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Abstract: MOFs (Metal–Organic Frameworks) are so-called coordination polymers with a porous
crystalline structure. In this review, the main emphasis was placed on these compounds’ use in
modifying titanium implants. The article describes what MOFs are, gives examples of ligands used
in the synthesis of MOFs, and describes a subgroup of these materials, i.e., Zeolitic imidazolate
frameworks. The article also lists the basic biomedical applications of these compounds. This review
shows the significant impact of titanium surface modification with Metal–Organic Frameworks.
These modifications make it possible to obtain layers with antibacterial properties, better corrosion
resistance, increasing cell proliferation, faster bone growth in vivo, and much more. The presented
work shows that the modification of titanium with MOFs is a very promising method of improving
their properties. We hope that the prepared review will help research groups from around the world
in the preparation of implants modified with Metal–Organic Frameworks with enhanced properties
and utility applications.
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1. Metal-Organic Frameworks (MOFs)

Metal–organic frameworks (MOFs) or porous coordination polymers are crystalline
materials that have attracted the interest of a large number of scientists from around
the world in recent years. It is one of the fastest-growing groups of materials, with
about 100,000 structures obtained so far [1]. They consist of metal ions (e.g., Zn2+, Co2+,
Ni2+, Fe3+, Cr3+, and Zr4+) and organic ligands with various functional groups (e.g., car-
boxyl or amino groups). Most of the ligands used are of synthetic origin (e.g., tereph-
thalic acid, 2-amino terephthalic acid, 4,4′-biphenyl dicarboxylic acid, 1,1′,2′,1”-terphenyl-
4,4′,4”,5′-tetracarboxylic acid, 6-(4-carboxylphenyl)nicotinic acid, 5-propoxy-isophthalic
acid), while some are also of natural origin (e.g., gallic acid, L-glutamic acid, adenine
or porphyrins) [2–10]. Examples of ligands used in the synthesis of MOFs are shown in
Figure 1. Such great interest in this class of materials is due to their unique properties.
They have a large specific surface area. There are some MOFs with a specific surface
area greater than 7000 m2 · g−1. It is possible to obtain networks with different porosity
from 3 to 100 Angstroms. Many existing MOFs have excellent thermal stability, up to
600 ◦C, and chemical stability in solutions of strong acids or bases [11–13]. In addition, the
physicochemical properties of Metal–Organic Frameworks can be easily modified. This
can be done by, e.g., modification with silanizing agents, creation of open metal sites, or
chemical modification of the ligand [14,15]. The presented properties and a large number of
available MOFs have led to an increase in their application potential in various fields. One
of the fields of their application is the storage of gases such as hydrogen or methane. They
can also be used as molecular sieves for separating gas mixtures such as C2H4/C2H2 [16].
Some of these structures are studied for application in electrochemistry. They can be used,
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for example, as positive and negative electrodes in Li-ion batteries. Another application in
electrochemistry is electrocatalysis where MOFs can be used in, e.g., hydrogen evolution
reactions [17]. MOFs can also be used to construct electrochemical sensors, e.g., to detect
pesticides or heavy metal ions [18,19]. Another application of these materials is photocatal-
ysis; MOFs based on titanium ions have special properties in this aspect. According to the
literature, they have outstanding photocatalytic and optoelectronic properties [20]. They
are also used as “traditional” catalysts for chemical reactions [21].
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Figure 1. Commonly used synthetic and natural linkers in the synthesis of MOFs.

The last mentioned application of MOFs is the adsorption of impurities such as toxic
dyes from aqueous solutions [22]. These structures also have many biomedical applications,
which will be discussed later in the article. To date, many review articles have been
published on the biomedical applications of MOFs. For example, articles published by
Chen and Keskin et al. [23,24]. The first article describes the applications of Ti-based
MOFs in the biomedical field, however, it focuses mainly on drug delivery systems and the
development of antibacterial materials. The second paper also focuses on other applications
such as drug delivery systems and the use of MOFs as imaging agents. A recently published
paper by Sharabati et al. also focused mainly on drug delivery and imaging in diseases
such as cancer, viral infections, diabetes, bacterial infections, and lung diseases [25]. In the
next article on the biomedical applications of MOFs, only MOFs based on porphyrins were
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discussed, and so far they have not been used in the modification of titanium. The last
mentioned work published by Sun et al. also applies only to the delivery of drugs [26,27].

