemical Equilibria. Verlag Chemie 1989, 12, 292. [Google Scholar]
- Dumoulin, F.; Ahsen, V. Design and conception of photosensitisers. J. Porph. Phthalocyanines 2011, 15, 481. [Google Scholar] [CrossRef]
- Brahmi, J.; Nasri, S.; Saidi, H.; Nasri, H.; Aouadi, K. Synthesis of new porphyrin complexes: Evaluations on optical, electrochemical, electronic properties and application as an optical sensor. Chem. Select 2019, 14, 1350. [Google Scholar] [CrossRef]
- Ceyhan, T.; Altindal, A.; Erbil, M.; Bekaroglu, O. Synthesis, characterization, conduction and gas sensing properties of novel multinuclear metallo phthalocyanines (Zn, Co) with alkylthio substituents. Polyhedron 2006, 25, 7. [Google Scholar] [CrossRef]
- Xue, X.; Tan, G. Effect of bivalent Co ion doping on electric properties of Bi0. 85Nd0. 15FeO3 thin film. J. Alloys Compd. 2013, 575, 90. [Google Scholar] [CrossRef]
- Ghataka, S.; Ghosh, A. Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. App. Phys. Lett. 2013, 103, 122103. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, J.; Nasri, S.; Saidi, H.; Aouadi, K.; Sanderson, M.R.; Winter, M.; Cruickshank, D.; Najmudin, S.; Nasri, H. Optical and photoelectronic properties of a new material: Optoelectronic application. Comptes. Rendus. Chimie. 2020, 23, 403. [Google Scholar] [CrossRef]
- Al Mogren, M.M.; Ahmed, M.N.; Hasanein, A.A. Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. J. Saudi. Chem. Soc. 2020, 24, 303. [Google Scholar] [CrossRef]
- Aloui, W.; Ltaief, A.; Bouazizi, A. Dielectrical properties of PET-MWCNT/P3HT: PC70BM/Al device: Impedance spectroscopy analysis. Microelectron. Eng. 2014, 129, 96–99. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, J.Y.; Xiao, B.; Tang, A.; Wang, X.; Zhou, E. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A. 2018, 6, 16769. [Google Scholar] [CrossRef]
- Opeyemi, O.; Louis, H.; Opara, C.; Funmilayo, O.; Magu, T. Porphyrin and Phthalocyanines-Based Solar Cells: Fundamental Mechanisms and Recent Advances. Adv. J. Chem. Sect. A 2019, 2, 21. [Google Scholar]
- Fishchuk, I.I.; Kadashchuk, A.; Ullah, M.; Sitter, H.; Pivrikas, A.; Genoe, J.; Bassler, H. Electric field dependence of charge carrier hopping transport within the random energy landscape in an organic field effect transistor. Phys. Rev. B. 2012, 86, 045207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, S.; Guergueb, M.; Brahmi, J.; O. Al-Ghamdi, Y.; Loiseau, F.; Nasri, H. Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion Reception, Catalytic Degradation of Dyes, and Optoelectronic Application. Crystals 2023, 13, 238. https://doi.org/10.3390/cryst13020238
Nasri S, Guergueb M, Brahmi J, O. Al-Ghamdi Y, Loiseau F, Nasri H. Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion Reception, Catalytic Degradation of Dyes, and Optoelectronic Application. Crystals. 2023; 13(2):238. https://doi.org/10.3390/cryst13020238
Chicago/Turabian StyleNasri, Soumaya, Mouhieddinne Guergueb, Jihed Brahmi, Youssef O. Al-Ghamdi, Frédérique Loiseau, and Habib Nasri. 2023. "Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion Reception, Catalytic Degradation of Dyes, and Optoelectronic Application" Crystals 13, no. 2: 238. https://doi.org/10.3390/cryst13020238
APA StyleNasri, S., Guergueb, M., Brahmi, J., O. Al-Ghamdi, Y., Loiseau, F., & Nasri, H. (2023). Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion Reception, Catalytic Degradation of Dyes, and Optoelectronic Application. Crystals, 13(2), 238. https://doi.org/10.3390/cryst13020238