2. Zeolitic Imidazolate Frameworks (ZIFs)

Zeolite imidazolate frameworks (ZIFs) are one of the subgroups of MOFs that are of
great interest to the scientific community. These materials, like all MOFs, consist of an
organic ligand and an inorganic metal cation. The ligand is based on an imidazole skeleton,
and the metal cation is most often Zn2+ or Co2+ [28–31]. Examples of the ligands used to
synthesize various ZIFs are presented in Figure 2. The scheme of combining metal ions and
ligands can be schematically presented as follows: Me2+-IM–Me2+. This bond has an angle
of 145◦ The bonding scheme is shown in Figure 3.
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Such a bonding angle makes these materials similar in structure to zeolites. This is why
they are so popular. In this material, metal cations, e.g., zinc, play the role of silicon atoms,
while the linker plays the role of oxygen atoms [33,34]. This type of connection of atoms
makes them have unique properties, as in the case of MOFs. They have a large specific
surface, high porosity, and tunable surface properties. They are also characterized by good
chemical stability (especially in an alkaline environment) and thermal stability [34]. Like
MOFs, ZIFs have many applications in various branches of chemistry [28]. They are used,
for example, in the separation of gas mixtures such as H2/CO2 or N2/H2 [35,36]. ZIFs are
also used to prepare so-called mixed matrix membranes (MMMs). These membranes are
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used for gas or liquid separation. ZIFs can also be used to create catalysts, for example,
transesterification or acylation reactions [28]. ZIFs as materials with a large surface areas
and porosity are also a great support for obtaining catalysts by incorporating, for example,
active metal oxides [37]. As in the case of MOFs, ZIFs also possess many biomedical
applications, which will be discussed in the next section.

3. Biomedical Applications of MOFs

As mentioned earlier, due to their excellent properties, MOFs have many biomedical
applications. These are, for example, drug delivery, gene delivery, and delivery of gasses
(nitric oxide) necessary for many biochemical processes, bioimaging, biosensors, and
scaffold materials [24,38]. Some of these applications will be briefly explained in this review.

The first application described will be for drug delivery and gene delivery. MOFs
can retain various drugs in their structure, which undergo intelligent, slowed release
in the body. This often happens under the influence of appropriate conditions, such
as reduced pH of the tumor or the presence of glutathione. For this purpose, various
MOFs are employed. One of the most commonly used networks for this purpose is ZIF-8.
For example, Kaur et al. prepared ZIF-8 containing an encapsulated anticancer drug—6-
mercaptopurine [39]. Drug release studies have shown that the drug is released under the
influence of reduced tumor pH. Another example of using this network in drug delivery
is presented by Zheng et al. [40]. In this work, authors prepared ZnO@Zif-8 core-shell
nanoparticles loaded with an important anticancer agent—doxorubicin. The work also
shows that this system has the ability to release the drug in an environment with a reduced
pH. Another network that has been proposed for drug delivery applications is the UiO-
66. In this work, Gong et al. prepared MOF containing free SH2 groups in the linker
structure [41]. These groups were used to attach 6-mercaptopurine to it via a covalent
disulfide bond. The results showed that the release of the drug is possible only in the
presence of glutathione, which is present in increased amounts in cancer cells. MOFs can
also be used to deliver protein drugs and modify the genome. In the work presented by
Yang et al., authors synthesized ZIF-90 loaded with cytotoxic protein for cancer therapy and
genome-editing protein Cas9 [42]. The results of their research showed that both proteins
are released under the influence of adenosine triphosphate (ATP), which is present in large
amounts in the intracellular fluid. All these results suggest that MOFs can be used for the
delivery of various types of drugs.

Properly constructed MOFs are also used in photodynamic therapy. Photodynamic
therapy consists of the fact that photosensitizers under the influence of light radiation gener-
ate various reactive oxygen species (ROS), such as singlet oxygen or hydroxide radicals [43].
For instance, Lu et al. prepared a MOF consisting of Hf4+ ions and a porphyrine-based
ligand [44]. The ability of porphyrins to generate ROS is well known, however, their combi-
nation with metal ions increases the amount of ROS generated. In this work, it was almost
twice as large. In the next paper, the authors show that the use of an MOF based on Mn2+

ions has the ability to generate oxygen from H2O2 present in cells [45]. In a paper published
by Sharma et al., the possibility of delivering the photosensitizer through encapsulation in
the MOF structure is also shown [46]. In their work, a MOF based on Cu2+ ions and gallic
acid was used for this purpose. Their work shows that material loaded with methylene
blue has the ability to generate more ROS than material without it.

MOFs can also be used as imaging agents. For instance, Ryu et al. prepared two types
of MOFs named UiO-67 and MOF-801 loaded with two fluorescent dyes, Resorufin and
Rhodoamine-6G, respectively [47]. Both frameworks were functionalized with the target-
ing agent galactosamine. The test results showed that the prepared particles have high
biocompatibility towards two human cell lines and are excellent as fluorescent imaging
agents. In the next work, Rieter et al. prepared an MOF consisting of gadolinium ions and
1,4-benzenedicarboxylic acid [48]. The synthesis was carried out in the inverted microemul-
sion system, which resulted in obtaining a material with the morphology of nanorods. The
obtained materials were tested for use as a contrast agent in nuclear magnetic resonance
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imaging. The obtained results showed that the prepared material has high values of R1
and R2 relaxivities per mM of material and is suitable for use as a contrast agent. Zeolitic
imidazolate frameworks are also used for the preparation of imaging agents. Zhao et al.
presented the synthesis of ZIF-8 doped with manganese ions [49]. The obtained material
was tested for use as a contrast agent in nuclear magnetic resonance. The results of the
study showed that such material has the ability to act as a contrast agent and is additionally
characterized by low cytotoxicity against the human 4T1 cell line.

MOFs are also used to obtain scaffolds with different properties. For example,
Guerrero et al. prepared a kidney scaffold consisting of ZIF-8 and (poly[isobutylene-alt-
maleic anhydride]-graft-dodecyl) [50]. The prepared material was tested for retention of
two uremic toxins, p-cresyl sulfate, and indoxyl sulfate. The results of these studies showed
a high retention rate for p-cresyl sulfate and less for indoxyl sulfate. However, they also
showed the great potential of using organometallic lattices in kidney scaffold construction.
In another paper, Karakeçili et al. prepared a chitosan scaffold loaded with ZIF-8 and
encapsulated with the antibiotic vancomycin [51]. The test results showed an excellent
antibacterial effect of the prepared material. They also showed that the release of the
antibiotic is to some extent pH-dependent as in an acidic environment more percentage of
the drug is released. The authors also conducted biocompatibility studies on the MC3T3-E
preosteoblast cell line. The results of these studies showed that the prepared material
increases cell proliferation and alkaline phosphatase activity. This means that this material
has great potential in the treatment of bone diseases. Han et al. prepared a bio-glass scaffold
also functionalized with ZIF-8 loaded with vancomycin [52]. The prepared scaffold, as
in the previous work, also showed pH-dependent release. In this work, the authors also
managed to confirm that the prepared scaffold increases cell proliferation and has strong
antibacterial properties.

MOFs can also be used to create biosensors. Biosensors are devices consisting of a
biological recognition element, which can be, for example, enzymes or DNA fragments,
in close contact with the transducer [53]. For instance, Sheta et al. prepared an electro-
chemical biosensor consisting of a composite that consisted of polyaniline and an Ni-based
MOF [54]. The material was also modified with DNA aptamers capable of detecting
the hepatitis-C virus. The authors managed to obtain a sensor characterized by a low
detection level (0.75 fM) and the ability to detect the virus in real biological samples.
In another work, the authors prepared a fluorescent biosensor consisting of zirconium
porphyrin-based MOF (PCN-222) for the detection of the antibiotic chloramphenicol. This
material was also functionalized with appropriate aptamers. The prepared sensor was
characterized by a low detection limit of 0.08 pg ·mL−1 and a wide measurement range
of 0.1 pg ·mL−1–10 ng ·mL−1. This sensor also could detect the antibiotic in real milk
samples [55].

4. MOFs in Modification of Titanium Alloy

Bone diseases are one of the most common diseases in the world. Examples of bone
diseases are osteoporosis, rheumatoid arthritis, and bone cancer. Elderly people and
postmenopausal women, in the case of osteoporosis, are particularly at risk. The presence
of any of these diseases can lead to increased bone fragility, which often leads to serious
fractures. In some cases, the fusion of the bone is impossible, which leads to the fact
that the bone must be replaced with an implant [56]. To date, many different materials
have been proposed for this purpose: metals such as tantalum or titanium, ceramics, or
polymers. The most frequently chosen material, however, is a biomedical titanium alloy
with the designation Ti6Al4V. This material has excellent mechanical properties, good
biocompatibility, and is practically completely resistant to corrosion in human body fluids.
Literature reports show that this material additionally has a very high survival rate. Like
any material, this also has several disadvantages. Despite this, titanium is bioinert, i.e., it
does not cause allergic reactions and is not toxic, although it is still recognized by the body
as a foreign body. This action causes inflammation in the body, which negatively affects
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the process of osseointegration, and thus bone reconstruction [57,58]. In addition, there
is a possibility of bacterial or fungal infection after the implantation operation, which is
another serious disadvantage [59,60].

All these disadvantages cause scientists around the world to modify the surface of
titanium implants in order to obtain a material with better properties such as the increased
proliferation of osteoblasts, and antibacterial or accelerated growth of hydroxyapatite.
The properties of the resulting layers depend on many different factors such as surface
energy, hydrophilicity, surface topography, and porosity [61]. To date, many different
materials have been used for this purpose. For instance, titanium dioxide is modified with
different alkali earth metal ions, titanates layer with different cations or zeolites [62–66].
MOFs are also used for this purpose, and layers prepared with their use will be discussed
in this review. Examples of applications of titanium implants covered with MOFs are
presented in Figure 4. As mentioned, many parameters affect osseointegration, such as
wettability, surface porosity, and roughness. Scientific research proves that osseointegration
is faster when the surface of the implant is hydrophilic [67]. Modification of metallic
and polymer surfaces with MOFs allows to an increase in their water contact angle and
thus hydrophilicity [68]. In addition, high porosity and surface roughness are needed for
effective and fast osseointegration [61]. These are the parameters that MOFs also provide.
Unfortunately, MOFs can also have disadvantages such as ion leakage and the ligands used
for their synthesis.
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In the first paper presented, Zhang et al. prepared a titanium alloy modified with
ZIF-8 by a simple hydrothermal approach [68]. In their research, the authors proved
that the modified material is biocompatible with the MC3T3-E1 cell line. The work also
examined the release of zinc ions from the prepared layer, and it was found that only
amounts of zinc ions are released. The effect of the synthesized layer on extracellular matrix
mineralization (ECM) and collagen production was also investigated. The results show that
ZIF-8-coated titanium materials significantly increased extracellular matrix mineralization
and collagen production. To confirm the positive effect of the modification on accelerated
osseointegration, alkaline phosphatase activity and the expression of osteo-related genes
were also tested. In all the tests performed, the titanium coated with ZIF-8 showed an
increase in the above-mentioned parameters. The authors also performed in vivo studies
using mice. The study confirmed the results of in vitro tests. It was proved that in mice
implanted with ZIF-8-modified titanium, more mature collagen and more mineralized
bone matrix were formed. Figure 5 shows the scheme of the surgery and results of the
in vivo study of the collagen and mineral matrix formation.
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In another work, Chen et al. prepared titanium alloy plates modified with nano and
micro ZIF-8 films [69]. Both layers were synthesized by different methods. In order to
obtain the ZIF-8 nanolayer, the secondary growth method was used, while the in situ
synthesis method was used to obtain the microscale ZIF. Various parameters such as the
morphology of the obtained layers, MG63 cell proliferation, alkaline phosphatase activity,
osteocalcin production, and cell adhesion were investigated in the work. SEM photos of
both films confirmed the receipt of layers of the assumed size. It was found that particle
size in the nanolayer ranged from 200–300 nm while the particle size in the microlayer was
found to be over 10 um. Biocompatibility studies have shown that the ZIF-8 microlayer
has cytotoxic properties while the nanolayer is biocompatible. This is due to the fact that
on a micro-scale, the ZIF-8 releases much larger amounts of zinc ions, which in too high
concentrations cause a cytotoxic effect, which has been confirmed by the authors. The
results of biocompatibility tests and zinc release from both layers are shown in Figure 6.
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The study of ALP activity showed that the nanolayer significantly increases its activity in
relation to unmodified titanium. The work also examined the antibacterial activity against
the S. Mutans strain. It was found that the prepared layer shows remarkable antibacterial
activity against this strain.
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Teng et al. prepared titanium also modified with ZIF-8 with immobilized iodine [70].
The scheme of this work is shown in the Figure 7. Prior to modification, the material was
subjected to the micro-arc oxidation (MAO) process, on which ZIF-8 was then synthesized
in situ. Iodine release studies show a dependence on pH; in an acidic environment, more
iodine is released. In addition, the authors also showed that the prepared material can
release immobilized iodine under the influence of near-infrared (NIR) light. It was found
that NIR exposure act as an ON/OFF switch for iodine release. The material has also been
subjected to antibacterial tests. It has been proven that it has antibacterial properties against
the S. Aureus strain, especially when the samples were irradiated with NIR light. In vitro
biocompatibility studies have shown that the material has no cytotoxic properties. In
addition, in vivo studies were carried out. The bacteria-infected implants were implanted
in mice. It was observed that, despite the material being infected, the post-operative
wounds of the mice that had the modified implant healed without any complications,
while the wound swelling was seen in the mice that had the infected material without
the modification.

As you can see, great efforts are being made to obtain implant surfaces with antibac-
terial properties. One of the methods of achieving such an effect is the use of silver ions.
Li et al. prepared a ZIF-8 layer modified with Ag+ ions on a titanium implant [59]. Studies
using various techniques such as scanning electron microscopy, X-ray diffraction, or X-ray
photoelectron spectroscopy, have proven the effective synthesis of the presented layer. The
tests performed by the authors also showed that the modification is biocompatible, and
increases the corrosion resistance and hydrophilicity of the surface. In addition, the layer
loaded with silver ions significantly supports antibacterial properties.
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Titanium implant modifications can also be used as local drug delivery systems. For
example, ZIF-8-modified Ti6Al4V titanium alloy can be used as a local drug delivery system
for an osteoporotic drug, risedronate (RSD). In this work, the authors proposed a new
approach to the synthesis of MOFs on a titanium surface. Prior to modification, alloy was
treated with NaOH to produce a layer of sodium titanate. Then, thanks to ion exchange,
zinc titanate was obtained, which was modified with a linker (2-methylimidazole) to obtain
a monolayer on the surface. The surface prepared in this way ensures excellent adhesion
of ZIF-8 crystals, which were synthesized by the hydrothermal method. The material
was used as an RSD carrier; it was proven that the drug is released from the surface of
the material in constant amounts for 16 hours. Such material can be of great importance
immediately after surgery. In addition, the uniformity of the occurrence of ZIF and RSD on
the surface was confirmed by FT-IR microscopy [71].

Titanium coated with ZIF-8 loaded with the antibiotic levofloxacin was prepared
by Tao et al. [72]. Figure 8 shows the scheme of the coating preparation and possible
antibacterial pathways of the modified implant.

The layer was prepared using electrophoretic deposition. Covering titanium with this
layer clearly increased the hydrophilicity of the surface. Zinc and drug release studies
have shown that it is released gradually in a controlled manner over 240 h. In addition,
titanium with a modified surface showed the highest biocompatibility and cell adhesion.
The authors of this paper also studied the expression of osteo-related genes such as Runx2,
Col1, OCN, and OPN. The expression values of all genes were higher for the samples
modified with the ZIF layer. The samples were also antibacterial against E. Coli and S.
Aureus bacterial strains. In vivo tests have shown that the material retains its antibacterial
properties in these conditions, and additionally reduces the formation of inflammation
around the implant.
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As also mentioned earlier, other MOFs can also be used to modify titanium. Shen
et al. modified the implant with MOF-74, which had mixed metal cations [73]. The cations
used were Mg2+ and Zn2+. Using X-ray diffraction, it was possible to confirm the effective
synthesis of the MOF. The hydrophilicity of the surface was also tested; it turned out to
be very hydrophilic, with a water contact angle value below 10◦. The prepared material
was obtained with different ion ratios in the MOF. It was found that as the content of zinc
ions increases, the thickness of the obtained coating decreases. This phenomenon is shown
in Figure 9. The coating containing the most Zn2+ was also the most stable. Antibacterial
tests showed a significant increase in the antibacterial effect compared to unmodified
material. Tests on cells and in vivo were also performed. Studies have shown that the
modified material increases ALP activity, collagen secretion, and mRNA expression of
some osteo-related genes. The modified material was able to maintain its antibacterial
properties in vivo and additionally increased the growth of healthy bone on the implant.Crystals 2023, 13, x FOR PEER REVIEW 11 of 17 
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In another work, authors prepared Co2+-based ZIF-67 modification on Ti implant.
They used this MOF as a local delivery system for osteogenic growth peptide (OGP) [74].
As in the previous cases, the hydrophilicity of the implant increases after covering it with
a layer of MOF. The prepared layer killed almost all bacteria from E. coli and S. Aureus
strains. The authors proved that such a strong antibacterial effect is due to the presence of
cobalt ions in the prepared layer. Biocompatibility studies have shown that the material
does not cause cytotoxicity and even increases cell proliferation in relation to unmodified
titanium. It was also found that it increased the expression of osteo-related genes. Thanks
to the modification of the ZIF-67 alloy, it was also possible to increase ALP activity and
collagen secretion. In vivo studies confirmed the results of in vitro studies. The implant
retained its antibacterial properties and additionally increased the rate of bone growth and
bone–implant contact ratio.

MIL-125 doped with rare earth Cerium ions was also used as a modification for
the implant surface. The coating containing this MOF and hydroxyapatite was prepared
using the galvanostatic method on titanium with a layer of TiO2 nanotubes on the surface.
Scanning electron microscopy images confirmed the formation of a uniform layer while
energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed
the presence of cerium ions in the material. In this work, the corrosion properties were
also assessed. The unmodified titanium had the lowest corrosion potential and the highest
corrosion current density, while the titanium coated with a layer of MOF combined with HA
had the highest corrosion potential and the lowest corrosion current density. Antibacterial
tests showed almost complete inhibition of bacterial growth. The prepared layer was
biocompatible and could slowly release bioactive calcium and phosphorus ions [75].

The last modification described in this article will be the work published by Wu et al. [76].
In their work, they synthesized a MOF on the surface of titanium called bio-MOF-1. It
has a natural linker in its structure—adenine. Using scanning electron microscopy, X-ray
diffraction, and FT-IR spectroscopy, it was possible to confirm the effective synthesis of the
layer. Biological properties were also investigated in this work. Biocompatibility studies
have shown that titanium modified with this MOF increases cell proliferation. It also
significantly increases the activity of alkaline phosphatase and the expression of osteogenic
genes. In vivo studies conducted additionally by the authors also show that the presented
modification accelerates bone growth.

All methods of titanium alloy modification and their influence on the final properties
are summarized in Table 1.

Table 1. The influence of MOF layers on the properties of titanium alloys is described so far in
the literature.

Type of MOF Influence of Modification on Material Properties Ref.

ZIF-8 Biocompatibility, Zn2+ release, increased collagen production, improved extracellular matrix
mineralization and alkaline phosphatase activity, faster bone growth in vivo.

[68]

ZIF-8 Biocompatibility, Zn2+ release, better cell adhesion, antibacterial activity [69]
ZIF-8 Biocompatibility, NIR triggered iodine release, antibacterial effect [70]
ZIF-8 Local controlled risedronate delivery [71]

ZIF-8 Controlled levofloxacin delivery, improved osteo-related genes expression,
biocompatibility, antibacterial [72]

ZIF-8 Ag+ release, improved antibacterial effect, biocompatibility better corrosion resistance [77]
ZIF-8 Controlled dexamethasone delivery, biocompatibility, enhanced ALP activity [78]

MOF-74 Antibacterial, Zn2+ release, enhanced osteo-related genes expression, biocompatibility [73]
ZIF-67 Osteogenic growth peptide delivery, Co2+ release, biocompatibility, antibacterial [74]

Bio-MOF-1 Enhanced osteo-related genes expression, improved ALP activity, better cell proliferation, and
faster bone growth in vivo. [76]

MIL-125-Ti Improved corrosion resistance, biocompatibility, Cerium release, Ca and P
release, antibacterial [75]
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5. Conclusions and Possible Development Directions

This article shows that MOFs are a great material for modifying titanium implants. The
prepared modifications enable the implant to acquire new properties. These are excellent
biocompatibility, enhanced alkaline phosphatase activity, enhanced collagen production,
better cell adhesion, and release of bioactive ions. In addition, the prepared layers also have
the ability to increase the expression of osteo-related genes. The obtained coatings also
have strong antibacterial properties against various strains of bacteria and better corrosion
resistance. This review also shows that the modification of titanium with MOFs can be
used as a carrier in the controlled release of drugs, e.g., antibiotics or anti-osteoporotic
drugs. Numerous in vivo studies have also shown that the modifications accelerate bone
growth in mice. Despite such good properties, there are still some challenges that need to
be solved. One of the biggest concerns when using MOFs in medicine is ligand leakage. It
is not entirely clear what amounts of ligand will be released by a titanium implant placed
in the body for many years. Additionally, almost all papers cited in this review show that
the ligand and ion are released. It should be remembered that the materials in these works
were prepared on a small scale. On the other hand, the hip implant is much larger, which
will result in the fact that the total amount of released substances will be greater. This
shows that further research is needed on this topic.

Despite the high degree of research on the modification of titanium with MOFs, there
are further possible directions of development. So far, MOFs synthesized on the surface
of implants contain mainly synthetic ligands. The only one containing a natural linker is
bio-MOF-1. However, this ligand also contains a second ligand (4,4’-biphenyl dicarboxylic
acid) of synthetic origin in its structure. Thus, the next step in the research on the formation
of MOF coatings on implants may be the synthesis of those containing only natural linkers.
An example of a linker that would be suitable for this purpose is, for example, gallic acid,
which has a proven ability to form MOFs and has antimicrobial properties. As can also be
seen, the only metal ions used in the synthesis of MOFs are zinc and cobalt. However, there
are many more metal ions with the ability to improve osseointegration, such as calcium,
magnesium, or strontium [79]. These metals also have a proven ability to form MOFs [80,81].
These networks have, for example, anti-oxidative properties and are biocompatible. One
example is MOF synthesized from Mg2+ ions and gallic acid. It was biocompatible against
HL-60, RAW 264.7, and NCI-H460 macrophage cell lines [6]. Another element that affects
osseointegration is lanthanum [82]. It also has the ability to create MOFs. This could be
another new line of research. We hope that this review will help scientists from around the
world create new modifications of titanium implants using MOFs.
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